<]
TUDelft

Future Urban Roads

Bente ter Borg
Lodewijck Foorthuis
Julian Tas
Tim van Zee

Delft University of Technology
Faculty of Mechanical, Maritime and Materials Engineering
Department of Biomechanical Engineering

December 21, 2018

First Supervisor: F.A. Dreger, MSc TU Delft
Second Supervisor: Dr. ir. J.C.F. de Winter TU Delft
Third Supervisor: J.C.J. Stapel, MSc TU Delft

This page is intentionally left blank.

A Study into the Scenarios where Motorized Vehicles and

Vulnerable Road Users Communicate

Bente ter Borg, Lodewijck Foorthuis, Julian Tas and Tim van Zee

Abstract—Autonomous Vehicles (AVs) do not
contain a human driver at the driver’s seat.
Therefore, AVs may need to communicate with
Vulnerable Road Users (VRUs) by means of ar-
tificial gestures, sounds or lights. However, it is
currently unknown in which types of traffic scenar-
ios human drivers communicate with VRUs. The
aim of this research is twofold: (1) to examine in
which types of scenarios motorized vehicle-VRU
communication is prevalent, and using this data
(2) to examine in which traffic scenario commu-
nication is worthwhile. This second traffic sce-
nario is built as candidate scenario in an exper-
imental setup in virtual reality, wherein an AV
communicates with a VRU. Past research suggests
for the second aim a situation with unclear traf-
fic laws, low speeds and an unclear visibility. In
total 101 YouTube videos were analyzed using ob-
servation metrics: severity of the conflict, traffic
situation, location, visibility, type of communica-
tion, mobility, lanes to cross, priority, violation
of the law and vehicle type. Also relative velocity,
conflict time and absolute velocity were measured.
Results showed that no communication occurred
more at high speed scenarios (> 51 [kph]|) than at
low (< 30 [kph]) and intermediate (31 - 50 [kph])
speed scenarios. When there was no wviolation of
the traffic law more communication takes place
by VRUs and vehicles compared to when there
was violation of the traffic law. In the case of
blocked view, accidents were more likely to hap-
pen. Blocked view mostly occurred due to a sta-
tionary vehicle. Accidents happen more at inter-
sections than at the other traffic situations. In
conclusion, based on the YouTube analysis, com-
munication is worthwhile in a low and intermedi-
ate speed scenario, where there is no violation of
the traffic law and where the VRU’s visibility is
blocked by a stationary vehicle. This scenario is
built in Unity and could be tested with different
situations in further research.

Keywords—Autonomous Vehicles, Communi-
cation Scenario, Vulnerable Road Users, Unity.
1 Introduction

More and more car manufacturers, like Mercedes and Toy-
ota, are joining the development of Autonomous Vehicles

(AVs), whereas companies like Google and Uber are al-
ready testing their AVs on the public road. It can be
expected that these vehicles will be exemplary road users
who will obey the traffic rules and drive safely. The devel-
opment of the AV, however, raises the question how Vul-
nerable Road Users (VRUs) will respond to and behave
around AVs even if they drive safely. Someone behind the
wheel reading a newspaper or even nobody driving the ve-
hicle might cause confusion. Therefore, car manufacturers
are adding displays or warning lights to their AVs to im-
prove their communication with VRUs. This paper aims
to investigate in which types of traffic scenarios AV-VRU
communication may be worthwhile. The main focus of
this paper is to investigate traffic scenarios where commu-
nication between motorized vehicles and VRUs is preva-
lent. The second focus is to investigate where communi-
cation could be worthwhile in traffic scenarios. The sce-
nario where communication could be worthwhile is built
in Unity.

2 Background

The Institute for Road Safety Research in the Nether-
lands, SWOV, stated that the decision-making and be-
haviour of pedestrians and cyclists in interaction with
AVs have received little attention in the research com-
munity [1]. Past research mostly focused on the type of
communication, rather than on the scenario in which the
communication took place. In most cases a scenario is
chosen with a single vehicle and a single pedestrian on
a crosswalk. There is a lack of focus on different types
of scenarios that can occur on the road. It is important
to research multiple road situations. Otherwise the re-
search will not give a useful insight into the real-life road
situation.

However, past research about communication could
give insight in possible scenarios. The research of Zim-
mermann shows that VRUs interpret driving behaviour,
like deceleration, as positive communication [2]. This con-
clusion was also drawn by research done by Rothenbiicher
[3]. This research indicates that if an AV showed a signif-
icant deceleration, pedestrians were confident to cross the
road. However, when the AV behaved unexpectedly in
terms of speed or yielding, pedestrians showed discomfort
with the AVs and were looking for a way to communicate.
Furthermore, it has been shown that pedestrians seemed
comfortable with the AVs as long as the AV behaves ac-
cording to the traffic laws [4]. VRUs are less comfortable
at a scenario where traffic laws are unclear and are more

willing to communicate.

Apart from dealing with AVs, pedestrians seem to
have difficulties with recognizing danger. When vehicles
approach at higher speeds, pedestrians find it more diffi-
cult to determine whether a vehicle is decelerating, since
the relative acceleration is harder to perceive [5]. These
factors suggest that a way of communication between
AVs and VRUs is necessary to guarantee safety and make
VRUs comfortable with the AV. Looking at the cause of
accidents in Europe, 14% is due to a communication error
and 24% is due to interpretation and planning errors [6].
Interpretation and planning errors imply the analyzing of
the current and predicted behaviour of other road users.
A factor that has been identified as a contributory factor
in the causation of pedestrian crashes and injuries is the
speed of motorized vehicles [7]. An experiment from Katz
et al. [8] showed that drivers slowed down or stopped more
often for a pedestrian when their approaching speed was
low. Another factor that contributes to the causation of
pedestrian crashes is the visibility of the pedestrian [7].

Thus, a scenario where communication between VRUs
and AVs occurs can be compared to the current situation
between VRUs and vehicle drivers. From past research,
it seems this is a situation with unclear traffic laws, low
speeds and clear visibility.

Since there is a need to better understand which traf-
fic situations require communication, we did a structured
analysis of road videos. To ensure a vast database, a broad
analysis of YouTube content was performed. YouTube
is an international platform that allows people to up-
load videos. Every minute, more than 48 hours of video
content is uploaded [9]. YouTube is also connected to
other big social networks, such as Facebook, Twitter and
Google+. In this way, the off-site sharing of YouTube
videos is made easy. Due to the broad range and the huge
amount of uploaded videos on YouTube every minute,
YouTube is used in our research.

3 Method

Despite not being part of the initial goal of the re-
search, we have started a real-life observation pilot with
a mounted camera on the side of the road to get more
insight in communication. This pilot showed that com-
munication rarely takes place in real-life (an estimated
one in twenty road users). Since other research into real-
life situations has already been done [4] and due the lack
of time, this pilot was not integrated any further. This
research is therefore limited to YouTube analysis.

3.1 YouTube Search

Firstly, we selected YouTube videos which displayed com-
munication. These videos were found by the use of search
terms. The search terms were based on the severity of the

conflict. The four categories in increasing order of severity
were: (1) No delay and no discomfort, (2) Confusion and
waiting, (3) Agitation, near miss evasion and (4) Angry,
accident. The conflict is linked with an emotion which is
sorted in increasing order of severity from no discomfort
to angry. The search terms are shown in Table 3 in Ap-
pendix A. The search terms per category were combined
to find the videos. The goal was to find 20 to 30 videos in
total for each category and not to find a certain amount
of videos per search. The research resulted in a total of
101 videos that were analyzed (Appendix F).

3.2 observation metrics for YouTube Data Ex-
traction

We analyzed the videos using categories, so all the data
extracted from YouTube is stored in a structured way.
All the categories we used are observation metrics (Table
1 on the next page). Due to the possibility of multiple ve-
hicles and VRUs in a video the observation metrics were
divided in a general part, a VRU part and a vehicle part.
Therefore, multiple types and number of communication
can occur in one video. When VRUs or multiple vehicles
on the same lane were acting the same or as a group, we
counted them as one.

3.3 Inclusion Conditions of YouTube Videos

In order to make the video search more reliable we filtered
the selected videos. The following criteria were used to
filter the videos:

e At least one vehicle;
e At least one VRU;
e No compilations.

Compilations were filtered out, because most compilations
consist of sensational videos and not real-life situations.
In order to filter out compilations, we used the YouTube
search filter. The filter applied to the search was < 4
minutes, since most compilations > 4 minutes. The <
4 minute compilations were filtered out post-hoc. The
YouTube filter is also used to sort the videos by number of
views in order to keep the same sequence when the search
is reproduced. For every combination of search terms, the
number of watched videos and the number of videos that
were actually useful for this research were noted down, to
keep track of the usefulness of the different search terms
and to make it easier to retrieve subsequent videos.

Compilations were allowed in case not enough videos
are found in a certain category which suffice to the inclu-
sion criteria. Since the videos on YouTube where good
interactions take place are less common, this exception is
applied for No delay and no discomfort and Confusion,
waiting.

Table 1: observation metrics for interface with left the categories, centered the option(s) and right the description.

General observation metrics

Severity of
the conflict

No delay and discomfort
Confusion and waiting
Agitation, near miss or evasion
Angry, accident

The state of the VRU after the interaction.

Traffic Crosswalk The road situation where the VRU is crossing.
situation Intersection Crosswalk is a crossing over a road without another
Roundabout crossing. By intersection and roundabout is meant
Not defined crosswalk adjacent to these situations. A not defined
situation is a road without a designated crossover.
Conflict time | Quantity [s] The moment a VRU starts crossing until the moment
the VRU leaves the road or is hit by a vehicle.
Number of Quantity Number of VRUs in the video. Multiple VRUs who
VRUs acted as a group are counted as one.
Number of Quantity Number of vehicles in the video. Multiple vehicles
vehicles are counted as one if they acted as a group.
Location Country The country where the situation takes place.
VRU observation metrics
Visibility Clearly visible The options are clearly visible, difficult to notice
Difficult to notice (still visible, but not right away) or hardly visible,
Hardly visible, blocked view blocked view (not visible due to darkness or another
vehicle blocking the view)
Communication Eye contact The communication options are eye contact (the
Positive hand gesture VRU looks at the vehicle), positive hand gesture,
Negative hand gesture negative hand gesture and no communication.
No communication
Mobility Child The ability of the VRU to cross the road: a child
Mobile could behave unpredictable, someone with walking
Walking aid aid needs more time to cross the road.
Lanes to cross | Quantity If multiple lanes are split by a traffic island, only the
lanes up to the traffic island are considered.
Priority Yes Whether the VRU had priority following the traffic
No rules.
Unclear
Violation Yes Whether the VRU obeys the traffic rules.
of the law No
Vehicle observation metrics
Relative Lower than max The velocity of the vehicle relative to the allowed
velocity According to max maximum speed.
Higher than max
Absolute Quantity [kph) The velocity extracted from YouTube.
velocity
Communication Driving behaviour The kind of communication used by the vehicle.

Sound or horn
Light signals
No communication

Options are sound or horn, light signals and no
communication. Multiple options are possible
for one vehicle.

Vehicle type Motorcycle Type of vehicle.
Car
Truck or Bus
Priority Yes Whether the vehicle had priority following the traffic
No rules.
Unclear
Violation Yes Whether the vehicle obeys the traffic rules.
of the law No

3.4 Speed Extraction of YouTube Videos

We created a database with the videos and the observa-
tions were annotated using a custom Matlab interface.
With the built graphical user-interface (see Figure 13 in
Appendix B) the observations can easily be analyzed and
will automatically be uploaded to the corresponding Mat-
lab table. We used a second interface (see Figure 14 in
Appendix B) for a correction of the data regarding com-
munication. This way, the country and the communica-
tion per VRU and per vehicle was added (Table 1).

The absolute velocity in kilometers per hour was mea-
sured using estimated distances from the videos. The ex-
act location of the situation in the video was found by
either entering the coordinates in Google Maps or by look-
ing at the environment. When an exact location of the
situation could be found, we used the Google Maps dis-
tance measuring tool to determine the distance between
the two landmarks. This is also shown in Appendix C.
When this was not possible, the lengths of other vehicles
in the video were used. When the distance was deter-
mined, we measured the time in [s] it took the vehicle
to cover this distance. Then the velocity is calculated by
dividing the covered distance by passed time.

Both the conflict time and time used for calculation of
the velocity are measured using a stopwatch. The video
playback speed was slowed down four times in order to
make the time measurement more accurate.

3.5 Error of Distance and Speed Measurements

The use of Google Maps results in a distance error of
0.44% [10]. Distances estimated using other vehicles can
be expected to be reasonably accurate as the length of
a certain vehicle type could be easily extracted from the
internet. Also, there is an error due to inaccuracy of the
time measurement. The time measurement had to be
started and stopped manually when the vehicle crossed
the start and end marks of the known distance. Distor-
tions in the video and reaction time of the people who
measured may result in an error when measuring the time.
Because an average velocity is taken over a small distance,
it will be an approximation of the absolute speed. The
absolute speed is used to make a distinction between low,
intermediate and high speed scenarios. According to the
urban speed limits, the low speed scenario is set as < 30
[kph] and the high speed scenario as > 51 [kph]. The inter-
mediate speed scenario is set as 31 - 50 [kph]. The speed
measurement was done twice for each video by different
annotators and the measurements are accurate within a
10% margin.

To measure the conflict time we used a stopwatch with
an accuracy of 0.01 [s]. To obtain an error margin for the
time the measurement was done by two people and the
error margin of 0.5 [s] is assumed. The video playback
speed was slowed down four times, which decreases the

error margin to 0.125 [s/. This margin is set to account
for reaction time errors from the people who measure.

Most of the data will be on a nominal scale. For this
reason we will mostly use bar graphs and pie charts. In
these kind of graphs it is hard to plot the margin of error.
To address this we will also plot graphs with the outer
boundaries of the error margins. These will be compared
to the graphs with the unedited data to see if it signifi-
cantly influences our results.

4 Results

During the analysis of the data we found that the traffic
situation roundabout occurred only once, so this scenario
is excluded from the results.

4.1 Influence of Vehicle Velocity on Communica-
tion

From the box plot with the vehicle velocity plotted against
communication (Figure 1), it appears that no communi-
cation is most common at high speeds. Sound or horn
occurred mostly at high speeds too. Low and intermedi-
ate speed scenarios seem to have more communication for

both the vehicle and the VRU.

Figure 1A: communication by vehicles Figure 1B: communication by VRUs

80y T 80F —
i
I i
i
70 1 70 }
I
I i
! |
o0 + 60+ i -
= | - + I -
Esob | ! ‘ i | T
= ! ! 50 i 1 |
B ! | ,
5 — |
8 40 I i
< ! 40 i !
4 i
o I
230 ! 30
5 T i
9 !
20 1 20 } T
g i | i
10 ! ! ! : !
i | or i T i
i i | i i i
ol 4 4 = | ‘ | |
0 4 £ £ £
% Q. 2 %,
4 3) %, %, @ %, S,
", e, Ty, ", ey e,
9 @, e % “ % %,
2 2 % by @, % K4 ’o?,' Yo,
%

Figure 1: Vehicle velocity plotted against A. vehicle communication and
B. VRU communication.

In Figure 2 it can be seen that the frequency of no com-
munication increased when the velocity of the vehicle in-
creased. The no communication by the VRU is higher for
0 [kph] than for 1 — 40 [kph].

100 T T T T

I o communication by vehicles
90 - [Ino communication by VRUs b

80 b

60 b

401 b
30F b
201 b
o H f
0 1 " A . A

0 kph 120kph 21-40kph 41-60kph 61-80 kph

"no communication" frequency [%]

Figure 2: The occurrence of no communication plotted with a 20 kph
interval, as percentage of the total number of counted communication
cases.

In Figure 3 the types of communication are shown at
different speed scenarios, namely low, intermediate and
high. In the low speed scenario, 73% of the cases showed
communication and 27% showed no communication. In
the intermediate speed scenario, 66% of the cases showed
communication and 34% showed no communication. In
the high speed scenario, the main type of communication
was no communication with 75% of the total frequency.
FEye contact, positive and negative hand gestures made up
25% of the total.

27%

- no communication
-eye contact

I:I negative handgesture
I:Ip()sitive hand gesture

7%

45%
0 - 30 [kph] total of 75 cars

6%
18%

6%

13%
12%

75%

36%
31 - 50 [kph| total of 50 cars

51 - 80 [kph| total of 16 cars

Figure 3: The different types of communication plotted against the three
speed scenarios; low, intermediate and high for the three different types
of traffic situations, by number of conflicts.

To take the error in speed measurement into account three
additional plots were made. In Figure 19 in Appendix D
the VRU part of Figure 2 is plotted with an error of 10%.
The same has been done for Figure 3. In Figure 20 in
Appendix D the plot can be seen with an adjusted speed
of 90% and in Figure 21 in Appendix D the plot can be
seen with an adjusted speed of 110%.

4.2 Types of communication when (no) Violation
of the Law occurred

Figure 4 shows the difference in communication for VRUs
in case there was (no) violation of the law. From this fig-
ure, it seems that in case there was no wviolation of the
law, no communication occurred less by VRUs compared
to a situation when there was violation of the law. In case
there was no violation of the law, positive hand gestures
made up 35% of the total. In case of violation of the law,
there was only 13% positive hand gestures. In case of no
violation of the law, no communication made up 12% of
the total. In case of violation of the law there was 42%
no commaunication.

100

I 0 communication
[l cye contact

[negative handgesture
[Jpositive handgesture | |

90

communication type frequency [%]

violation

no violation

Figure 4: Communication by the VRU in case there is (no) violation of
the law, as percentage of the total number of counted communication
cases.

Figure 5 shows the difference in communication for vehi-
cles in case of (no) violation of the law. From this figure,
it seems that in case of no wiolation of the law, driving
behaviour made up 65% of the total. In case of violation
of the law, driving behaviour made up 18% of the total. In
case of no wiolation of the law, no communication made
up 32% of the total. In case of violation of the law, there
was no communication in 69% of the cases.

100

Il 0 communication

[driving behaviour |]
horn

[light signals

90

40

30

communication type frequency [%]

20

violation

no violation

Figure 5: Communication by the vehicle towards the VRU in case there
is (no) violation of the law, as percentage of the total number of counted
communication cases.

4.3 The Stationary Car Scenario

As shown in Figure 6, in 52% of the cases VRUs were
clearly visible and 24% of the cases showed a blocked view.
In the scenario with a stationary vehicle on the adjacent
road, the blocked view scenario occurred in 51% of the
cases and the clearly visible outcome occurred in 22% of
the cases.

100

[
I cicarly visible
[difficult to notice
[blocked view

90

80

70

60

50

40

30

visibility type frequency %]

20

10

all VRUs (107)

VRUs in two car scenario (35)

Figure 6: Visibility of VRU (left) and the visibility of the VRU in a
scenario with at least two vehicles (right), as percentage of the total
number of counted communication cases.

Figure 7 shows the visibility of the VRU with at least two
vehicles in the scenario combined with the severity of the
conflict. In this scenario, there is at least one stationary
vehicle and at least one non-stationary vehicle. It seems
that for accident and near miss, there is more blocked view
than the other two categories.

100 T T T T

I clcarly visible
[difficult to notice
[Jblocked view

90

301 1

visibility type frequency [%]
=y
T
.

0 - [

accident (22) near miss (31) confusion (32) no delay (22)

Figure 7: Visibility of VRUs plotted against the severity of the conflict
by (number of VRUs).

4.4 Traffic Situation

Figure 8 shows that there was mostly no communication
by the VRU when an accident occurred. Eye contact oc-
curred substantially more at near miss, confusion and no
delay. Positive hand gestures were most common at no
delay.

100 T T T T

I 10 communication
[cye contact
[negative handgesture
80 C——Jpositive 1

70 1

90

60 1

50 1

40 1
30 4
20 1
101 H 1
o

accident (23) near miss (40) confusion (44) no delay (34)

communication type frequency %]

Figure 8: Communication plotted against the VRU per severity of the
conflict by (number of interactions).

From Figure 9 it seems that accidents occurred most
at intersections. Most near misses occurred at a not
defined situation. The total communication resulted
in 86% for not defined, while at intersection the total
communication resulted in 65%.

13%

18%
29%
39%

crosswalk, 38 conflicts

I ccident
B vear miss
[waiting
[Inodelay

14%

9%

18%
35%,
28%
50%

20%

intersection, 40 conflicts not defined, 22 conflicts

Figure 9: Severity of the conflict plotted against the three different types
of traffic situations, by number of conflicts.

5 Discussion

The goal of the research was to find scenarios in which
communication between a VRU and vehicle takes place.
From the self made footage it can be seen that direct
communication between drivers and VRUs rarely occurs
in real-life situations. Therefore, the discussion only fo-
cuses on the YouTube analysis.

5.1 High Speed Scenarios

In low speed scenarios, the frequency of eye contact is
high. From this it can be concluded that when VRUs are
crossing the road they are looking for confirmation that
oncoming vehicles are stopping or yielding. No commu-
nication occurred more in high speed scenarios compared
to low and intermediate speed scenarios. Communication
using a horn or sound was more present in high speed
scenarios. From this result it can be concluded that in
high speed scenarios there is either no time to communi-
cate or only time to use a horn. It could be concluded
from this that an AV trying to communicate with a VRU
at low and intermediate speed scenarios could be more
useful than at high speed scenarios.

5.2 Traffic Situation

Although there is more communication at lower speeds,
there is no clear difference between the communication in
traffic situations. Accidents happened most at intersec-
tions. This could be due to intersections being crowded
and there is traffic coming up from multiple directions.
The not defined traffic situation has most near misses,
so could be pointed out as the situation where the least
communication takes place by VRUs. However, since it
consists of many sub-types of traffic situations (for in-
stance straight urban road, highway, traffic jam), it is
hard to conclude if there is lack of communication in all
sub-types. Therefore, the situation where the least com-
munication takes place by the VRU is said to be intersec-
tion.

5.3 Situation with a Stationary Vehicle

Stationary vehicles caused a blocked view in a significant
number of cases. It could be concluded that in situations
with a stationary vehicle and a multiple lane road, the
clear view is compromised. From this it could be con-
cluded that these blocked view situations resulted in less
use of communication and caused a higher occurrence of
accidents and near misses. Therefore, this situation was
used in Unity as the experimental situation. This will be
further described in chapter 6.

5.4 Margin of Distance and Speed Error

When looking at Figures 19, 20 and 21 in Appendix D it
can be seen that there are no significant differences be-
tween the plots without error taken into account and the
plot with error taken into account. The frequency of com-
munication still declines when the speed increases. There-
fore it will not be necessary to adjust the earlier made ob-
servations. It should be mentioned that the way the mar-
gin of error was taken into account still leaves some un-
certainty. For the error plots all the speed measurements
were either decreased or increased by 10%. This means
that the patterns will stay roughly the same. When some
speed measurements are lower while others are higher, the
patterns may change more.

5.5 Improvements and Recommendations

Firstly, YouTube is a sensational platform, so the sample
group does not fully represent the real-life situation.
Users of the platform upload videos in order to gain as
many views as possible. The consequence is a bigger
representation of accidents and near misses compared to
the real-life appearances. If there is more time available
for research it is recommended to record at a location, so
the sample group is a better representation of the reality.

Secondly, in this research the measured conflict time was
not useful. This was measured from the moment the first
VRU entered the road until the moment the VRU left the
road or was hit by a vehicle. In some videos the record-
ing had to be stopped before one of this criteria was met.
These differences in time measurement resulted in faulty
data. Furthermore, the conflict time did not give a rep-
resentation of the time VRUs and drivers had to react
to the conflict. In some cases, a VRU would stay on the
road after a near miss due to possible shock. An actual
response time would be hard to measure from YouTube
videos since it would be hard to determine the moment a
driver sees a VRU. A well measured response time could
give useful information for the study but this has to be
done in a different way. To improve the accuracy of the
conflict time, it is advised to only use High Definition
(4K) videos to extract the gaze direction data from both
the VRU and the vehicle driver.

The sample size of this research was 101 videos, which
is not sufficient to cover all possible traffic situations with
enough videos. For example there is only one video con-
taining a roundabout. A larger sample size would give
more insight in specific traffic situations and would pro-
vide more reliable results.

The two lane scenario with one stationary car resulted
in VRUs who were not visible. Further research could look
into a way to warn upcoming cars for the hardly visible
VRU or warn the VRU for the approaching car.

6 Proof of Concept for an Experiment in
Unity

From the discussion above the certain scenario factors are
defined to construct a scenario where communication may
be most worthwhile. This scenario is built in a virtual
reality environment using the game-engine Unity. This
scenario is built using a follow-up on previous TU Delft
research from L. Kooijman and K. de Clerq [11]. Our
objective with Unity is to build the scenario and give a
proof of concept for an experiment in Unity. An exper-
iment should be conducted to confirm the influence of
communication on the scenario to increase the safety of

VRUs.

6.1 Proof of Scenario for Unity Experiment

The location of the environment is the first factor for the
scenario. The country that is chosen as the location for
the Unity scenario is the United Kingdom (UK), since
the UK is representative for a Western-European envi-
ronment and most of the YouTube videos were filmed in
the UK (Figure 22 in Appendix D). To apply it to Dutch
standards we changed the scenario to a right-side driving
environment.

In the discussion it was concluded that high speed
scenarios in most cases lack communication. Therefore,
the Unity scenario takes place in an urban environment,
which consists of a low and intermediate speed scenario.

In the discussion it was concluded that scenarios with
a blocked view by a stationary vehicle resulted in a higher
number of accidents and near misses. This scenario has a
multiple lane road to allow space for a stationary vehicle
and a driving vehicle on the adjacent lane. The most com-
mon scenario from the YouTube data is a two lane road,
which also is the lane situation with the most communi-
cation by the VRU-Vehicle. (Figure 23 in Appendix D).
Therefore, the Unity scenario takes place on a two lane
road with at least one stationary vehicle and at least one
driving vehicle on the adjacent lane, which is showed in
Figures 10 - 12 on the next page. Appendix E shows ad-
ditional specifications regarding the Unity environment.
These specifications are used as a standard scenario. Fur-
ther research could look into varying these parameters.

6.2 Concept for an Experiment

In a possible experiment, multiple scenarios could be
tested on participants using Virtual Reality (VR) Gog-
gles and Suit like the Oculus Rift and X-Sens. The Oculus
point of view is attached to the head of a virtual puppet
and the suit movement is connected to the movement of
the puppet. First, the participants should be asked to
get familiar with the environment. For the experiment,
the participants should be asked to cross the road when
a driving car is approaching. This experiment could be
repeated so that all the participants cross the road once in
a certain scenario. The data that could be extracted from

this experiment are the physical reaction of the partici-
pant from the VR-Suit sensors and a questionnaire about
the crossing experience. This experience could include a
safe feeling while crossing, the confidence in crossing and
general emotional state after crossing.

To provide a form of communication for the crossing
participant, a screen could be applied on the front side
of the first stationary vehicle. The screen could have two
output options: “DON’T WALK” and a black screen (no
output). The initial state of the screen is no output. The
screen could be triggered to the state “DON’T WALK?”
if a approaching car is located at a certain distance from
the back of the stationary vehicle (Appendix E, and re-
turns to the initial state if the driving vehicle has passed.
This trigger is also the trigger for the deceleration of the
approaching vehicle. Symbols could also be used as out-
puts for the screen, but to avoid confusion about the exact
meaning of the symbols we used text. Further research
should look into possible benefits of the use of symbols.
The scenarios could differ in form of communication and
driving behaviour of the driving vehicles. Four different
scenarios that could be tested are:

1. Vehicle approaches without braking and there is no
communication from the stationary vehicle;

2. Vehicle slows down to 10 kph on approach and there
is no communication from the stationary vehicle;

3. Vehicle approaches without braking and there is
communication from the stationary vehicle;

4. Vehicle slows down to 10 kph on approach and there
is communication from the stationary vehicle.

7 Conclusion

It is found that direct communication between drivers and
VRUs rarely occurs in real-life situations. The scenario
in which communication between VRUs and vehicles is
worthwhile contains multiple vehicles where at least one
of the vehicles is stopping for the VRU and blocks the
view for the other vehicles on the adjacent lane. Also, in
low and intermediate speed scenarios (< 50 [kph]) VRUs
take more advantage of communication, because at high
speed scenarios there is not sufficient time to communi-
cate. It can be concluded that when VRUs are crossing
the road, they are looking for confirmation that oncom-
ing vehicles are stopping or yielding. These conclusions
should be tested in the described experimental setting in
Unity.

8 Acknowledgements

We would like to thank Joost de Winter and Jork Stapel
for their help, support and motivation during these last
three months, Lars Kooijman for his time to help us un-
derstand Unity and especially Felix Dreger for his unlim-
ited time and feedback he has given us throughout our
project.

Figure 10: The Unity crossing scenario as seen from the puppet, with the van sign off.

Figure 11: The scenario seen from above, with a car about to pass the crossing. The sign is set to “DON’T WALK”.

Figure 12: The scenario top down view with a passing car incoming.

References

1]

[10]

[11]

L. Vissers, S. van der Kint, I. van Schagen, and M. Hagenzieker. Safe interaction between cyclists, pedestrians
and automated vehicles. SWOV, 2016.

R. Zimmermann and R. Wettach. First step into visceral interaction with autonomous vehicles. 2017.

D. Rothenbiicher, J. Li, D. Sirkin, B. Mok, and W. Ju. Ghost driver: A field study investigating the interaction
between pedestrians and driverless vehicles. Columbia University, 2016.

M. Risto, C. Emmenegger, E. Vinkhuyzen, M. Cefkin, and J. Hollan. Human-vehicle interfaces: the power of
vehicle movement gestures in human road user coordination. University of lowa, 2017.

C. Ackermann, M. Beggiato, and J. Krems. Vehicle movement and its potential as implicit communication signal
for pedestrians and automated vehicles. Proceedings of the 6th Humanist Conference, 2018.

R. Talbot P. Thomas, A. Morris and H. Fagerlind. Identifying the causes of road crashes in europe. 2013.
M. Sucha. Road users’ strategies and communication: Driver-pedestrian interaction. 2014.

A. Elgrishi A. Katz, D. Zaidel. An experimental study of driver and pedestrian interaction during the crossing
conflict. 1975.

M. Wattenhofer, R. Wattenhofer, and Z. Zhu. The youtube social network. Sixth International AAAT Conference
on Weblogs and Social Media, 2012.

E. Lopes and R. Nogueira. Proposta metodolégica para validacao de imagens de alta resolugcao do google earth
para a producao de mapas. January 2011.

K. de Clercq. The effects of external human-machine interfaces of automated vehicles on the crossing behaviour
of pedestrians. Master’s thesis, Delft University of Technology, December 2017.

10

A Appendix - Tables

Table 2: Search terms used for YouTube.

Search words per category

No delay and no
discomfort

Pedestrian
Cyclist

Good interaction
Communication
Dashcam

Confusion and waiting

Pedestrian
Cyclist
Annoyed
Not Seen
Waiting
Crossing

Agitation, near miss

evasion

Pedestrian
Cyclist

Near miss
Near accident
Lucky

Angry because of
an accident

Pedestrian
Cyclist
Accident
Hit by car

11

B Appendix - Interface

' Situation
Severety of the conflict | Nodelay ordiscomfort | | confusionandwaiting | | agitation ar nearmiss | | accident |
Traffic situation ‘ Crosswalk | ‘ Intersection | ‘ Roundabout ‘ ‘ Mot defined ‘ Number of carlanes I:l
Number of vehicles l:l Number of pedestrians l:l Conflict time l:l
rParticipants
~Vehicles ~Non motorized
Absolute speed [km/n] || Visibility
Relative speed | Clearlyvisible | | Dificut to notice | | Hardly visible, blocked view |
| Lowerthan max | | Accordingto max| | Higher than max | Mability
| child | | Moble | | Walkingaid |
Vehicle type
| Motorcycle | I Car || Busmuck | C
| Eyecontact | | Handgestues | | Sound,hom |
Priority - =]
C e 1 | o |] | Diiving behaiowr | | Light signals | No |
Violation of the law £y
I Yes | No || Unclear
[ves] | No |
Violation of the law
[v |] No |
Save Vehicle vehicles left to save Save Participant participants left to save

Figure 13: The used Matlab Interface.

Video Nummer I:I
L

~Vehicles ~Non Motorized Participants
Communication Communication
| Drving Behaviour | | Sound.Hom | | Positive handgesture | Negative handgesture
| Light Signals | ‘ Mo Communication ‘ | Eyecontact | ‘ No Communiction ‘
Save Vehicle Save Participant

Figure 14: The used Matlab Interface.

12

C Appendix - YouTube measurements

o) 003/031

Figure 15: YouTube video with exact position.

Figure 16: YouTube video with starting point measurement (red dot).

13

e T

-’\\\‘%}Cg‘.

Afstand meten
Klik op de kaart om je pad toe te voegen

Totale afstand: 25,68 m (84,24 ft)

Figure 18: Measurement via Google Maps measure tool of starting and ending point.

14

D Appendix - Additional Graphs

l U[] T T T T
[1speed adjusted to 90%
[]speed without adjustment b

<0 [speed adjusted to 110%

90

70 .

60 - _ i

a0t 1

30 b

20 b

"no communication" frequency [%]

10 - b

U 1
Okph 1-20kph 21-40kph 41-60kph 61-80 kph 81-100 kph

Figure 19: Occurrence of "no communication” by a VRU plotted against 20 kph intervals with addition of plots of the speed error margins.

- no communication
-eye contact

% |:’ negative handgesture
E positive handgesture

46%
0-30 kph, total of 81 interactions

16% 1%

12%

31% 89%
31-50 kph, total of 51 interactions 51-80 kph, total of 9 interactions

Figure 20: The different types of communication plotted for the three speed scenarios. The speed is adjusted to 90% to take the error into account.

15

- no communication
- eye contact
5%)

|:| negative handgesture
|:| positive handgesture

45%
0-30 kph, total of 62 interactions

5%

19%

1%

40%

31-50 kph, total of 57 interactions 51-80 kph, total of 22 interactions

Figure 21: The different types of communication plotted for the three speed scenarios. The speed is adjusted to 110% to take the error into account.

45
40
35
o
7 30
=
v
=
;T'TES
B
1
)
EHU
7
215
10
5
0
OO0 D 5 F F 23 R 700 CC
= B oo 0w 3o = 2 = Z 0o S o= 5 C o
ES’—":"'UE'ﬂ:E'fﬁ’_':’T‘jm—‘:?:
& E g =2 3 2 5 o™ 8 3 B 3
T = E 2 o 2@ - @ 2 @ Z B 5
E = g o B E = -
= s = o = =
= - = = a =
2 <)
: =

Figure 22: Countries used in YouTube video analysis.

16

35 T T T T T T

I 1.0 communication
N e contact
0 r [negative handgesture |
[positive handgesture
25 A
=20 F 4
20 -
=
w
=
=
=
= 15 -

6

i |‘HIIHHII%.

number of lanes to cross

Figure 23: Communication by the VRU plotted against the number of lanes to cross. One count in the frequency means one as percentage of the
total number of counted communication cases.

17

E Appendix - Unity

Table 3: specifications for the Unity Environment, as shown in chapter 6.

Specifications for Unity
Stationary vehicles | One van, 1 meter before the crosswalk.
crosswalk One bus, 1 meter behind the van.
One van, 1 meter behind the bus.
Stationary vehicles | Two cars, 1 meter from the intersection.

intersection One truck, 1 meter from the intersection.
One van, 1 meter from the intersection.
Triggers 20 meters from the back of the van, triggers vehicle speed to 10 [kph].

1 meter before the crosswalk, triggers a yielding movement of 1 meter sideways.
1 meter past the crosswalk, triggers vehicle speed to 50 [kph].

Vehicle speed From the crosswalk to the first trigger, 50 [kph].

From the first trigger to the crosswalk, deceleration to 10 [kph].

During the passing of the crosswalk, 10 [kph].

After the passing of the crosswalk, acceleration to 50 [kph].

The environment described above is a standard environment built for this research. As stated in Chapter 6, further
research could focus on using different dimensions and different speeds. The number of vehicles is a variable and can
be changed to fit different types of research. The specifications above are meant for further research. This is described
in our recommended experiment in Chapter 6. The specifications could be adjust to fit purpose for different research.
The files can be accessed at hitps:// bit.ly/ 2EINPEq.

18

https://bit.ly/2EINPEq

F Appendix - Video list

Agitation, near miss or evasion (total 81 videos, 24 used)
Pedestrian Near Miss

https://www.youtube.com/watch?v=jRjthL87vNg
https://www.youtube.com/watch?v=RbCUgPdvJb4
https://www.youtube.com/watch?v=8SeVc3itItI
https://www.youtube.com/watch?v=n1YRAT _da04
https://www.youtube.com/watch?v=4Ppk{fTWGER4
https://www.youtube.com/watch?v=0X3K5b8QrDU
https://www.youtube.com/watch?v=YHLf{jyHJtZA
https://www.youtube.com/watch?v=73Sj0AxTpFs
https://www.youtube.com/watch?v=_eOX7BHCsy0

© X N O W N

H
e

https://www.youtube.com/watch?v=hxs3-SjrIYk

—_
—_

https://www.youtube.com/watch?v=_gOsearXKIlY

—_
[N)

. https://www.youtube.com/watch?v=zh1dsvbpck0

—
w

. https://www.youtube.com/watch?v=v1sbq3epLnU
. https://www.youtube.com/watch?v=DPGbwmP3w9M

—_ =
[S1 BTN

. https://www.youtube.com/watch?v=0vaNhqCNq3g

. https://www.youtube.com/watch?v=wBFXsUKjqfg

. https://www.youtube.com/watch?v=cD09_UVKhcw
. https://www.youtube.com/watch?v=IRykUrl7s4Y

. https://www.youtube.com/watch?v=wMDc8HRnVic
. https://www.youtube.com/watch?v=Ao_ K7TNFuBGE
. https://www.youtube.com/watch?v=_cD7alQgPvg

N N N = e =
N = O O o g S

. https://www.youtube.com/watch?v=qfsvK5Vo2Uo
. https://www.youtube.com/watch?v=8YCXeb6uN9g
. https://www.youtube.com/watch?v=m5nLZH92UpY

[N V)
=~ W

Agitation, near miss or evasion (total 62 videos, 7 used)
Cyclist Near Miss crossing

25. https://www.youtube.com/watch?v=QyYcflOHHxk
26. https://www.youtube.com/watch?v=VDojW84zXXI
27. https://www.youtube.com/watch?v=pGX8WJOegwU
28. https://www.youtube.com/watch?v=AvoplJ{8RcA
29. https://www.youtube.com/watch?v=tX8rWTJXSuo
30. https://www.youtube.com/watch?v=a7Xlu7vDVfw
31. https://www.youtube.com/watch?7v=KCBeSOtEEBQ

19

https://www.youtube.com/watch?v=jRjfhL87vNg
https://www.youtube.com/watch?v=RbCUgPdvJb4
https://www.youtube.com/watch?v=8SeVc3itItI
https://www.youtube.com/watch?v=n1YRAT_da04
https://www.youtube.com/watch?v=4PpkffWGER4
https://www.youtube.com/watch?v=0X3K5b8QrDU
https://www.youtube.com/watch?v=YHLfjyHJtZA
https://www.youtube.com/watch?v=73Sj0AxTpFs
https://www.youtube.com/watch?v=_eOX7BHCsy0
https://www.youtube.com/watch?v=hxs3-SjrIYk
https://www.youtube.com/watch?v=_gOsearXKlY
https://www.youtube.com/watch?v=zh1dsvbpck0
https://www.youtube.com/watch?v=v1sbq3epLnU
https://www.youtube.com/watch?v=DPGbwmP3w9M
https://www.youtube.com/watch?v=0vaNhqCNq3g
https://www.youtube.com/watch?v=wBFXsUKjqfg
https://www.youtube.com/watch?v=cDo9_UVKhcw
https://www.youtube.com/watch?v=IRykUrl7s4Y
https://www.youtube.com/watch?v=wMDc8HRnVic
https://www.youtube.com/watch?v=Ao_K7NFuBGE
https://www.youtube.com/watch?v=_cD7aIQgPvg
https://www.youtube.com/watch?v=qfsvK5Vo2Uo
https://www.youtube.com/watch?v=8YCXeb6uN9g
https://www.youtube.com/watch?v=m5nLZH92UpY
https://www.youtube.com/watch?v=QyYcflOHHxk
https://www.youtube.com/watch?v=VDojW84zXXI
https://www.youtube.com/watch?v=pGX8WJOegwU
https://www.youtube.com/watch?v=Avop1Jf8RcA
https://www.youtube.com/watch?v=tX8rWTJXSuo
https://www.youtube.com/watch?v=a7Xlu7vDVfw
https://www.youtube.com/watch?v=KCBeSOtEEBQ

Agitation, near miss or evasion (total 42 videos, 2 used)
Pedestrian Near Miss vehicle

32. https://www.youtube.com/watch?v=kSHJDw_bIJA
33. https://www.youtube.com/watch?v=E6-zxaeGRtI

Confusion and waiting (total 28 videos, 11 used)
Crossing pedestrian waiting

34. https://www.youtube.com/watch?v=T7jyr7-dW--g

35. https://www.youtube.com/watch?v=T7jyr7-dW--g

36. https://www.youtube.com/watch?v=4sObXWe-RXU
37. https://www.youtube.com/watch?v=Ik6_lmzaCjA

38. https://www.youtube.com/watch?v=aET3ADHNF2Y
39. https://www.youtube.com/watch?v=n6ReKF5tbnl
40. https://www.youtube.com/watch?v=emZtVv3BXOM
41. https://www.youtube.com/watch?v=Hc3ApgLOjUY
42. https://www.youtube.com/watch?v=Ww3vDRW1M50
43. https://www.youtube.com/watch?v=VJCHeDVsApo
44. https://www.youtube.com/watch?v=10NTyYASg6I

Confusion and waiting (total 17 videos, 4 used)
Pedestrian waiting
45. https://www.youtube.com/watch?v=0Tsy1sOf0rw
46. https://www.youtube.com/watch?v=7TAOXzCs-gCg
47. https://www.youtube.com/watch?v=hL94BMQIMS8g
48. https://www.youtube.com/watch?v=5Vgz{Fw8rg8

Confusion and waiting (total 14 videos, 3 used)
Pedestrian crossing not seen
49. https://www.youtube.com/watch?v=EMCn7mrDd0k
50. https://www.youtube.com/watch?v=_aaZl3bryMg
51. https://www.youtube.com/watch?v=dSH5-T3ZeNE

Confusion and waiting (total 8 videos, 4 used)
Annoyed pedestrian crossing
52. https://www.youtube.com/watch?v=DIEOoJG{d2Y
53. https://www.youtube.com/watch?v=d6VQCjQxVvc
54. https://www.youtube.com/watch?v=vKM1hJRCUBk
55. https://www.youtube.com/watch?v=Y Wx4cuazhRk

20

https://www.youtube.com/watch?v=kSHJDw_bIJA
https://www.youtube.com/watch?v=E6-zxaeGRtI
https://www.youtube.com/watch?v=7jyr7-dW--g
https://www.youtube.com/watch?v=7jyr7-dW--g
https://www.youtube.com/watch?v=4sObXWe-RXU
https://www.youtube.com/watch?v=Ik6_lmzaCjA
https://www.youtube.com/watch?v=aET3ADHNF2Y
https://www.youtube.com/watch?v=n6ReKF5tbnI
https://www.youtube.com/watch?v=emZtVv3BXOM
https://www.youtube.com/watch?v=Hc3ApgLOjUY
https://www.youtube.com/watch?v=Ww3vDRW1M50
https://www.youtube.com/watch?v=VJCHeDVsApo
https://www.youtube.com/watch?v=l0NTyYASg6I
https://www.youtube.com/watch?v=0Tsy1sOf0rw
https://www.youtube.com/watch?v=7AOXzCs-gCg
https://www.youtube.com/watch?v=hL94BMQIM8g
https://www.youtube.com/watch?v=5VgzfFw8rg8
https://www.youtube.com/watch?v=EMCn7mrDd0k
https://www.youtube.com/watch?v=_aaZl3bryMg
https://www.youtube.com/watch?v=dSH5-T3ZeNE
https://www.youtube.com/watch?v=DlEOoJGfd2Y
https://www.youtube.com/watch?v=d6VQCjQxVvc
https://www.youtube.com/watch?v=vKM1hJRCUBk
https://www.youtube.com/watch?v=YWx4cuazhRk

Angry because of an accident (total 43 videos, 7 used)
Pedestrian accident

56. https://www.youtube.com/watch?v=0GjwEWUOyEg
57. https://www.youtube.com/watch?v=J3XgG3aIWT7A
58. https://www.youtube.com/watch?v=i6LwdZ9ZsAE
59. https://www.youtube.com/watch?v=IzWqbbTgQk4
60. https://www.youtube.com/watch?v=6wgrtINHDwM
61. https://www.youtube.com/watch?v=a0MqtinZpeQ
62. https://www.youtube.com/watch?v=WoqgWI1A4utU

Angry because of an accident (total 52 videos, 10 used)
Pedestrian hit by car

63. https://www.youtube.com/watch?v=FydJucnb2Rk
64. https://www.youtube.com/watch?v=ZbuX6MpPcX0
65. https://www.youtube.com/watch?v=EYQEQsx-DZk
66. https://www.youtube.com/watch?v=rjetfAKG_KO0
67. https://www.youtube.com/watch?v=yK-jxbYpUYw
68. https://www.youtube.com/watch?v=woet-C3icZA
69. https://www.youtube.com/watch?v=gWA703Uz7Lc
70. https://www.youtube.com/watch?v=YG413xzn7c0
71. https://www.youtube.com/watch?v=fVewInQ7ViE
72. https://www.youtube.com/watch?v=WzXz_8gEqnc

Angry because of an accident (total 33 videos, 2 used)
Cyclist accident

73. https://www.youtube.com/watch?v=tGlaskd YXd4
74. https://www.youtube.com/watch?v=xWSw3PHwR-~o0

Angry because of an accident (total 20 videos, 3 used)
Cyclist hit by car

75. https://www.youtube.com/watch?v=bs8VWWi8I7s
76. https://www.youtube.com/watch?v=8TGSWcSfK_U
77. https://www.youtube.com/watch?v=NDGhezpj504

21

https://www.youtube.com/watch?v=0GjwEWUOyEg
https://www.youtube.com/watch?v=J3XgG3aIW7A
https://www.youtube.com/watch?v=i6LwdZ9ZsAE
https://www.youtube.com/watch?v=IzWqbbTgQk4
https://www.youtube.com/watch?v=6wgrtlNHD wM
https://www.youtube.com/watch?v=a0MqtfnZpeQ
https://www.youtube.com/watch?v=WoqgWlA4utU
https://www.youtube.com/watch?v=FydJucnb2Rk
https://www.youtube.com/watch?v=ZbuX6MpPcX0
https://www.youtube.com/watch?v=EYQEQsx-DZk
https://www.youtube.com/watch?v=rjetfAKG_K0
https://www.youtube.com/watch?v=yK-jxbYpUYw
https://www.youtube.com/watch?v=woet-C3icZA
https://www.youtube.com/watch?v=gWA7O3Uz7Lc
https://www.youtube.com/watch?v=YG413xzn7c0
https://www.youtube.com/watch?v=fVewInQ7ViE
https://www.youtube.com/watch?v=WzXz_8gEqnc
https://www.youtube.com/watch?v=tGIaskdYXd4
https://www.youtube.com/watch?v=xWSw3PHwR-o
https://www.youtube.com/watch?v=bs8VWWi8I7s
https://www.youtube.com/watch?v=8TGSWcSfK_U
https://www.youtube.com/watch?v=NDGhezpj5o4

No delay and no discomfort (total 35 videos, 7 used)
Communication pedestrian dashcam

78. https://www.youtube.com/watch?v=BCJ8LByIx6Y
79. https://www.youtube.com/watch?v=1EgAzdFXKKS
80. https://www.youtube.com/watch?v=0Z-ZTYF3kyA
81. https://www.youtube.com/watch?v=XpM5qlVUpKE
82. https://www.youtube.com/watch?v=Cu0sm4JDh1Q
83. https://www.youtube.com/watch?v=TKzIRA5-ycs
84. https://www.youtube.com/watch?v=BPBUd_C_dcE

No delay and no discomfort (total 7 videos, 3 used)
Pedestrian good interaction
85. https://www.youtube.com/watch?v=0FK-XzrCY3g
86. https://www.youtube.com/watch?v=0FK-XzrCY3g
87. https://www.youtube.com/watch?v=IMphb6cNScM

No delay and no discomfort (total 44 videos, 7 used)
Pedestrian road observations
88. https://www.youtube.com/watch?v=2YXivh_lxhw
89. https://www.youtube.com/watch?v=E3afai7Jtfg
90. https://www.youtube.com/watch?v=xrLnrcvGEfo
91. https://www.youtube.com/watch?v=Jd9TNMxuDbg
92. https://www.youtube.com/watch?v=YDnLKs-xPTI
93. https://www.youtube.com/watch?v={2FoiSzbglo
94. https://www.youtube.com/watch?v=y9tJk6Y _j2A

No delay and no discomfort (total 15 videos, 3 used)
Polite pedestrian/driver
95. https://www.youtube.com/watch?v=rnZBb7_c-w0
96. https://www.youtube.com/watch?v=PJN7D6PdIEQ

97. https://www.youtube.com/watch?v=vallCtuwnwQ

No delay and no discomfort (total 27 videos, 4 used)
Polite driver
98. https://www.youtube.com/watch?v=uZgmGSQ4yh0
99. https://www.youtube.com/watch?v=0y8H50DUJHs
100. https://www.youtube.com/watch?v=ZTILPjYBRDs
101. https://www.youtube.com/watch?v=gVUhLINaF2w

22

https://www.youtube.com/watch?v=BCJ8LByIx6Y
https://www.youtube.com/watch?v=1EgAzdFXKK8
https://www.youtube.com/watch?v=OZ-ZTYF3kyA
https://www.youtube.com/watch?v=XpM5q1VUpKE
https://www.youtube.com/watch?v=Cu0sm4JDh1Q
https://www.youtube.com/watch?v=TKzlRA5-ycs
https://www.youtube.com/watch?v=BPBUd_C_dcE
https://www.youtube.com/watch?v=oFK-XzrCY3g
https://www.youtube.com/watch?v=oFK-XzrCY3g
https://www.youtube.com/watch?v=lMphb6cNScM
https://www.youtube.com/watch?v=2YXivh_lxhw
https://www.youtube.com/watch?v=E3afai7Jtfg
https://www.youtube.com/watch?v=xrLnrcvGEfo
https://www.youtube.com/watch?v=Jd9TNMxuD5g
https://www.youtube.com/watch?v=YDnLKs-xPTI
https://www.youtube.com/watch?v=f2FoiSzbgIo
https://www.youtube.com/watch?v=y9tJk6Y_j2A
https://www.youtube.com/watch?v=rnZBb7_c-w0
https://www.youtube.com/watch?v=PJN7D6PdIE0
https://www.youtube.com/watch?v=valICtuwnwQ
https://www.youtube.com/watch?v=uZgmGSQ4yh0
https://www.youtube.com/watch?v=0y8H50DUJHs
https://www.youtube.com/watch?v=ZT9LPjYBRDs
https://www.youtube.com/watch?v=gVUhL9NaF2w

aow

© o N o w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

G Appendix - Matlab Scripts

function varargout = Invoer2(varargin)

% INVOER2 MATLAB code for Invoer2.fig

% INVOER2, by itself , creates a new INVOER2 or raises the existing

% singleton x.

%

% H = INVOER2 returns the handle to a new INVOER2 or the handle to

% the existing singleton *.

%

% INVOER2 (’CALLBACK’ , hObject ,eventData ,handles ,...) calls the local

% function named CALLBACK in INVOER2.M with the given input arguments.
%

% INVOER2(’Property ’,’Value’ ,...) creates a new INVOER2 or raises the

% existing singleton*. Starting from the left , property value pairs are
% applied to the GUI before Invoer2_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Invoer2_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
% instance to run (singleton)”.

%

% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help Invoer2
% Last Modified by GUIDE v2.5 08—Nov—2018 14:21:29

% Begin initialization code — DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(gui_Name’, mfilename ,
‘gui_Singleton’, gui_Singleton ,
"gui_OpeningFen’, @Invoer2_OpeningFen
‘gui_OutputFen’, @Invoer2_OutputFcn,
"gui_LayoutFen’, []
"gui_Callback (1) ;

if nargin && ischar (varargin{l})

gui_State.gui_Callback = str2func(varargin{l});
end

if nargout
[varargout {l:nargout }] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfen (gui_State , varargin{:});
end
% End initialization code — DO NOT EDIT

% —— Executes just before Invoer2 is made visible.

function Invoer2_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hODbject handle to figure

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Invoer2 (see VARARGIN)

23

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

103

104

105

106

107

108

109

% Choose default command line output for Invoer2
handles.output = hObject;

% Update handles structure
guidata (hObject , handles);

% UIWAIT makes Invoer2 wait for user response (see UIRESUME)
% uiwait (handles. figurel);

% —— Outputs from this function are returned to the command line.
function varargout = Invoer2_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT) ;
% hObject handle to figure

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout {1} = handles.output;

function numveh_Callback (hObject, eventdata, handles)

% hObject handle to numveh (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.nv = str2double (get (hObject, "String 7)) ;

handles.vl = str2double(get (hObject, String ")) ;

guidata (hObject , handles);

% Hints: get (hObject,’String ’) returns contents of numveh as text

% str2double (get (hObject ,’ String ')) returns contents of numveh as a double

% —— Executes during object creation, after setting all properties.
function numveh_CreateFen(hObject, eventdata, handles)

% hObject handle to numveh (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles empty — handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUIER.
if ispc && isequal (get (hObject, BackgroundColor’), get(0,’
defaultUicontrolBackgroundColor 7))
set (hObject , 'BackgroundColor ', >white ") ;
end

function numped_Callback (hObject, eventdata, handles)

% hObject handle to numped (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.np = str2double (get (hObject, "String '));

handles.pl = str2double(get (hObject, String ")) ;

guidata (hObject , handles);

% Hints: get (hObject,’ String ’) returns contents of numped as text

% str2double (get (hObject ,’ String ’)) returns contents of numped as a double

24

112

113

114

115

117

118

119

120

158

159

160

161

162

163

164

165

% —— Executes during object creation, after setting all properties.
function numped_CreateFcn(hObject, eventdata, handles)

% hObject handle to numped (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles empty — handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get (hObject, BackgroundColor’), get(0,’
defaultUicontrolBackgroundColor ’))
set (hObject , "BackgroundColor ’, white ") ;
end

function numlanes_Callback (hObject, eventdata, handles)

% hObject handle to numlanes (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.nlanes = str2double (get (hObject, String ")) ;

guidata (hObject , handles);

% Hints: get (hObject,’String ’) returns contents of numlanes as text

% str2double (get (hObject ,” String ’)) returns contents of numlanes as a double

% —— Executes during object creation, after setting all properties.
function numlanes_CreateFcn (hObject, eventdata, handles)

% hObject handle to numlanes (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles empty — handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, BackgroundColor’), get(0,’
defaultUicontrolBackgroundColor 7))
set (hObject , 'BackgroundColor ', >white ") ;
end

function time_Callback (hObject, eventdata, handles)

% hObject handle to time (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.t = str2double (get (hObject, String ’));

guidata (hObject , handles);

% Hints: get (hObject,’ String ’) returns contents of time as text

% str2double (get (hObject ,’ String)) returns contents of time as a double

% —— Executes during object creation, after setting all properties.
function time_CreateFcn(hObject, eventdata, handles)

% hObject handle to time (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles empty — handles not created until after all CreateFcns called

25

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, BackgroundColor’), get(0,’
defaultUicontrolBackgroundColor 7))
set (hObject , 'BackgroundColor ', >white ") ;
end

% —— Executes on button press in sevl.

function sevl_Callback (hObject, eventdata, handles)

% hObject handle to sevl (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

if get(hObject, Value’) =1
set (handles.sev2, 'value’,0);
set (handles.sev3, 'value’,0);
set (handles.sev4 , "value’,0);
handles.sev = 1;
guidata (hObject, handles);

end

% —— Executes on button press in sev2.
function sev2_Callback (hObject, eventdata, handles)
% hObject handle to sev2 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) = 1
set (handles.sevl, 'value’ ,0);
set (handles.sev3, 'value’ ,0);
set (handles.sev4 , "value’,0);
handles.sev = 2;
guidata (hObject , handles);
end

% —— Executes on button press in sev3.
function sev3_Callback (hObject, eventdata, handles)
% hObject handle to sev3 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

if get(hObject, Value’) =1
set (handles.sevl , 'value’,0);
set (handles.sev2, 'value’,0);
set (handles.sev4 , "value’ ,0);
handles.sev = 3;
guidata (hObject, handles);
end

% —— Executes on button press in sev4.
function sev4_Callback (hObject, eventdata, handles)
% hObject handle to sev4d (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.sevl, 'value’,0);

26

223

224

225

226

228

229

230

231

232

233

234

235

236

237

238

239

240

241

278

set (handles.sev2, 'value’,0);

set (handles.sev3, 'value’,0);
handles.sev = 4;
guidata (hObject, handles);
end
% —— Executes on button press in trafsitl.
function trafsitl_Callback (hObject, eventdata, handles)

% hObject handle to trafsitl (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1

set (handles.trafsit2 , "value’,0);
set (handles. trafsit3 , "value’,0);
set (handles. trafsit4 , value’ ,0);
handles. trafsit = 1;
guidata (hObject , handles);

end

% Hint: get (hObject,’Value’) returns toggle state of trafsitl

% —— Executes on button press in trafsit2.
function trafsit2_Callback (hObject, eventdata, handles)

% hObject handle to trafsit2 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1

set (handles. trafsitl , "value’,0);

set (handles. trafsit3 , "value’,0);
set (handles. trafsit4 , value’ ,0);
handles. trafsit = 2;
guidata (hObject , handles);

end

% Hint: get (hObject,’Value’) returns toggle state of trafsit2

% —— Executes on button press in trafsit3.
function trafsit3_Callback (hObject, eventdata, handles)
% hObject handle to trafsit3 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles. trafsitl , "value’,0);

set (handles. trafsit2 , "value’,0);
set (handles. trafsit4 , value’ ,0);
handles. trafsit = 3;
guidata (hObject , handles);

end

% Hint: get (hObject,’Value’) returns toggle state of trafsit3

% —— Executes on button press in trafsit4.
function trafsit4_Callback (hObject, eventdata, handles)

27

280

281

282

283

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

303

304

305

306

308

309

310

311

313

314

315

317

318

319

320

322

323

324

325

327

328

329

330

331

332

333

334

% hObject handle to trafsit4d (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles. trafsitl , ’value’ ,0);
set (handles. trafsit2 , value’ ,0);
set (handles. trafsit3 , value’ ,0);
handles. trafsit = 4;
guidata (hObject, handles);
end

% Hint: get(hObject,’Value’) returns toggle state of trafsit4d

function absspd_Callback (hObject, eventdata, handles)

% hObject handle to absspd (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.as = str2double(get (hObject, String ’));

guidata (hObject , handles);

% Hints: get (hObject,’ String ’) returns contents of absspd as text

% str2double (get (hObject ,’ String)) returns contents of absspd as a double

% —— Executes during object creation, after setting all properties.
function absspd_CreateFcn(hObject, eventdata, handles)

% hObject handle to absspd (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles empty — handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, BackgroundColor’), get(0,’
defaultUicontrolBackgroundColor 7))
set (hObject , 'BackgroundColor ’, "white ") ;
end

% —— Executes on button press in relspdl.
function relspdl_Callback (hObject, eventdata, handles)
% hObject handle to relspdl (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.relspd2 , value’,0);
set (handles.relspd3 , value’,0);
handles.relspd = 1;
guidata (hObject , handles);
end
% Hint: get (hObject,’ Value’) returns toggle state of relspdl

% —— Executes on button press in relspd2.

function relspd2_Callback (hObject, eventdata, handles)

% hObject handle to relspd2 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

28

336

337

338

339

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

359

360

361

362

364

365

366

367

369

370

371

372

374

375

376

377

379

380

381

382

384

385

386

387

388

389

390

391

% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.relspdl , value’,0);
set (handles.relspd3 , value’,0);
handles.relspd = 2;
guidata (hObject, handles);
end
% Hint: get (hObject,’ Value’) returns toggle state of relspd2

% —— Executes on button press in relspd3.
function relspd3_Callback (hObject, eventdata, handles)
% hObject handle to relspd3 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.relspdl , value’ 0);
set (handles.relspd2 , "value’ ,0);
handles.relspd = 3;
guidata (hObject, handles);
end
% Hint: get (hObject,’Value’) returns toggle state of relspd3

% —— Executes on button press in vehl.
function vehl_Callback (hObject, eventdata, handles)
% hObject handle to vehl (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.veh2, value’,0);
set (handles.veh3 , 'value’,0);
handles.veh = 1;
guidata (hObject , handles);
end
% Hint: get (hObject,’ Value’) returns toggle state of vehl

% —— Executes on button press in veh2.
function veh2_Callback (hObject, eventdata, handles)
% hODbject handle to veh2 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) = 1
set (handles.vehl, "value’ ,0);
set (handles.veh3, "value’ ,0);
handles.veh = 2;
guidata (hObject , handles);
end
% Hint: get(hObject,’Value’) returns toggle state of veh2

% —— Executes on button press in veh3.

function veh3_Callback (hObject, eventdata, handles)

% hObject handle to veh3 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

29

393

394

395

396

398

399

400

401

402

403

404

405

406

407

408

409

410

411

if get(hObject, Value’) = 1
set (handles.vehl, 'value’,0);
set (handles.veh2, 'value’ ,0);
handles.veh = 3;
guidata (hObject , handles);
end
% Hint: get(hObject,’Value’) returns toggle state of veh3

% —— Executes on button press in priol.
function priol_Callback (hObject, eventdata, handles)
% hObject handle to priol (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.prio2, value’ ,0);
set (handles.prio3, value’,0);
handles . priov = 1;
guidata (hObject, handles);
end
% Hint: get (hObject,’Value’) returns toggle state of priol

% —— Executes on button press in prio2.
function prio2_-Callback (hObject, eventdata, handles)
% hObject handle to prio2 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.priol , "value’,0);
set (handles.prio3 , 'value’,0);
handles.priov = 2;
guidata (hObject , handles);
end
% Hint: get (hObject,’Value’) returns toggle state of prio2

% —— Executes on button press in prio3.
function prio3_Callback (hObject, eventdata, handles)
% hObject handle to prio3 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.priol , value’,0);
set (handles.prio2, 'value’,0);
handles.priov = 3;
guidata (hObject, handles);
end
% Hint: get(hObject,’Value’) returns toggle state of prio3

% —— Executes on button press in viol.

function viol_Callback (hObject, eventdata, handles)

% hObject handle to viol (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

if get(hObject, Value’) =1

30

450

451

452

453

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

473

474

475

476

478

479

480

481

483

484

485

486

488

489

490

491

493

494

495

496

498

499

500

501

502

503

504

set (handles.vio2, 'value’,0);
handles.viov = 1;
guidata (hObject, handles);
end
% Hint: get (hObject,’ Value’) returns toggle state of viol

% —— Executes on button press in vio2.
function vio2_Callback (hObject, eventdata, handles)
% hObject handle to vio2 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.viol , "value’,0);
handles.viov = 2;
guidata (hObject , handles);
end
% Hint: get(hObject,’Value’) returns toggle state of vio2

% —— Executes on button press in prioll.
function prioll_Callback (hObject, eventdata, handles)
% hObject handle to prioll (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

if get(hObject, Value’) =1
set (handles.priol2, 'value’ 0);
set (handles.priol3 , 'value’ 0);
handles . priop = 1;
guidata (hObject , handles);
end
% Hint: get (hObject,’Value’) returns toggle state of prioll

% —— Executes on button press in priol2.
function priol2_Callback (hObject, eventdata, handles)
% hObject handle to priol2 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.prioll , value’,0);
set (handles.priol3, value’,0);
handles.priop = 2;
guidata (hObject , handles);
end
% Hint: get (hObject,’Value’) returns toggle state of priol2

% —— Executes on button press in priol3.
function priol3_Callback (hObject, eventdata, handles)
% hObject handle to priol3 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.prioll | 'value’ 0);
set (handles.priol2, value’,0);
handles.priop = 3;

31

507

508

509

510

512

513

514

515

516

517

518

520

521

522

523

525

526

527

528

530

531

532

533

535

536

537

538

540

541

542

543

545

546

547

548

550

551

552

553

555

556

557

558

559

560

561

562

guidata (hObject , handles);
end
% Hint: get (hObject,’Value’) returns toggle state of priol3

% —— Executes on button press in violl.
function violl_Callback (hObject, eventdata, handles)
% hObject handle to violl (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) = 1
set (handles.viol2, 'value’,0);
handles.viop = 1;
guidata (hObject, handles);
end
% Hint: get (hObject,’Value’) returns toggle state of violl

% —— Executes on button press in viol2.
function viol2_Callback (hObject, eventdata, handles)
% hObject handle to viol2 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.violl , 'value’,0);
handles.viop = 2;
guidata (hObject , handles);
end
% Hint: get(hObject,’ Value’) returns toggle state of viol2

% —— Executes on button press in visl.
function visl_Callback (hObject, eventdata, handles)
% hObject handle to visl (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (sece GUIDATA)
if get(hObject, Value’) =1
set (handles.vis2 , "value’,0);
set (handles.vis3 , 'value’,0);
handles.vis = 1;
guidata (hObject , handles);
end
% Hint: get (hObject,’Value’) returns toggle state of visl

% —— Executes on button press in vis2.
function vis2_Callback (hObject, eventdata, handles)
% hODbject handle to vis2 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.visl , 'value’,0);
set (handles.vis3 , "value’,0);
handles. vis = 2;
guidata (hObject , handles);
end
% Hint: get (hObject,’Value’) returns toggle state of vis2

32

564

565

566

567

569

570

571

572

573

574

575

577

578

579

580

582

583

584

585

587

588

589

590

592

593

594

595

597

598

599

600

602

603

604

605

607

608

609

610

612

613

614

615

616

617

618

619

% —— Executes on button press in vis3.
function vis3_Callback (hObject, eventdata, handles)
% hODbject handle to vis3 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.visl , 'value’,0);
set (handles.vis2 , "value’,0);
handles.vis = 3;
guidata (hObject , handles);
end
% Hint: get (hObject,’Value’) returns toggle state of vis3

% —— Executes on button press in mobl.
function mobl_Callback (hObject, eventdata, handles)
% hObject handle to mobl (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.mob2, "value’,0);
set (handles.mob3, "value’,0);
handles.mob = 1;
guidata (hObject, handles);
end
% Hint: get(hObject,’ Value’) returns toggle state of mobl

% —— Executes on button press in mob2.
function mob2_Callback (hObject, eventdata, handles)
% hObject handle to mob2 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles.mobl, "value’,0);
set (handles.mob3, "value’,0);
handles .mob = 2;
guidata (hObject , handles);
end
% Hint: get (hObject,’Value’) returns toggle state of mob2

% —— Executes on button press in mob3.
function mob3_Callback (hObject, eventdata, handles)
% hODbject handle to mob3 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if get(hObject, Value’) =1
set (handles .mobl, "value’ ,0);
set (handles.mob2, "value ’,0);
handles .mob = 3;
guidata (hObject , handles);
end
% Hint: get (hObject,’ Value’) returns toggle state of mob3

33

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

644

645

646

647

649

650

651

652

654

655

656

657

659

660

661

662

664

665

666

667

669

670

671

672

673

674

675

676

% —— Executes on button press in coml.

function coml_Callback (hObject, eventdata, handles)

% hObject handle to coml (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’ Value’) returns toggle state of coml

% —— Executes on button press in com2.

function com2_Callback (hObject, eventdata, handles)

% hODbject handle to com2 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’Value’) returns toggle state of com2

% —— Executes on button press in com3.

function com3_Callback (hObject, eventdata, handles)

% hODbject handle to com3 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’Value’) returns toggle state of com3

% —— Executes on button press in com4.

function com4_Callback (hObject, eventdata, handles)

% hObject handle to com4 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’ Value’) returns toggle state of com4

% —— Executes on button press in comb.

function comb_Callback (hObject, eventdata, handles)

% hODbject handle to comb (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of comb

% —— Executes on button press in com6.

function com6_Callback (hObject, eventdata, handles)

% hODbject handle to com6 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’Value’) returns toggle state of com6

% —— Executes on button press in savepar.
function savepar_Callback (hObject, eventdata, handles)

34

678

679

680

681

683

684

685

687

688

690

691

692

693

695

696

697

698

699

700

701

702

703

704

705

706

707

709

710

711

712

714

715

716

717

719

720

721

723

724

725

726

728

729

730

com = zeros (1,6);

com(1l,1) = get(handles.coml, ’Value’);
com(1,2) = get(handles.com2, ’Value’);
com(1,3) = get(handles.com3, ’Value’);
com(1,4) = get(handles.comd4, ’'Value’);
com(1,5) = get(handles.com5, ’'Value’);
com(1,6) = get(handles.com6, ’'Value’);

if handles.pl > 0

nonmotorized (handles.VidNum, handles.vis, handles.mob, handles.priop, handles.
viop, com)

resetpar (handles)

handles.pl = handles.pl—1;

set (handles. parleft , ’String’, handles.pl);

if handles.pl =— 0

set (handles.savepar, ’enable’, “off’);

end

if handles.vl = 0 && handles.pl = 0
set (handles.save, ’enable’, ’on’)

)

end
guidata (hObject, handles);
end
% —— Executes on button press in saveveh.

function saveveh_Callback (hObject, eventdata, handles)
if handles.vl > 0
vehicles (handles.VidNum, handles.as, handles.relspd, handles.veh, handles.priov,
handles . viov)
resetveh (handles)
handles.vl = handles. vl —1;
set (handles.vehleft , 'String’, handles.vl);
if handles.vl = 0
set (handles.saveveh, ’enable’, “off’);
end
if handles.vl = 0 && handles.pl = 0
set (handles.save, ’enable’, ’on’)

)

end
guidata (hObject , handles);

end

% —— Executes on button press in save.

function save_Callback (hObject, eventdata, handles)

handles.VidNum = situations (handles.sev, handles.trafsit , handles.nlanes, handles.nv,
handles.np, handles.t);

set (handles.saveveh, ’enable’, ’on’);

(
set (handles.savepar, ’enable’, ‘on’);
set (handles.vehleft , *String’, handles.vl);
set (handles. parleft , ’String’, handles.pl);
resetsit (handles)
set (handles.save, ’enable’, “off’);
guidata (hObject, handles);

function resetsit (handles)
set (handles.sevl, 'value’ 0);
set (handles.sev2, 'value’ ,0);

35

732

733

734

735

737

738

739

740

T42

743

T44

745

T4T

748

749

750

751

752

753

754

756

757

758

759

760

761

762

763

765

766

767

768

770

771

772

773

775

set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles
set (handles
set (handles
set (handles

.numlanes ,
.numveh ,
.numped ,
.time

sev3d, 'value

7,0);

sevd , “value’ ,0);

trafsitl , "value ',

trafsit2 , "value’
trafsit3 , "value’
trafsit4 , "value’

function resetveh (handles)

set (handles.

set (handles.
set (handles.
set (handles.
set (handles
set (handles
set (handles
set (handles.
set (handles.
set (handles
set (handles.
(

set

handles.

absspd ,

"String
"String 7,
"String 7,
"String’, ’

"String 7,

DE

relspdl , "value’ ,0);
relspd2, 'value’ ,0);
relspd3 , 'value’ ,0);

.veh3 , "value’

priol , "value

prio2 , 'value’

.prio3d , 'value’

viol , "value’
vio2 , 'value’

function resetpar (handles

set (handles.

set (handles.
set (handles.
set (handles
set (handles
set (handles
set (handles
set (handles
set (handles
set (handles
set (handles
set (handles
set (handles.
set (handles.
set (handles
set (handles.
set (handles.

.com4 ,
.comb, 'value’
.com6, 'value’

visl , "value’
vis2 , 'value’

vis3d , 'value’

.mobl, "value’
.mob2,
.mob3,
.coml,
.com2,
.com3,

‘value’
‘value’
"value’
’value’
’value’
‘value’

L O OO DD DO OO O—

prioll , 'value
priol2 , 'value’

violl , 'value’
viol2 , 'value’,

.vehl, "value’ ,0
.veh2 , "value’

.priol3 , 'value’

o O

— N N N N S N N S N

—_—— 0O O -

- N

36

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

%% saving the general data from the interface to the cell

function [VidNum] = situations(A, B, C, D, E, F)
input = [A, B, C, D, E, F];%storing the input

% defining the options per category

Sev = {’no delay or discomfort’, ’confusion and waiting’,

accident ’ };

TrafSit = {’crosswalk’, ’intersection’,
NumLane = [];

NumVeh = [];

NumPed = [];

Time = [];

%adding all the options to one array

"roundabout ’,

Options = {Sev, TrafSit, NumLane, NumVeh, NumPed, Time };

%% loading or creating the general datacell

%check if the cell already exists

if exist(’Situations.mat’) = 0;
%create cell if it does not exist
Situations = cell (100, 7);

else load(’Situations.mat’) %load cell if it

end

%% storing video number and input A until F

%saving the video number

VidNum = find (cellfun (@isempty, Situations) ,1);

Situations{VidNum, 1} = VidNum;
%saving input A until F according to the
for i = 1:6;

if isempty (Options{i}) =1

earlier

Situations{VidNum, i+1} = input(i);

else

does not exist

defined options

Situations{VidNum, i+1} = Options{1l, i}(1, input(i));

end
end
%save the datacell
save(’Situations.mat’,’ Situations’)

end

37

‘agitation near

"Not Defined’ };

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

%% saving the vehicle data from the interface to the cell
function vehicles (VidNum, A, B, C, D, E)

input = [A, B, C, D, E];%storing

the input

% defining the options per category

AbsSpd = [];

RelSpd = {’slower than maximum’,’according to maximum’,’faster
Veh = { motorcycle’, ’car’, bus or truck’};

Prio = {’yes’, 'no’, ’‘unclear’};

Vio = {’yes’, 'no’};

%adding all the options to one array

Options = {AbsSpd, RelSpd, Veh, Prio, Vio};

%% loading or creating the vehicle datacell
%check if the cell already exists

if exist(’Vehicles.mat’) = 0;
%create cell if it does not
Vehicles = cell (1, 6);
RowNum = 1;

else

exist

%load cell if it does not exist

load (" Vehicles . mat)
sz = size(Vehicles);

RowNum = sz (1) + 1; %finding

end

the next open row

%% storing video number and input A until E

%saving the video number

Vehicles {RowNum, 1} = VidNum;

%saving input A until E according to the earlier

for i = 1:5;
if isempty (Options{i}) =1
Vehicles {RowNum, i+1} =
else

Vehicles {RowNum, i+1} =

end
end
%save the datacell
save(’Vehicles.mat’,’ Vehicles)

end

input (i);

Options{1l, i}(1, input(i));

38

than maximum’};

defined options

9% saving the VRU data from the interface to the cell

function nonmotorized (VidNum,A,B,C,D,E)

input = [A, B, C, D]; %storing the input

% defining the options per category

Vis = {’clearly visible’, ’difficult to notice’, ’hardly visible or blocked view’};
Mob = {’child ’, "mobile’, walking aid’};

Prio = {’yes’, 'no’, ’‘unclear’};
Vio = {’yes’, 'no’};
ComOptions = {’eye contatc’, ’hand gestures’, ’sound or horn’, ’driving behaviour’,

lights signals’, ’no communication’};

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

%adding all the options to one array
Options = {Vis, Mob, Prio, Vio};

%% loading or creating the VRU datacell

%check if the cell already exists

if exist(’'NonMotorized.mat’) = 0;
%create cell if it does not exist
NonMotorized = cell (1, 6);
RowNum = 1;

else
P%load cell if it does not exist
load ("NonMotorized . mat ")
sz = size (NonMotorized) ;

RowNum = sz (1) + 1; %finding the next open row

end

%% storing video number and input A until D

%saving the video number
NonMotorized {RowNum, 1} = VidNum;

%saving input A until D according to the earlier

for i = 1:4;

NonMotorized {RowNum, i+1} = Options{1l, i}(1, input(i));

end

%% Saving the communication. This is done seperately because one VRU can communicate

in multiple ways

cts = find (E); %check which communication types are used and returns the indices of

where the
%communication type is in ComOptions
%save the communication types to Com
for 1 = 1:length(cts);

Com{1l,i} = ComOptions{1,cts(i)};
end
%add Com to the datacell
NonMotorized {RowNum, 6} = Com;

Y%save the datacell

save (’NonMotorized . mat’ ,’NonMotorized ")

end

39

defined options

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

function varargout = Communication(varargin)
% COMMUNICATION MATLAB code for Communication. fig

% COMMUNICATION, by itself , creates a new COMMUNICATION or raises the existing

% singleton x.

%

% H = COMMUNICATION returns the handle to a new COMMUNICATION or the handle to

% the existing singleton *.

%

% COMMUNICATION (’CALLBACK’ , hObject ,eventData , handles ,...) calls the local

% function named CALLBACK in COMMUNICATION.M with the given input arguments.

%

% COMMUNICATION (' Property ’, ’Value’ ,...) creates a new COMMUNICATION or raises
the

% existing singleton*. Starting from the left , property value pairs are

% applied to the GUI before Communication_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to Communication_OpeningFcn via varargin.

%

% x*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

% instance to run (singleton)”.

%

% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help Communication
% Last Modified by GUIDE v2.5 19—Nov—2018 14:54:05

% Begin initialization code — DO NOT EDIT

gui_Singleton = 1;

gui_State = struct (’gui_Name’, mfilename ,
‘gui_Singleton’, gui_-Singleton ,
"gui_OpeningFen’, @Communication_OpeningFcn ,
‘gui_OutputFen’, @Communication_OutputFen ,
"gui_LayoutFen’, []
"gui_Callback 7, BE

if nargin && ischar(varargin{l})

gui_State.gui_Callback = str2func(varargin{l});
end

if nargout
[varargout {1l:nargout }] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn (gui_State , varargin{:});
end
% End initialization code — DO NOT EDIT

% —— Executes just before Communication is made visible.

function Communication_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFen.

% hObject handle to figure

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Communication (see VARARGIN)

% Choose default command line output for Communication
handles.output = hObject;

40

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

920

91

92

93

94

95

96

97

98

99

100

101

102

103

105

106

107

108

109

110

111

112

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes Communication wait for user response (see UIRESUME)
% uiwait (handles. figurel);

% —— Outputs from this function are returned to the command line.
function varargout = Communication_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT) ;

% hODbject handle to figure

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout {1} = handles.output;

function VidNum_Callback (hODbject, eventdata, handles)

% hODbject handle to VidNum (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles .VN = str2double (get (hObject , "String 7)) ;

guidata (hObject , handles);

% Hints: get (hObject,’ String ’) returns contents of VidNum as text

% str2double (get (hObject ,’ String)) returns contents of VidNum as a double

% —— Executes during object creation, after setting all properties.
function VidNum_CreateFcn(hObject, eventdata, handles)

% hObject handle to VidNum (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles empty — handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get (hObject, BackgroundColor’), get(0,’
defaultUicontrolBackgroundColor 7))
set (hObject , 'BackgroundColor ’, "white ") ;
end

function Land_Callback (hObject, eventdata, handles)

% hObject handle to Land (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.L = get (hObject, String’);

guidata (hObject, handles);

% Hints: get (hObject,’ String ’) returns contents of Land as text

% str2double (get (hObject ,” String ’)) returns contents of Land as a double

% —— Executes during object creation, after setting all properties.
function Land_CreateFcn(hObject, eventdata, handles)

41

114

115

116

117

119

% hObject handle to Land (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, BackgroundColor’), get(0,’
defaultUicontrolBackgroundColor 7))
set (hObject , 'BackgroundColor ’, "white ") ;
end

% —— Executes on button press in CPI.

function CP1_Callback (hObject, eventdata, handles)

% hObject handle to CP1 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’ Value’) returns toggle state of CP1

% —— Executes on button press in CP2.

function CP2_Callback (hObject, eventdata, handles)

% hObject handle to CP2 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’ Value’) returns toggle state of CP2

% —— Executes on button press in CP3.

function CP3_Callback (hObject, eventdata, handles)

% hODbject handle to CP3 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’Value’) returns toggle state of CP3

% —— Executes on button press in CP4.

function CP4_Callback (hObject, eventdata, handles)

% hObject handle to CP4 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’Value’) returns toggle state of CP4

% —— Executes on button press in SaveP.

function SaveP_Callback(hObject, eventdata, handles)

% hODbject handle to SaveP (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

com = zeros (1,4);

com(1,1) = get(handles.CP1, ’'Value’);

com(1,2) = get(handles.CP2, ’Value’);

com(1,3) = get(handles.CP3, ’'Value’);

42

com(1,4) = get(handles.CP4, ’'Value’);

if handles.ParCount <= handles .NumP
CS(handles.iP (handles.ParCount), 'P’, com)
set (handles.CP1, "value’ ,0);
set (handles.CP2, "value’ ,0);
set (handles.CP3, "value’,0);
set (handles.CP4, "value ’,0);
handles.ParCount = handles.ParCount+1;
set (handles.Ptext, ’'String’, handles.ParCount);
if handles.ParCount > handles .NumP
set (handles.SaveP, ’‘enable’, "off’);
set (handles.Ptext, ’'String’, *7);
end
if handles.CarCount > handles .NumV && handles.ParCount > handles .NumP
set (handles.Check, ’'enable’, ’'on’);
set (handles.VidNum, ’'enable’, ’on’);
set (handles.VidNum, ’string’, '7);

end
guidata (hObject, handles);
end
% —— Executes on button press in CVI.

function CVI1_Callback (hObject, eventdata, handles)

% hODbject handle to CV1 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’ Value’) returns toggle state of CVI

% —— Executes on button press in CV2.

function CV2_Callback (hObject, eventdata, handles)

% hObject handle to CV2 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (sece GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of CV2

% —— Executes on button press in CV3.

function CV3_Callback (hObject, eventdata, handles)

% hObject handle to CV3 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’Value’) returns toggle state of CV3

% —— Executes on button press in CVA4.

function CV4_Callback (hObject, eventdata, handles)

% hODbject handle to CV4 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’Value’) returns toggle state of CV4

43

227 % —— Executes on button press in SaveV.

228 function SaveV_Callback (hObject, eventdata, handles)
220 % hObject handle to SaveV (see GCBO)

230 % eventdata reserved — to be defined in a future version of MATLAB
231 % handles structure with handles and user data (see GUIDATA)
232 com = zeros (1,4);

233 com(1,1) = get(handles.CV1, ’'Value’);

23a com(1,2) = get(handles.CV2, 'Value’);

235 com(1,3) = get(handles.CV3, "Value’);

236 com(1,4) = get(handles.CV4, 'Value’);

237

238 1f handles.CarCount <= handles .NumV

239 CS(handles.iV (handles.CarCount), V', com)

240 set (handles.CV1, "value’ ,0);

241 set (handles.CV2, "value’ ,0);

242 set (handles.CV3, "value’,0);

243 set (handles.CV4, "value’,0);

244 handles.CarCount = handles.CarCount+1;

245 set (handles.Vtext, 'String’, handles.CarCount);
246 if handles.CarCount > handles .NumV

247 set (handles.SaveV, ’‘enable’, "off’);

248 set (handles.Vtext, ’'String’, '7);

249 end

250 if handles.CarCount > handles .NumV && handles.ParCount > handles.NumP
251 set (handles.Check, ’'enable’, ’on’);

252 set (handles.VidNum, ’'enable’, ’on’);

253 set (handles.VidNum, ’string’, '7);

254 end

255 guidata (hObject, handles);

256 end

257

258

250 % —— Executes on button press in Check.

260 function Check_Callback (hObject, eventdata, handles)
261 Result = Check(handles.VN, handles.L);

262 handles .NumV = cell2mat (Result (1)) ;

26s handles .NumP = cell2mat (Result (2));

264 handles.iV = cell2mat (Result (3));
26 handles.iP = cell2mat (Result (4));
266 handles.CarCount = 1;

267 handles.ParCount = 1;

26s set (handles.SaveV, ’enable’, ’'on’);

260 set (handles.SaveP, ’enable’, ’on’);

270 set (handles.Vtext, ’String’, handles.CarCount);
a1 set (handles.Ptext, ’String’, handles.ParCount);
22 set (handles.VidNum, ’enable’, ’inactive’);

273 set (handles.Land, ’'String’, '7);

272 set (handles.Check, ’'enable’, "off’);
275 guidata (hObject, handles);
276 % hObject handle to Check (see GCBO)

27 % eventdata reserved — to be defined in a future version of MATLAB
27s % handles structure with handles and user data (see GUIDATA)

44

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

% Save the country and return necessary info
function [Result] = Check(VidNum, Land)
%load all the data cells

load (’Situations.mat’);

load (’Vehicles.mat’);

load ("NonMotorized . mat ") ;

% save the country

Situations{VidNum,8} = Land;

%% obtain data

%find the indices in the vehicle cell with the input video number
rowV = cell2mat (Vehicles (:,1));

iV = find (rowV=VidNum) ;

%find the indices in the VRU cell with the input video number
rowP = cell2mat (NonMotorized (:,1));

iP = find (rowP=VidNum) ;

% return the number of VRUs and vehicles

NumV = length (iV);

NumP = length (iP);

%save the situations datacell

save(’Situations.mat’, ’Situations’)

% return the data

Result = {NumV, NumP, iV, iP };

end

45

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

9% correcting the communication

function CS(index, VP, com) %obtain the index, whether it is a vehicle or VRU and the
communication types

%load data cells

load (' Vehicles .mat’);

load ("NonMotorized . mat ") ;

%% edit the communication
if VP = 'V’ % check if it is a vehicle
ComV = {’driving behaviour’, ’sound or horn’, ’lights signals’
}; %defining the options
%fill in the communication types
CV = find (com) ;
for i = 1:length (CV);
Com{1,i} = ComV{1,CV(i) };
end
Vehicles{index ,7} = Com; % add the communication to the datacell
end

, 'no communication’

if VP = P’ % check if it is a VRU

ComP = {’positive handgesture’, ’negative handgesture

communication’}; %defining the options
%fill in the communication types
CP = find (com);
for i = 1:length (CP);

Com{1,i} = ComP{1,CP(1i) };

end
NonMotorized{index ,6} = Com; % add the communication to the datacell
end

", ’eye contact’, ’'no

%% save the datacells
save ('NonMotorized .mat ', ’NonMotorized ’)
save(’Vehicles.mat’,’ Vehicles)

46

25

26

27

28

29

30

32

47

%% use the three different data cells to create one structure to use in data analysis

% load the three cells

load (’Situations.mat’);

load (" Vehicles .mat’);

load (’NonMotorized . mat) ;

%define the category names

SitNames = {’PedestrianState’, 'TrafficSituation’, ’LanesToCross’, ’NumberVehicles’,
"NumberPedestrians >, ’ConflictTime ', ’'Country’};

VehNames = {’VideoNumber’,’ AbsoluteSpeed’, ’'RelativeSpeed’, ’VehicleType’, ’'Priority’
, 'ViolationOfTheLaw’, ’>Communication’};

NMNames = {’VideoNumber’,’ Visibility ’, >Mobility’, ’Priority’, ’ViolationOfTheLaw
Communication’ };

% create structures from the cells and add the category names

S = cell2struct (Situations (:,2:8), SitNames, 2);

V = cell2struct (Vehicles, VehNames, 2);

NM = cell2struct (NonMotorized , NMNames, 2);

%% connecting the strucures

%searching for the video number in the vehicle structure and storing it

for i = 1:length(Vehicles);
vov (i) = V(i).VideoNumber;

end

for j = 1:length(Situations);
indices = find (vnv=j); %searching for the video number
%add the vehicles to the situation
if length(indices) > 1 %check if there are multiple vehicles in the video
for k = 1:length(indices)
S(j)-Vehicle(k) = V(indices(k));
end
else
S(j).Vehicle (1) = V(indices);
end
end

%searching for the video number in the VRU structure and storing it
for i = 1:length (NonMotorized) ;

vap (i) = NM(i).VideoNumber;
end

for j = 1l:length(Situations);
indices = find (vhp=—j) ;%searching for the video number
%add the VRUs to the situation
if length(indices) > 1 Y%check if there are multiple VRUs in the video
for k = 1:length(indices)
S(j).Participant (k) = NM(indices(k));
end
else
S(j).Participant (1) = NM(indices);
end
end

%% Changing all textual data to the char type so all data is uniform and usable
for 1 = 1:length(S);

S(i).PedestrianState = char(S(i

S(i).TrafficSituation = char (S(

for j = 1:length(S(i).Vehicle);

S(i).Vehicle(j).Priority = char(S(i).Vehicle(j).Priority);

). PedestrianState) ;
i). TrafficSituation);

47

55

56

57

58

59

61

62

63

64

65

66

67

68

4

0

end

O,

end
for

end

S(i).Vehicle(j).ViolationOfTheLaw = char (S(i). Vehicle(j).ViolationOfTheLaw);
S(i).Vehicle(j).RelativeSpeed = char(S(i). Vehicle(j).RelativeSpeed);
S(i).Vehicle(j).VehicleType = char(S(i).Vehicle(j).VehicleType);
S(i).Vehicle(j).Communication = char(S(i).Vehicle(j).Communication);

k = 1:length(S(i).Participant);

S(i).Participant (k). Priority = char(S(i).Participant(k).Priority);
S(i).Participant (k). Visibility = char(S(i).Participant (k). Visibility);
S(i).Participant (k). Mobility = char(S(i).Participant(k).Mobility);
S(i).Participant (k). ViolationOfTheLaw = char(S(i).Participant (k).

ViolationOfTheLaw) ;
S(i).Participant (k).Communication = char(S(i).Participant (k).Communication) ;

% saving the structure

save ('MasterStruct.mat’,’S’);

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

%% Boxplot with speed plotted against the different comunication types

Y%loading the neccesary data

load (’MasterStruct .mat’) %The datastucture with all the data from the video analysis
load (’MaxSpeed.mat’) %vector with the highest car velocity per video

%% obtaining all the communication types of all the cars

ComV = cell (1,1);

SpeedV = zeros(1,1);

index = 1;

for i = 1l:length(S); %all videos

for j = 1:length(S(i).Vehicle); %per video all cars
C = cellstr (S(i).Vehicle(j).Communication); %Obtain the communication per car
%split multiple communication of a single car into multiple cells and add the
according velocity to the speed vector
for ¢ = 1:length(C);
ComV{index ,1} = char(C{q,1});
SpeedV (index ,1) = S(i).Vehicle(j).AbsoluteSpeed;
index = index+1;
end
end

end

%% obtaining all the communication types of all the pedestrians
ComP = cell (1,1);
SpeedP = zeros (1,1);
index = 1;
for i = 1:length(S); %all videos
for j = 1l:length(S(i).Participant); %all VRUs
C = cellstr (S(i).Participant(j).Communication); %Obtain the communication per
VRU
%split multiple communication of a single car into multiple cells and add the
according velocity to the speed vector
for q = 1:length(C);
ComP{index ,1} = char(C{q,1})
SpeedP (index ,1) = MaxSpeed (i
index = index+1;

);
end

end
end

%% change ’lights signals’ into ’light signals’ so the xlabels in the plot are right
for ii = 1:length (ComV);
if stremp (ComV{ii,1}, lights signals’) =1
ComV{ii ,1} = ’light signals’;
end
end

%% defining and assigning the communication types

CatVeh = {’'no communication’, ’sound or horn’, ’driving behaviour’, ’light signals’};

CatPed = {’'no communication’, ’eye contact’, ’positive handgesture’, ’'negative
handgesture’ };

CatComV = categorical (ComV,CatVeh);

CatComP = categorical (ComP, CatPed) ;

%% plotting the boxplots

%plotting the boxplot for the vehicles
figure ("OuterPosition’, [300 150 800 700])
subplot (’position’, [0.1 0.2 0.35 0.7])

49

54

55

56

57

58

59

60

61

62

63

64

boxplot (SpeedV ,CatComV)

ylabel ("vehicle velocity [kph] ")

set (gca, XTickLabelRotation’,315, 'FontName’, ’Times New Roman’,’FontSize’ ,14)
title (’Figure 1A: communication by vehicles’, FontSize’ ,12)

%plotting the boxplot for the VRUs

subplot (’position’, [0.53 0.2 0.35 0.7])

boxplot (SpeedP ,CatComP)

set (gea, 'YLim’,[—2 85])

set (gca, XTickLabelRotation’,315, 'FontName’, ’Times New Roman’,’FontSize’,14)
title (’Figure 1B: communication by VRUs’,’FontSize’,12)

50

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

%0Occurance of "no communication” per velocity interval

%loading the neccesary data

load MasterStruct %The datastucture with all the data from the video analysis
load (’MaxSpeed.mat’) %vector with the highest car velocity per video

%% Obtaining all the car communications and adding the according car velocity
ComV = cell (1,1);

SpeedV = zeros(1,1);

index = 1;

for i = 1:length(S); %Look into every video

for j = 1:length(S(i).Vehicle); %look into all the cars per video
C = cellstr (S(i).Vehicle(j).Communication); %Obtain the communication
%split multiple communication of a single car into multiple cells and
according velocity to the speed vector
for ¢ = 1:length(C);
ComV{index ,1} = char(C{q,1});
SpeedV (index ,1) = S(i).Vehicle(j).AbsoluteSpeed;
index = index+1;
end
end

end

per car

add the

%% Obtaining all the pedestrian communications and adding the according car velocity

ComP = cell (1,1);
SpeedP = zeros (1,1);
index = 1;
for i = 1:length(S); %all videos
for j = 1:length(S(i).Participant); %all participants

C = cellstr (S(i).Participant(j).Communication); %Obtain the communication per

car
%split multiple communication of a single car into multiple cells and
according velocity to the speed vector
for q = 1:length(C);
ComP{index ,1} = char(C{q,1})
SpeedP (index ,1) = MaxSpeed (i
index = index+1;

Y
)
end
end
end
%% Sort the communication cell and speed vector according to the speed in an
ascending order

[SortSpeedV , indexx] = sortrows (SpeedV);
SortComV = ComV(indexx ,:) ;

[SortSpeedP , indexx] = sortrows(SpeedP);
SortComP = ComP(indexx ,:) ;

%save the sorted speed and communication vectors for the error margin plots
save ('Spd&Com.mat’, ’SortSpeedV’, ’SortComV’, ’SortSpeedP’, ’SortComP)

9% splitting the communication and velocity in intervals of 20 kph
%

low = 0;

up = 20;

%finding and storing the indices of communication at Okph

idxv (:,1) = (SortSpeedV = 0);

countv (1) = sum(idxv (:,1));

idxp (:,1) = (SortSpeedP = 0);

ol

add the

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

countp (1) = sum(idxp (:,1));
%finding and storing the indices of communication at the intervals

for

end

x = 1:4;

idxv (:,x4+1) = (SortSpeedV>low & SortSpeedV<=up);

countv(x+1) = sum(idxv (:,x+1)); %finding the number of interactions within the
interval in order to calculate the percentages

idxp (: ,x+1) = (SortSpeedP>low & SortSpeedP<=up);

countp (x+1) = sum(idxp (:,x+1));

low = low+20;

up = up+20;

%% Counting the number of times ’'no communication’ occurs and calculating the

percentages

hist = zeros (5,2);
nocomV = 0;
nocomP = 0;

for

y = 1:5; %all intervals

tempV = SortComV (idxv (:,y)); %obtain vehicle communication within the speed
interval

tempP = SortComP (idxp (:,y)); %obtain VRU communication within the speed interval

% check whether there is ’no communication’ for the vehicle and count when yes

for z = l:countv(y);
if stremp (tempV{z}, no communication’) =1
nocomV = nocomV+1;
end
end

% check whether there is ’no communication’ for the VRU and count when yes
for z = l:countp(y);

if stremp (tempP{z}, no communication’) =1

nocomP = nocomP+1;

end
end
%calculating percentages
hist (y,1) nocomV /countv (y) *100;
hist (y,2) = nocomP/countp(y)=*100;
nocomV = 0;

nocomP = 0;
end
%% Drawing pie charts
figure
bar (hist)

legend ({ 'no communication by vehicles’, ’'no communication by VRUs’ "Location’
J b) B b b

)

northwest ’,’FontSize’,11, Interpreter’, ’latex’)

ylabel ("”no communication” frequency [%]’, FontName’, ’'Times New Roman’,’FontSize’,

12)

set (gca, XTickLabel’,{’0 kph’, ’1-20 kph’, ’21—40 kph’, ’'41-60 kph’, ’'61-80 kph’},”’

FontName’, ’'Times New Roman’,’FontSize’, 12)

52

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

%% communication types plotted against whether the traffic rules are violated

%loading the neccesary data

load ("MasterStruct .mat ’)

%% obtaining vehicle communication and checking whether the traffic rules are
violated

Com = cell (1,4);

index = 1;
indexx = 1;
VioV = zeros(101,1); %storing whether one of the vehicles in the video is violating

traffic laws
for i = 1:length(S); %all videos
for j = 1:length(S(i).Vehicle); %per video all vehicles

C = cellstr (S(i).Vehicle(j).Communication); %Obtain the communication per
vehicle

if stremp(S(i).Vehicle(j).ViolationOfTheLaw, ’yes’) = 1 %per vehicle
checking if there is violation of traffic laws
VioV (i) = 1;

end

%split multiple communication of a single car into multiple cells.

%When nobody is violating traffic laws it is stored in collumn 1 otherwise in
2
for q = 1:length(C);
if stremp(S(i).Participant (1). ViolationOfTheLaw, 'no’) = 1 && strcmp (S(i
). Vehicle (j) . ViolationOfTheLaw, 'no’) =1
Com{index ,1} = char(C{q,1});
index = index+1;
else
Com{indexx ,2} = char(C{q,1});
indexx = indexx+1;
end
end
end
end
%% obtaining VRU communication and checking whether the traffic rules are violated
index = 1;
indexx = 1;
for i = 1:length(S); %all videos
for j = 1:length(S(i).Participant); %per video all wvehicles
C = cellstr (S(i).Participant (j).Communication); %Obtain the communication per
VRU
%split multiple communication of a single car into multiple cells.
Y%When nobody is violating traffic laws it is stored in collumn 3 otherwise in

4
for q = 1l:length(C);
if stremp(S(i).Participant(j).ViolationOfTheLaw, 'no’) = 1 && VioV (i)
0
Com{index ,3} = char(C{q,1});
index = index+1;
else
Com{indexx ,4} = char(C{q,1});
indexx = indexx+1;
end
end
end
end

53

49

50

51

52

53

54

55

57

58

59

60

61

62

63

64

68

69

70

71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

%% counting communication types and prepare matrices for the bar graphs

hist = zeros (4,4);

% define communication types for comparison

CV = {'no communication’, ’driving behaviour’, ’sound or horn’, ’lights signals’};

CP = {’no communication’, ’eye contact’, 'negative handgesture’, ’positive
handgesture ’ };

% check which communication type was used by the vehicles and counting them
for x = 1:2;
for k = 1:length (Com) ;
if isempty (Com{k,x}) = 0
y = find (ismember (CV,Com(k,x))); %comparing to the definition arrays
hist (x,y) = hist(x,y)+1; %counting
else
break %stopping when all communication types are done (not all collumns
are the same length)
end
end
end
% check which communication type was used by the VRUs and counting them
for x = 3:4;
for k = 1:length (Com) ;
if isempty (Com{k,x}) = 0
y = find (ismember (CP,Com(k,x)));
hist (x,y) = hist(x,y)+1;
else
break
end
end
end

%calculating percentages
for ii = 1:4;

hist (ii ,:) = hist(ii ,:)./sum(hist (ii ,:)).*100;
end

%% plotting the bar graphs
figure
bar (hist (1:2,:), stacked)

legend ({ 'no communication’, ’driving behaviour’, ’horn’, ’light signals’}, FontName’,

"Times New Roman’,’FontSize’ ,16)
set (gca, XTickLabel’ ,{ 'no violation’
FontSize’ ,15)
ylabel (’communication type frequency [%]’, FontSize’ ,15)
axis ([0 4 0 100])
grid on

, violation '}, ’FontName’, ’Times New Roman’,’

figure

bar(hist (3:4,:), stacked)

legend ({ 'no communication’, ’eye contact’, ’negative handgesture’, ’positive
handgesture’}, FontName’, ’'Times New Roman’,’FontSize’ ,15)

set (gca, XTickLabel’ ,{ 'no violation’,’violation’}, FontName’, ’'Times New Roman’,’
FontSize’ ,15)

ylabel (’communication type frequency [%]’, FontSize’ ,16)

axis ([0 4 0 100])

grid on

54

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

%% visibility types plotted for every scenario and scenarios with a stationary car
load (’MasterStruct . mat’)
%% Checking if there is a stationary second car and if yes storing visibility type
Vis = cell (1,1);
index = 1;
for i = 1:length(S); %all videos
if length(S(i).Vehicle) > 1 %checking if there are more than one car
for j = 1l:length(S(i).Vehicle) %per video all cars
%checking if the car is stationary or stopping
if S(i).Vehicle(j).AbsoluteSpeed = 0 || stremp(S(i).Vehicle(j).
Communication, ’driving behaviour’) =1
Zsaving visibility of all VRUs in the video
for q = 1l:length(S(i).Participant)
Vis(index ,1) = cellstr (S(i).Participant(q). Visibility);
index = index+1;
end
break %when a stationary car is found move to the next video so VRUs
will not be saved twice
end
end
end
end

%% storing visibility of all VRUs
indexx = 1;
for ii = 1:length(S); %all videos
%storing the visibility of all VRUs in all videos
for jj = 1l:length(S(ii).Participant)
VisTot (indexx ,1) = cellstr (S(ii).Participant(jj). Visibility);
indexx = indexx+1;
end
end

%% counting visibility types

hist = zeros(2,3); %row 1 for all VRUs and row 2 for VRUs in scenarios with a second
stationary car

V = {’clearly visible’,’difficult to notice’, hardly visible or blocked view’};

for k = 1:length(Vis);
y = find (ismember (V, Vis(k)));
hist (2,y) = hist (2,y)+1;

end

for k = 1:length(VisTot);
yy = find (ismember (V, VisTot (k)));
hist (1,yy) = hist (1,yy)+1;

end

%calculate the percentages
hist (2,:) = hist (2,:)./35.%x100;
hist (1,:) = hist(1,:)./107.%x100;

9%

%plotting two stacked bars

figure

bar (hist , "stacked ")

set (gca, XTickLabel’ ,{ all VRUs (107)’,’VRUs in two car scenario (35)’}, FontName’,
Times New Roman’)

55

54

55

56

57

legend ({ *clearly visible’,’difficult to notice’,’blocked view’})

ylabel (' visibility type frequency [%]’)
axis ([0 3 0 100])
grid on

56

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

%% Visibility of the VRU per severity of the conflict
%loading the neccesary data
load (’MasterStruct . mat’)
%% Obtaining conflict severity and visibility of the VRU
Vis = cell (107,1);
State = cell (107,1);
index = 1;
for i = 1l:length(S); %all videos
for j = 1:length(S(i).Participant); %all VRUs
Vis{index,1} = char(S(i).Participant(j). Visibility); %obtaining visibility
State{index,1} = char(S(i).PedestrianState); %obtaining conflict severity
index = index+1;
end
end

%% counting visibility type and sorting according to conflict severity
hist = zeros(4,3);
St = {’accident’, agitation near miss’,’confusion and waiting’, no delay or
discomfort ' };
Vi = {’clearly visible’, difficult to notice’, hardly visible or blocked view’};
for k = 1:107;
x = find (ismember (St, State(k))); %checking which conflict severity
y = find (ismember (Vi, Vis(k))); %checking which visibility type
hist (x,y) = hist(x,y)+1; %counting one according to conflict and visibility
end

%calculating percentages
for ii = 1:4;

perc(ii ,:) = hist(ii,:)./sum(hist(ii ,:)).x100;
end

%% drawing the bar graph

figure

bar (perc)

legend (’clearly visible’,’difficult to notice’,’blocked view’)

set (gca, XTickLabel’ ,{ accident (22)’,’near miss (31)’, confusion (32)’,’no delay
(22)’}, ’FontName’, ’'Times New Roman’)

ylabel (' visibility type frequency [%]’)

axis ([0 5 0 100])

grid on

57

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

%% Communication of the VRU plotted against the conflict

%loading the neccesary data
load (’MasterStruct . mat’)

%% obatining VRU communication and conflict severity

Com = cell (1,1);
State = cell (1,1);
index = 1;
for i = 1l:length(S); %all videos
for j = 1:length(S(i).Participant)
C = cellstr (S(i).Participant (]
VRU

%per video

%split multiple communication of a single car

according velocity to the speed vector
for ¢ = 1:length(C);

Com{index ,1} = char(C{q,1}); %storing communication
State{index ,1} = char(S(i).PedestrianState); %storing conflict
index = index+1;
end
end
end
%% Counting communication types and sorting according to conflict severity
hist = zeros(4,4);
%arrays for comparison
St = {’accident’, agitation near miss’,’confusion and waiting’, no delay or
discomfort ’};
Cc = {’'no communication’, ’eye contact’, ’negative handgesture’, ’'positive
handgesture’ };
% counting in the according row and collumn
for k = 1:length(State);
x = find (ismember (St, State(k)));
y = find (ismember (Cc,Com(k)));
hist (x,y) = hist(x,y)+1;
end
%calculating percentages
for ii = 1:4;
perc(ii ,:) = hist(ii,:)./sum(hist(ii ,:)).x100;
end
%% drawing the bar graph
figure
bar(perc)
legend (’'no communication’, ’eye contact’, 'negative handgesture’, ’'positive

handgesture ")

set (gca, XTickLabel’ ,{ accident (23)’,’near miss (40)’, confusion (44)’,’no delay

(34)°}, ’FontName’, ’'Times New Roman’)
ylabel (’communication type frequency [%]’)
axis ([0 5 0 100])

grid on

58

;
) . Communication); %Obtain the communication per

multiple cells and add the

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

%% Severity of the conflict per traffic situation
%loading the neccesary data
load ("MasterStruct .mat ’)

%% obtaining state and conflict severity

State = cell (101,1);

Traff = cell (101,1);

index = 1;

for i = 1:length(S); %all videos
State{i,1} = char(S(i).PedestrianState);
Traff{i,1} = char(S(i).TrafficSituation);

end

%% counting the conflict severities and sorting it according to traffic situation

perc = zeros(4,4);

% arrays for comparison

St = {’accident’, agitation near miss’,’confusion and waiting’, no delay or
discomfort ’ };

Tr = {’crosswalk’, ’intersection’,’Not Defined’, roundabout’};

%comparing and counting in the according row and collumn
for n = 1:101;
x = find (ismember (Tr, Traff(n))); %comparing traffic situation to the array above

y = find (ismember (St, State(n))); %comparing conflict severity to the array above
perc(x,y)= perc(x,y)+1;

end

%% plotting the charts

labels = {’accident’, ’near miss’, ’waiting’, ’'no delay’};

figure

subplot (’Position’, [0 0.6 0.4 0.4]) %plot the crosswalk pie chart

pie(perc(1,:))

title ({ "crosswalk, 38 conflicts '}, Units’, normalized’,’ Position’, [0.5 —0.15 0],’
Interpreter’, ’latex’)

legend (labels , "Units ', 'normalized ', "FontSize *,11, Position’, [0.56 0.75 0.3 0.2],°
Interpreter’, ’latex’)

subplot (’Position’, [0 0.1 0.4 0.4]) %plot the intersection pie chart

pie(perc(2,:))

title ({ ’intersection , 40 conflicts’},’ Units’
Interpreter’, ’latex’)

,’normalized’, ’Position

", [0.5 —0.15 0],°

subplot (’Position’, [0.5 0.1 0.4 0.4]) %plot the not defined pie chart

pie (perc(3,:))

title ({ 'not defined, 22 conflicts’},’Units’, normalized’,’Position
Interpreter’, ’latex’)

", (0.5 —0.15 0],°

59

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

%% Fault margin on "no communication” vs velocity

load (’Spd&Com.mat)

%% adjusting the speed vector to the errors
SSPMin = 0.9.% SortSpeedP ;

SSPMax = 1.1.xSortSpeedP ;

9% splitting the communication and velocity in intervals of 20 kph

%
low = 0;
up = 20;

%finding and storing the indices of communication at Okph

Y%mnegative error

idxmin (:,1) = (SSPMin = 0);
countmin (1) = sum(idxmin (:,1));
Y%without error

idxp (:,1) = (SortSpeedP = 0);
countp (1) = sum(idxp (:,1));
%positive error

idxmax (:,1) = (SSPMax = 0);
countmax (1) = sum(idxmax (:,1));

%finding and storing the indices of communication at the intervals

for x = 1:5;
onegative error

idxmin (: ,x+1) = (SSPMin>low & SSPMin<=up) ;

countmin (x+1) = sum(idxmin (: ,x+1));
%without error

idxp (: ,x+1) = (SortSpeedP>low & SortSpeedP<=up);

countp (x+1) = sum(idxp (:,x+1));
%positive error

idxmax (: ,x+1) = (SSPMax>low & SSPMax<=up) ;

countmax (x+1) = sum(idxmax (:,x+1));

%increase the boundaries for the next interval

low = low+20;
up = up+20;
end

%% Counting the number of times ’'no communication’ occurs and calculating

percentages
hist = zeros(6,3);

nocommin = 0;
nocomP = 0;
nocommax = 0;

for y = 1:6; %all intervals

%obtain VRU communication within the speed interval

tempmin = SortComP (idxmin (:,y));
tempP = SortComP (idxp (:,y));
tempmax = SortComP (idxmax (:,y));

% check whether there is ’no communication’

% yes for the negative error
for z = l:countmin(y);

for the VRU and count when

if stremp (tempmin{z}, no communication’) = 1

nocommin = nocommin—+1;
end
end

% check whether there is ’no communication’

% yes for without error
for z = l:countp(y);

if stremp (tempP{z}, 'no communication”)

60

for the VRU and count when

:1

the

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

e

78

79

80

81

82

end

nocomP = nocomP+1;
end
end

% check whether there is ’no communication’

% yes for the negative error
for z = l:countmax(y);

if stremp (tempmax{z}, no communication’)

nocommax = nocommax-1;

end
end
%calculating percentages
hist (y,1) = nocommin/countmin(y)*100;
hist (y,2) = nocomP/countp (y)*100;
hist (y,3) = nocommax/countmax(y)=*100;
nocommin = 0;
nocomP = 0;
nocommax = 0;

%% plotting the graph
figure
b = bar(hist);

b(1l).FaceColor = [1 1 0.7];
b(2).FaceColor = [1 1 0];
b(3).FaceColor = [0.8 0.8 0];

for the VRU and

:]_

count when

legend ({ ’speed adjusted to 90%’,’speed without adjustment’,’speed adjusted to 110%’},
"Location’, ’'northwest’, FontSize’ ,11, Interpreter’, ’latex’)
ylabel (’”no communication” frequency [%]’, FontName’, ’'Times New Roman’,’FontSize’,
12)
set (gca, 'XTickLabel {0 kph’, '1-20 kph’, '21—40 kph’, ’41—60 kph’, ’61—80 kph’, °
81—100 kph’}, FontName’, ’Times New Roman’,’ FontSize’, 12)

61

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

%% Communication per speed interval (0-30, 31-50, 51—80)
%loading the neccesary data
load MasterStruct
load (’MaxSpeed . mat)
%% obtaining all the communication types of all the cars
ComV = cell (1,1);
SpeedV = zeros(1,1);
index = 1;
for i = 1:length(S); %all videos
for j = 1:length(S(i).Vehicle); %per video all cars
C = cellstr (S(i).Vehicle(j).Communication); %Obtain the communication per car
%split multiple communication of a single car into multiple cells and add the
according velocity to the speed vector
for ¢ = 1:length(C);
ComV{index ,1} = char(C{q,1});
SpeedV (index ,1) = S(i).Vehicle(j).AbsoluteSpeed;
index = index+1;
end
end
end

%% obtaining all the communication types of all the pedestrians
ComP = cell (1,1);
SpeedP = zeros (1,1);
index = 1;
for i = 1:length(S); %all videos
for j = 1:length(S(i).Participant)
C = cellstr (S(i).Participant (]
car
%split multiple communication of a single car into multiple cells and add the
according velocity to the speed vector
for q = 1:length(C);
ComP{index ,1} = char(C{q,1})
SpeedP (index ,1) = MaxSpeed (i
index = index+1;
end
end
end
%% Sort the communication cell and speed vector according to the speed in an
ascending order
[SortSpeedV , indexx] = sortrows (SpeedV);
SortComV = ComV(indexx ,:) ;

; %per video all VRUs
) . Communication); %Obtain the communication per

)

[SortSpeedP , indexx] = sortrows(SpeedP);
SortComP = ComP(indexx ,:) ;

%edit the speed vectors for the error plots
SSpMax = 1.1.xSortSpeedP ;
SSpMin = 0.9.% SortSpeedP ;

%% counting the frequency of the communication types and storing them so pie charts
can be plotted
%defining the communication types so the communication cell can be compared

CcV = {’no communication’, ’sound or horn’, ’driving behaviour’, ’lights signals’};
CcP = {’no communication’, ’eye contact’, ’'negative handgesture’, ’positive
b b le) b

handgesture’ };

62

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

%creating the pie chart matrix for the plot
pieP = zeros(3,4);
for k = 1:75; %low speed interval (0—30 kph)

y = find (ismember (CcP,SortComP (k))); %check which communication type occured and

storing it accordingly
pieP(1,y) = pieP(1,y)+1; %counting
end
for k = 76:125; %medium speed interval (31—50 kph)
y = find (ismember (CcP, SortComP (k))) ;
pieP(2,y) = pieP(2,y)+1;

end

for k = 126:141; %high speed interval (51—80 kph)
y = find (ismember (CcP, SortComP (k))) ;
pieP (3,y) = pieP(3,y)+1;

end

%creating the pie chart matrix for the plot with the 110% error
piePMax = zeros (3,4);
for k = 1:62; %low speed interval (0—30 kph)
y = find (ismember (CcP, SortComP (k))) ;
piePMax (1,y) = piePMax(1,y)+1;
end
for k = 63:119; %medium speed interval (31—50 kph)
y = find (ismember (CcP, SortComP (k))) ;
piePMax (2,y) = piePMax(2,y)+1;

end

for k = 120:141; %high speed interval (51—80 kph)
y = find (ismember (CcP, SortComP (k))) ;
piePMax (3 ,y) = piePMax(3,y)+1;

end

%creating the pie chart matrix for the plot with the 90% error
piePMin = zeros (3,4);
for k = 1:81; %low speed interval (0—30 kph)

y = find (ismember (CcP, SortComP (k))) ;

piePMin (1,y) = piePMin (1,y)+1;

end

for k = 82:132; %medium speed interval (31—50 kph)
y = find (ismember (CcP, SortComP (k))) ;
piePMin (2,y) = piePMin (2,y)+1;

end

for k = 133:141; %high speed interval (51—80 kph)
y = find (ismember (CcP, SortComP (k))) ;
piePMin (3,y) = piePMin(3,y)+1;

end

9% plotting the pie chart without error

labels = {'no communication’, ’eye contact’, 'negative handgesture’

handgesture’ };
figure
subplot (’Position’, [0 0.6 0.4 0.4]) %plot with low speed interval
pic (picP (1,:))

)

"positive

title ({’0—30 kph, total of 75 interactions’},’Units’, normalized’,’ Position’,

—0.15 0], Interpreter’, ’'latex’)

subplot (’Position’, [0 0.1 0.4 0.4]) %plot with medium speed interval

pie (pieP (2,:))

title ({ ’31—-50 kph, total of 50 interactions’}, Units’, normalized’,’ Position’,

—0.15 0], Interpreter’, ’latex’)

63

(0.5

[0.5

106

107

108

109

110

111

112

128

129

130

132

133

134

136

137

138

140

141

143

144

145

subplot (’Position’, [0.5 0.1 0.4 0.4]) %plot with high speed interval

pie(pieP (3,:))

title ({’51—80 kph, total of 16 interactions’},’Units’, normalized’, Position
—0.15 0], 'Interpreter’, ’latex’)

legend (labels , "Units ', 'normalized ', FontSize ’,11, Position’, [0.55 0.65 0.3 0.3],°
Interpreter’, ’latex’)

", [0.5

Y%%plotting the pie chart with 110% error

labels = {’no communication’, ’eye contact’, 'negative handgesture’, ’positive
handgesture’ };
figure

subplot (’Position’, [0 0.6 0.4 0.4]) %plot with low speed interval

pie (piePMax (1 ,:))

title ({ ’0—30 kph, total of 62 interactions’},’Units’, normalized’,’ Position’, [0.5
—0.15 0], Interpreter’, ’latex’)

subplot (’Position’, [0 0.1 0.4 0.4]) %plot with medium speed interval

pie (piePMax (2 ,:))

title ({’31-50 kph, total of 57 interactions’},’Units’, normalized’,’Position’, [0.5
—0.15 0], Interpreter’, ’latex’)

subplot (’Position’, [0.5 0.1 0.4 0.4]) %plot with high speed interval

pie (piePMax (3 ,:))

title ({ ’51—80 kph, total of 22 interactions’},’Units’, normalized’,’ Position’, [0.5
—0.15 0], Interpreter’, ’latex’)

legend (labels , "Units ', 'normalized ', FontSize *,11, Position’, [0.55 0.65 0.3 0.3],’
Interpreter’, ’latex’)

%% plotting the pie chart with 90% error

labels = {’'no communication’, ’eye contact’, 'negative handgesture’, ’positive
handgesture’ };
figure

subplot (’Position’, [0 0.6 0.4 0.4]) %plot with low speed interval

pie (piePMin (1 ,:))

title ({’0—30 kph, total of 81 interactions’},’Units’, normalized’,’ Position’, [0.5
—0.15 0], Interpreter’, ’latex’)

subplot (’Position’, [0 0.1 0.4 0.4]) %plot with medium speed interval

pie (piePMin (2 ,:))

title ({ ’31—-50 kph, total of 51 interactions’},’Units’, normalized’,’ Position’, [0.5
—0.15 0], Interpreter’, ’latex’)

legend (labels , "Units ', 'normalized ', FontSize *,11, Position’, [0.55 0.65 0.3 0.3],°
Interpreter’, ’latex’)

subplot (’Position’, [0.5 0.1 0.4 0.4]) %plot with high speed interval

pm = pie ([8 1]);

title ({ ’51—80 kph, total of 9 interactions’},’Units’, normalized’,’Position’, [0.5
—0.15 0], Interpreter’, ’'latex’)

colormap=[0.024 0.612 0.812];

pm(3).FaceColor = colormap;

64

10

11

12

13

14

15

16

17

18

19

20

%% Bargraph of frequency countries occured in the videos
Y%loading the neccesary data

load (’MasterStruct . mat’)

VL

%Obtaining al the countries from the data

Country = cell (101,1);

for 1 = 1:101 %all videos

Country(i,1) = cellstr (S(i).Country); %per video all the countries
end

%o

% counting the frequency of the occurance of the countries
[U,” ,X] = unique(Country) ;

cnt = histe(X,1:numel(U));

%plotting the frequency of occuarnce against the countries
subplot (1,1,1, Position’, [0.15 0.2 0.75 0.7])

bar (cnt)

set (gca, 'XTick’ ,[], "FontName’, ’'Times New Roman’)

cellfun (Q(x,s)text(x,—1,s, Rotation’,270, FontName’, ’Times New Roman’, FontSize ,11)

,num2cell (1:numel (U)) ,U.")
ylabel (’absolute frequency’, FontName’, ’Times New Roman’,’ FontSize’ ,12)
grid on

65

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

%Communication by the pedestrian per number of lanes

Y%loading the neccesary data
load Masterstruct

%% Obtaining all the communication types of all the VRUs

Com = cell (1,1);
Lanes = zeros(1,1);
index = 1;
for i = 1l:length(S); %all videos
for j = 1:length(S(i).Participant)
C = cellstr (S(i).Participant (]
VRU

%split multiple communication of a single car into

; %all VRUs
) . Communication); %Obtain the communication

according number of lanes to the speed vector

for q = 1:length(C);
Com{index ,1} = char(C{q,1});

Lanes(index ,1) = (S(i).LanesToCross); %obtaining the number of lanes

index = index+1;
end
end
end

%% Counting the number of times the certain number of lanes occurs

hist = zeros(6,4);
La = (1:6);
Cc = {’'no communication’, ’eye contact’,
handgesture ’ };
for k = 1:length(Lanes);
x = find (ismember (La, Lanes(k)));
y = find (ismember (Cc,Com(k)));
hist (x,y) = hist (x,y)+1;
end

%% Drawing the bargraphs
figure
bar (hist)

legend ('no communication’ eye contact’
) . b

handgesture ")

set (gea, XTickLabel {717,727 737 747’57 76},

ylabel (" frequency)

xlabel ('number of lanes to cross’)
axis ([0 7 0 35])

grid on

"negative handgesture’, ’positive

"negative handgesture’, ’'positive

66

"FontName’, ’Times New Roman’)

multiple cells and add the

	Introduction
	Background
	Method
	YouTube Search
	observation metrics for YouTube Data Extraction
	Inclusion Conditions of YouTube Videos
	Speed Extraction of YouTube Videos
	Error of Distance and Speed Measurements

	Results
	Influence of Vehicle Velocity on Communication
	Types of communication when (no) Violation of the Law occurred
	The Stationary Car Scenario
	Traffic Situation

	Discussion
	High Speed Scenarios
	Traffic Situation
	Situation with a Stationary Vehicle
	Margin of Distance and Speed Error
	Improvements and Recommendations

	Proof of Concept for an Experiment in Unity
	Proof of Scenario for Unity Experiment
	Concept for an Experiment

	Conclusion
	Acknowledgements
	Appendix - Tables
	Appendix - Interface
	Appendix - YouTube measurements
	Appendix - Additional Graphs
	Appendix - Unity
	Appendix - Video list
	Appendix - Matlab Scripts

