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Abstract  

 This project was conducted as part of the research 

project Therminus, a collaboration between the 

Netherlands Forensic Institution (NFI), the 

Amsterdam Academic Medical Centre (AMC) and the 

TU Delft, which was initiated with the goal to increase 

the accuracy of time of death estimations. The objective 

of this project was to design and produce a prototype 

which can accurately measure the thermal conductivity 

and thickness of a sample of the clothing worn by the 

deceased. A design process was undergone which 

resulted in the construction of an initial prototype. At 

the TU Delft no suitable conductivity measurement 

device was available for checking the experimental 

measurements of the prototype. Thus, validation of the 

prototype was done by measuring the conductivity of 

materials with known thermal properties. Initial testing 

showed that the prototype did not accurately measure 

thermal conductivity. This was deemed to be due to the 

fact that actual heat loss was higher than calculated. 

After adjusting the heat loss and testing paper and 

cotton samples conductivity values comparable to 

tabulated values were found by the device. In order to 

build on the outcomes of this project, future research 

could be done focusing on investigating to what extent 

a relationship exists between the level of compression 

of a material and the value of thermal conductivity 

which is found. 

I. Introduction 

In 2017 the lives of 158 people were taken by homicide 

in the Netherlands [1]. The resulting investigations 

were not always conclusive. In fact, in 2017 less than 

26% of registered crimes in the Netherlands were 

resolved [2]. In order to resolve more murders the 

exact Time of Death (ToD) of the victim should be 

determined. This would aid the process of identifying 

and eliminating suspects. Currently the ToD estimation 

is done using the Henssge model. This method uses 

the ambient body temperature, rectal body 

temperature and bodyweight of the deceased [3]. 

However, the model relies on various assumptions and 

there are many conditions under which it can’t be 

applied. This makes the model user-dependent and it 

has a high uncertainty. A more intricate ToD 

estimation, called Phoebe [3], is created to replace the 

outdated Henssge model. In Project Therminus 

methods of measuring thermal properties of clothes 

and surfaces are being developed in order to use the 

properties as input in the Phoebe model. Within this 

project the focus lies on measuring the thermal 

conductivity of textiles. Clothes act as insulators to keep 

us warm and protected from the elements, but the 

conductivity of clothing varies across different kinds of 

fabrics. The aim of the project is to design and produce 

a prototype which can accurately measure the thermal 

conductivity and thickness of a sample of the clothing 

worn by the deceased.  

II. Design process 

A. Design requirements 

As the device must be suitable for use at crime scenes, 

it must conform to several requirements determined in 

previous research on the project. First and foremost, 

the device must be able to measure the thermal 

conductivity of any clothing sample with an error small 

enough that it leads to an error in the ToD estimation 

of less than 3 percent [3, 8]. This 3 percent error in the 

ToD estimation translates to an 8 percent maximum 

error in the thermal conductivity and was found by 

testing the Phoebe model at the thermal conductivity 

level which has the lowest acceptable absolute error as 

stated Appendix in 2 Phoebe experiment. The clothing 

sample can be cut, but damage to materials should be 

minimal [3]. Additionally, the device must conduct its 

conductivity measurement within a timeframe of less 

than 30 minutes, since forensicists have limited time at 

crime scenes [9, 3, 8]. On top of that, no cross-

contamination may take place, which means the device 

should be either cleanable or disposable [9]. Cleaning 

will be done with alcohol, chlorine and UV-light. 

Finally, the device should be low cost and portable [9].  

 

These requirements form the basis for the design of the 

device. In the next paragraph design choices are 

outlined. Each design choice is justified by the fact that 

it contributes to the fulfilment of least one requirement.  

B. Functional design and justifications 

1) Conductivity measurement method  

Several methods of measuring the thermal conductivity 

of a material exist. The choice of working principle for 

the design process undergone in this project was made 

by evaluating working principles discussed in previous 

research [3]. Particular consideration was given to 3 

concepts, which are briefly summarized in Appendix 1 

Measuring principles. After analysing the three 

methods, a steady state method with 1-directional heat 

flow as visualised in figure 1 was deemed most suitable 
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for this project. This method involves placing the 

sample material in between two aluminium plates, one 

of which is heated by a heat pad and one of which is 

cooled by a Peltier element. The heat flows through the 

sample from the hot body to the cold body, which are 

both kept at a constant temperature. This setup is 

surrounded by a strong insulator, so as to minimize loss 

of heat to the environment. The amount of heat added 

can be chosen, and given that the temperatures of the 

cold and hot bodies are held constant, such that 

thermal conductivity k can be determined using 

Fourier’s law of heat conduction (1) [7]:  

 

(1)                        𝑄 =
𝐴

𝑑
𝑘 𝛥𝑇 

  

In which Q is the amount of heat that is conducted 

through the sample, A is the area of the hot and cold 

body, d is the thickness of the sample and 𝛥𝑇 is the 

temperature difference. 

 
Figure 1: Schematic representation of a steady state method 

with 1-directional heat flow [6] 

Because the aforementioned measurement method 

relies on a one-directional heat flow, it is crucial for the 

accuracy of results that most of the heat flows in the 

predetermined direction, and that the fraction of heat 

lost can be accurately estimated. The following 

paragraph describes how this has been ensured and 

why the design choice for insulation was made. 

2) Insulation  

In order to achieve reliable estimations of the thermal 

conductivity, measurements must be made in a 

controlled environment. Since crimes can take place in 

varying settings, the environment contains unknown 

factors which can distort the measurements. Examples 

of such unknowns are airflow due to the wind, which 

leads to thermal convection, and an unknown radiative 

heat transfer with the environment. To eliminate these 

unknowns the device must be insulated. An important 

result of this is a reduction of heat transfer to the 

surrounding environment and less uncertainty 

regarding the flow of heat. As insulation material 

Polyisocyanurate (PIR) was chosen, due to the fact that 

it is one of the strongest insulators available, having a 

thermal conductivity of 0.022 W/(mK). In choosing the 

thickness of the insulation a trade-off had to be made. 

Given that the device must be portable, a compact 

design is required, meaning that the insulation can not 

be too thick. A compact design also reduces the cost of 

materials. On the other hand, the insulation has to be 

thick enough to reduce the amount of heat lost to the 

environment to an acceptable level.  

Appendix 5 Insulation, gives a proper in depth 

explanation on which insulation thickness was chosen. 

The result is an insulation thickness of 30mm. This 

gave a good trade-off between size, insulation 

effectiveness and time it takes to reach steady state 

operation. Figure 2 shows that, after 30mm of 

insulation thickness the heat loss through the insulation 

flattens this means a larger thickness only provides a 

minor increase in insulation effectiveness. 

 
Figure 2: Power loss through the insulation in comparison to 

the insulation thickness. 

3) Temperature Difference 

A temperature difference between the insulation 

surface and the environment temperature is to be 
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expected. Appendix 5 Insulation describes the method 

used for evaluating the exact heat flow through the 

proposed insulation. The insulation is to separate the 

environment from the hot body which will be kept at a 

10 degree temperature difference with respect to the 

environment.  The radiative heat transfer is hard to 

account for in an unknown environment, thus in order 

to increase the accuracy of the Therminus device, 

shielding is proposed. Shielding the device has two 

beneficial effects. The first beneficial effect is that 

unknown radiation sources, from the environment, will 

not distort measurements. The second benefit is that a 

controlled environment, around the insulation, is 

created. The controlled environment allows for the 

description of both radiative and convective heat 

transfer. The thermal conductivity of a specimen is 

determined using equation (2).  

 

(2)  𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 =  𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒 ∗ ( 
𝐴∗𝛥𝑇

𝑄
 −  2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 )(−1) 

 

Q as present in equation (2), is the amount of heat that 

is conducted through the specimen. The value for Q is 

determined by use of equation (3). Thus requiring 

description for both the heat loss through insulation 

𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛, and 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑.  

 

(3) 𝑄 =  𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

 

Minimizing 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 with respect to the 𝑄 necessary 

for measurements, also minimizes any errors caused by 

mistakes made in the 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 estimation. 

 

The surface temperature of the insulation will be 

logically low (as compared to the environment) since 

the amount of heat that needs to be dissipated is 

dispersed over a large surface area. Figure (3) depicts 

the expected insulation surface temperature for the 

range of expected environment temperatures. Please 

note that the surface temperature, as depicted in figure 

3, seems to be related in a linearly inversely 

proportional way. Also note that figure 3 is retrieved 

from Appendix 5 Insulation. Figure 4 as retrieved from 

Appendix 13 Heat loss insulation uncertainty, depicts 

the absolute error made when assuming linear 

interpolation. The significance of the aforementioned 

assumption is defined in Appendix 10 Thermal 

conductivity measurement uncertainty. The error 

made by assuming linear interpolation as a valid 

method for estimating the heat loss through insulation 

is small and constitutes a small amount (~6%) of the 

total error. Please note that this value is subject to 

change when using a different voltage measurement 

logic board. Details of which are to be found in 

Appendix 10 Thermal conductivity measurement 

uncertainty. 

 
Figure 3: Expected temperature difference between 

insulation surface and environment temperature 

 
Figure 4: Absolute Error when assuming linear 

interpolation insulation heat loss model 
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4) Temperature Control 

To maintain the aforementioned 10 degrees 

temperature difference, the heat pad will have to 

operate at a range of 0.15W to 40W see Appendix 6 

Heat pad. Also, the peltier element will have to remove 

heat from the system in order to keep the cold body at 

the environment temperature. The current within the 

electronic circuit cannot be easily manipulated. 

Therefore, both heating and cooling elements are 

controlled using the onboard PWM controller on an 

Arduino. An Arduino was chosen to control this signal 

due to having experience with using one in earlier 

projects. The maximum current draw of the heat pad 

and peltier element is 4000 mA. This high current 

poses a challenge, as regular Bipolar Junction 

transistors (BJT) cannot efficaciously switch such high 

currents without burning out. Therefore BJT 

transistors are omitted from the design considerations. 

The solution for the proposed problem is stated in the 

electrical circuit design. 

C. Prototype design 

In this section, both the mechanical and electrical 

design of the prototype are discussed. The 

mechanical design subsection describes partial 

solutions to the stated design problems, as well as 

displaying the SolidWorks model and justifying 

the choice of materials. The electrical design 

subsection describes a number of important 

electrical components and their accuracy. 

Additionally, control mechanisms and circuitry 

considerations are mentioned. 

1) Mechanical design 

a - Defining partial solutions 
At the start of the project a morphological chart was 

created, Appendix 3 Morphological chart, outlining 

problems and potential solutions discussed in previous 

research on the Therminus project [1,8]. The chart can 

be found in Appendix 4 Solidworks assembly drawing. 

 

The main problems identified were the following: 

-How will the steady-state system be kept at a stable 

temperature difference? (1) 

-How will the system be insulated from the 

environment to reduce heat leaks? (2) 

-How will the device bring the hot and cold parts 

together as to measure the sample? (3) 

 

Several solutions were found for these questions. The 

final design can be found in figure 5. 

The solution for (1) is reliant on two subsystems. The 

hot body is heated by a heat pad to the desired constant 

temperature. The cold body is held at environment 

temperature with a peltier element{13}, heat sink{20} 

and fan combination.  

 

The insulation (2) for the hot body system has to ensure 

that the heat loss (to the environment) is minimal in 

order to have an accurate estimation of how much heat 

is conducted by the sample. As solution the hot body is 

contained in a hollow box{4} filled with insulation 

material made to size. The respective box has square 

openings to allow for assembly. Temperature sensors 

Figure 5: Part of the drawing of the assembly from the SolidWorks model with numbers referencing to its respective parts. 

The rightmost drawing is a view through the centre of the model to outline internal parts 
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are placed on the surfaces of both the hot and cold 

body{5}, whilst opposing the sample of which the 

thermal conductivity is to be measured. The placement 

of the temperature sensors results in more 

cumbersome mathematical formulae, but is offset with 

the increased usability and cleanability of the device. 

The used formulae with the respective uncertainty 

analysis can be referenced in detail by consulting 

Appendix 10 Thermal conductivity measurement 

uncertainty. 

 

For the last problem (3) a linear rail guide{17} is used. 

The bottom part{1} is the cold body system and will be 

kept stationary and the hot body will be able to move 

up and down. The box of the bottom part will be fitted 

with an extruded piece, in which a vertical square 

tube{2} is mounted. On the vertical square tube a linear 

rail guide is mounted, on which the hot body box is 

assembled. The guide rail will add additional rigidity to 

the system. The propulsion system consists of a worm 

drive and belts{10,11}. The worm drive is self-locking, 

making it possible to accurately set elevation levels on 

the system. A linear potentiometer{16} is assembled on 

the square tube and attached to the hot-body box in 

order to measure the distance between the hot-body 

and cold-body boxes. The addition of a linear 

potentiometer is justified by the requirement of Phoebe 

(imposed on the user) to input a thickness of the 

analysed specimen.   

 

b - Material Selection 
Figure 5 displays drawings of the prototype, as 

modelled in SolidWorks. Gross dimensions and 

complete views can be found in Appendix 4 Solidworks 

assembly drawing. The square tube {2} is made of 

aluminium, because it is rigid and lightweight. The 

upper box {4} and lower structure {1} are 3D printed 

out of PLA. Justification for PLA follows from four 

properties being that PLA is lightweight, a good 

insulator (k=0.13 W/mK), inexpensive and can be 

made to the desired dimensions. The supporting rods 

{14} and drive rods {9} are made of steel instead of 

aluminium, as these parts are considered critical 

mechanical parts of the device. The conductive 

material {5}, previously referred to as hot and cold 

body, aluminium Alloy 5754 (k=147 W/mK) is chosen. 

This specific alloy has a high thermal conductivity, is 

extremely resistant to corrosion and resistant to the 

mentioned cleaning methods. Both PLA and 

aluminium meet the previously defined design 

requirements imposed on the materials. 

2) Electrical design 

a - Heat Pad 

A key requirement, the device has to fulfil, is that it 

must be capable of measuring a range of thermal 

conductivity values. The chosen conductivity 

measurement method, as described on page four, relies 

on a heat pad to provide the heat which is to be 

conducted through the sample. This is considered 

adequate for the Therminus device. The heat pad is 

able to create the desired 10 degree temperature 

difference. The thermal aspect of the measurement 

depends on a few design parameters, namely: surface 

area, thickness, thermal conductivity and temperature 

difference. As stated before, the relationship between 

specimen, heatflow and geometric properties are given 

by fourier’s law of steady state thermal conductivity 

which states that  

 

(1)                        𝑄 =
𝐴

𝐿
𝑘 𝛥𝑇 

 

The values for thermal conductivity that the Therminus 

device should be able to measure range from 0.057 on 

the low end, and 0.52 on the high end of the spectrum 

[14]. Data based on a sample size of 25 T-shirts, see 

Appendix 14 Clothing thickness dataset suggests that 

99.73% of T-shirts is expected to be at least 0.44 mm 

thick. Thus suggesting a minimum thermal resistivity of 

[𝑅𝑡ℎ] =8.46*10
-4

 [m
2

K/W]. Once more assuming 

clothing thickness is normally distributed, in 99.73% of 

cases, coats will be thinner than 28mm. The upper 

bound for thermal resistivity thus becomes [𝑅𝑡ℎ] 

=4.80*10
-02

 [m
2

K/W].  

 

From Fourier’s law of thermal conductivity a design 

parameter is derived (4) 

 

(4)                         
𝑄

𝐴
=

𝛥𝑇

𝑅𝑡ℎ
  

 

One can deduct that the head pad is required to have a 

minimum index (Q/A) > 11.8*10
3

. The chosen heat 

pad has a power of 48W heat pad and a surface area of 

0.036 m
2

. The heat pad has a performance index (Q/A) 

of 13*10
3

 and will therefore be able to supply sufficient 

heat for at least 99.73% of T-shirts. Please consult 

Appendix 6 Heat pad for the used formulae and the 

used MATLAB script. 
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b - Peltier Element 

A peltier element is used to remove heat that is 

conducted by the sample, in order to maintain the 

desired temperature difference. The element is shaped 

like a square and transfers heat from one surface to the 

other. Peltier is fixed to the cold aluminium body and 

is PID controlled, see Appendix 8 Arduino code for 

the PID control code. Since the peltier element is 

merely used to remove heat from the system (to 

maintain steady state), said element does not detract 

from the accuracy of the device. The former claim is 

used as justification to omit said peltier from the 

uncertainty analysis as carried out in Appendix 10 

Thermistor uncertainty. Uncertainties related to the 

cold body are inaccuracies which are primarily 

attributable to the electrical temperature measurement 

setup. 

 

c - Temperature Sensors 

Three temperature sensors are used in the prototype. 

The environment temperature sensor is a PTC sensor, 

meaning its resistance increases with temperature, with 

a base resistance of 2 kΩ at 25 degrees Celsius.  The 

other two sensors are thin film sensors, designed 

specifically to measure surface temperatures. Their 

thin construction enables fast temperature response, 

allowing for quick and accurate surface temperature 

measurements. These sensors are placed against the 

hot and cold bodies. For these sensors a higher base 

resistance, 5kΩ at 25 degrees Celsius, was chosen. All 

three sensors can viably be used in temperatures 

ranging from -50 to 150 degrees Celsius and have a 

prespecified accuracy of 1%. The process of calibration 

lowers the maximum temperature uncertainty from 

6.758% to 1.278%, see Appendix 10 Thermistor 

uncertainty. For the calibration process see Appendix 

7 Electrical circuit. 

 

d - Arduino and temperature control 

The prototype uses an arduino UNO to power and/or 

control the electrical components used. See Appendix 

7 Electrical circuit for the electrical circuit and how 

everything is connected to each other.  Temperature 

control is handled by means of a PID controller (see 

Appendix 8 Arduino code) implemented in the 

arduino software uploaded onto the arduino. The 

choice for a software based control system comes 

mainly from usability and flexibility point of view. Two 

PID controllers are used in conjunction to control the 

duty cycles of both the heat pad and the peltier element 

respectively. Both duty cycles are controlled through 

PWM. PWM allows the heat pad and peltier to 

function at the desired voltage and current whilst also 

enabling control. An important remark is that the 

Arduino Uno does possess a 16-bit timer which can be 

enabled through low level software modifications. 

Whilst theoretically possible, one might refrain from 

doing so since this can have negative consequences for 

the usage of standard Arduino libraries. 

 

e - MOSFET For PWM Control 

The heating and cooling elements require currents 

(4000 mA) which Arduino (max 40 mA) is incapable of 

supplying. For this reason the required current is 

provided by external power supplies, thereby not 

passing through the delicate Arduino circuitry. 

Standard issue semiconductor transistors cannot switch 

such high currents effectively, which is why the use of 

MOSFETs is justified. A suitable logic-level MOSFET 

is the IRLZ44N by International Rectifier. The 

IRLZ44N can switch the required current without 

introducing noticeable transient behaviour since its 

transient spans ~100ns.  

 

In the worst imaginable case the resistance of the 

MOSFET will amount to 32 μΩ causing a voltage drop 

of ~12.8 μVolt. The voltage drop (worst case: 

<1.06*10
-04

 % of smallest voltage drop) incurred by the 

MOSFET, is small and thus will not be considered in 

further analysis (error propagation and device 

performance). The MOSFET’s are also suitable for use 

in a PWM controlled circuit because their transient 

behaviour is excellent when considering the limitations 

imposed by the arduino PWM controller. The PWM 

controller on the arduino board has a minimum duty 

cycle of 3.8 μs whilst the rise and settle time of the 

MOSFET’s, combined, do not exceed 100 ns. Since 

the MOSFET’s are switching currents far below their 

maximum currents, the maximum operating 

temperature never approaches the T-junction, 

therefore no heat sinks are required.  

III. Concept Validation 

The prototype has to be tested in order to prove that 

the concept of choice results in a working device. 

Looking at the design requirements mentioned in the 
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design process section, it can be said that the accuracy 

of the device’s conductivity measurement should be 

evaluated in order to conclude whether or not the 

device functions at an acceptable level. One way to test 

this is to have the conductivity of test samples measured 

by a validated measurement device in a university 

laboratory or through a third party. However, at the TU 

Delft no suitable conductivity measurement device is 

available for checking the measurements of the 

prototype. After consulting with a professor of 

thermodynamics at the TU Delft, the conclusion was 

drawn that a second validated measurement device 

would have to be designed to validate the prototype. 

This is not feasible within this project. Therefore, 

validation of the prototype must be done by measuring 

the conductivity of materials with known thermal 

properties. Since the apparatus is designed to measure 

textile samples, which have a low conductivity [3], 

samples with known values for conductivity rather than 

table values are required to assess the accuracy of the 

device. After searching for suitable materials, the 

construction grade isolation material expanded 

polystyrene (EPS) with a conductivity of 0.04W/mK 

was found. This material has a consistent thermal 

conductivity value and can easily be manipulated to the 

desired shape. 

The difference between the theoretical and 

experimental value is the error, which has to be 

reduced to a maximum error of 8%.  

IV. Results 

During preliminary testing the device did not accurately 

measure the thermal conductivity values of the 

verification sample. For the EPS sample mentioned 

above, a value of 0.04 W/mK was meant to be found, 

but the value found by the device was 0.4 W/mK. After 

adjusting the potentiometer settings and properly 

pressing the hot body onto the material a value of 0.17 

W/mK was found.  

Although this value was closer to the real 

conductivity of the EPS sample, the measurement was 

still inaccurate. To correct for this the absolute heat loss 

through the insulation was adjusted in the model and 

eventually the right value of 0.04 W/mK was found for 

EPS.  

To check whether the device would now also 

provide accurate measurements for other materials, a 

test was done with paper, which was found to have a 

thermal conductivity value of 0.05W/mK [12]. 

Additionally, a test was done with a t-shirt of 100% 

cotton for which the tabulated value was 0.029W/mK 

[12]. With the adjusted heat loss values, conductivity 

values were found by the device which are comparable 

to the values tabulated in the Engineering Toolbox 

[12].  

V. Discussion 

The wrong conductivity values initially given by the 

device (see Results) where fixed by changing the 

expected power loss through the insulation. The 

expected theoretical value is 0.078W, Appendix 5 

Insulation and was consequently changed to 0.5W. 

This is believed to be a justified change because the 

proposed insulation differs from the realized 

insulation. The realized insulation differs from the 

aspired insulation in a few fundamental ways. First of 

all the real insulation does not fully make contact with 

the warm body, consequently creating a layer of air with 

varying thickness between them. The outer layer of the 

insulation box is made from PLA which has lower 

thermal conductivity (0.13 W/mK) than the 

polyisocyanurate (0.022 W/mK). Between this outer 

layer of PLA and the polyisocyanurate another layer of 

air can be found, again of varying thickness. It is 

imperative to note that depending on the air pocket 

size, internal convection can occur. Internal convection 

will further degrade the insulation effectivity. Secondly, 

the device does not yet have the proposed shield, which 

means forced convection and unknown radiative heat 

transfer might occur. Lastly, two metal bolts are 

inserted into the insulation which are connected to two 

aluminium bodies for belt connection. Those two 

aluminium bodies are on the outside of the insulation, 

practically acting as a heatsink.  

A. Limitations and recommendations for future 
research 

One limiting factor in the accuracy of the prototype is 

the fact that the Arduino UNO is practically limited to 

8 bit PWM output which means that it can only control 

duty cycles of the heat pad and peltier element in 256 

steps. In part due to the discrete nature of voltage 

measurement chips, the worst case thermal 

conductivity error expected to be 22% (see Appendix 9 

Thermal conductivity measurement uncertainty). This 

error could be reduced by switching to a development 

board with a 12 bit read functionality. An example of 

such a development board is the Arduino DUE. 

However, this board implements the SAM3X chip 

which is limited to inputs of 3.3V maximum. 

Consequently, switching from the UNO to the DUE 

was not feasible do to the electrical circuit, as it would 

entail having to redesign the electrical circuit, 

recalibrate the PID controller, potentiometer and 

temperature sensors. It is recommended to use the 

Arduino DUE in future Therminus projects, Appendix 
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9 Thermal conductivity measurement uncertainty 

contains the justification for the recommendation. 

 

Another issue that occurred was heating of the cables. 

The resistance of the arduino cables combined with the 

current passing through the cables, caused the cables to 

heat up over time. To avoid melting cables, the 

prototype was not used at maximum power. This 

meant both an increase in the time until achieving 

steady state and that the device could not measure the 

full range of textile samples. The problem can be 

solved by using cables with a larger cross section to 

reduce their resistance. 

 

A number of recommendations can be given for the 

mechanical improvement of this prototype. The linear 

potentiometer should be attached closer to the upper 

box to improve accuracy due to the reduced bending 

moment. The linear rail should be of the ball bearing 

variety instead of the plastic bearing since the earlier has 

higher stiffness.  

A potential improvement for a second version 

of the prototype is a more simple transmission system 

with the use of a spindle attached to the moving box, 

powered by the upper handle. Such a spindle would 

reduce the amount of moving parts necessary in the 

device. Additionally, a containment box should be 

implemented in the second version. This box 

surrounds the heat-pad and heatsink systems and 

allows for a controlled environment in order to 

minimize external effects on the measuring process, 

like convection and radiation. For the first iteration this 

box was not made, because validation of the design 

occurs indoors in a stable environment. 

 

Another limitation faced in this project is the fact that 

compression of the fabric might affect the readings of 

the thermal conductivity of the fabric. This was thought 

to be the case since air, which has its own thermal 

conductivity, is pressed out of the material. To 

investigate the effect fabric compression has on the 

measurements, an experimental study is required. 

Future research could therefore be aimed at finding the 

extent to which a relationship exists between the level 

of compression of a material and the value of thermal 

conductivity which is found. 

  

VI. Conclusion 

This project was set up to further the progress of the 

Therminus research project which aims to increase the 

accuracy of ToD estimations. One objective of the 

Therminus project was to create a device capable of 

accurately estimating the thermal conductivity of 

clothing of the deceased. In this project such a device 

was designed and a prototype was built. Preliminary 

testing of the prototype did not yield the expected 

results. This was in part due to the lack of a validated 

conductivity measurement device to verify results. 

Nevertheless, promising steps were made towards the 

goal of the Therminus project. Important lessons were 

learnt over the course of the project, resulting in a 

number of recommendations for mechanical and 

electrical improvements in future prototypes. In 

particular, the expected heat loss through the insulation 

should be more accurately calculable. To this end, the 

prototype’s insulation should more closely resemble 

the insulation theorised in the design. Additionally, the 

use of a development board with a 12-bit read 

functionality would help in attaining the desired 

accuracy. By generating these new insights this project 

has furthered the Therminus research project, 

providing a foundation for future prototyping and 

testing. Through further research, design and 

prototyping the target of developing a portable device 

that can estimate the thermal conductivity of a given 

textile with a margin of 8% is achievable. 
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Appendix I: Measuring principles  

Guarded hot plate method  

The guarded hot plate method is a steady-state technique used to determine the thermal conductivity 

of an insulating material and is commonly used in laboratories. The fact that the measurement occurs 

at steady state means that the clothing sample must reach a thermal equilibrium for an accurate 

estimate of the thermal conductivity. The method works as follows: two samples of equal dimensions 

are placed on either side of a heated plate, as can be seen in figure 1. Cold plates are then placed 

against the samples of the insulating material. This entire system is insulated, so as to prevent heat loss 

to the environment. Heat from the hot plate flows through the sample materials and into the cold 

plates. The setup is pictured below. Once equilibrium is reached, the thermal conductivity is calculated 

using the rise in temperature of the cold plates, which represents the heat conduction through the 

insulator. Thermal conductivity can be calculated using the equation given below. Variables included in 

formula (1) are as follows: Q is the total amount of energy supplied through the hot plate, d is the 

distance between the heater and the cold plate, A is the contact area of the samples with the plates and 

(𝑇ℎ𝑜𝑡-𝑇𝑐𝑜𝑙𝑑) represents the difference in temperature between the heat plate and the cold plates. 

 

(1)    𝑘 =
𝑄∗𝑑

𝐴∗(𝑇ℎ𝑜𝑡−𝑇𝑐𝑜𝑙𝑑)
 [7] 

 

 
Figure 1: Schematic illustration of the guarded hot plate method. The arrows indicate thermocouples used to 

measure the temperature of the sample. 

Hot wire method 

The hot wire method is a transient technique for measuring conductivity of materials, which means 

that no thermal equilibrium is required for an accurate conductivity measurement. The technique 

consists of a wire that is heated, a sample of material with known conductivity and a sample of the 

textile, see figure 2. The value for the conductivity of the textile is unknown but desired. When the 

wire is heated, the electrical resistance of the wire changes over a specified time interval. By measuring 

the change of resistance the temperature change can be determined. The rate in change of 

temperature of the wire is dependent of the conductivity of the sample.  

Two assumptions are made in the hot wire method. Firstly, the heat flow along the wire is assumed 

continuous and uniform along the wire. Secondly, both the sample with known and unknown 

conductivity are assumed to be isotropic.  

  



 

 

2 

 

 
Figure 2: Setup of the hot wire method [4] 

 

In the case that the top and bottom sample have the same unknown conductivity, the thermal 

conductivity of the sample can be calculated with the following formula (2): 

 

(2)    𝑘 =
𝑞∗(ln(𝑡2)−ln(𝑡1))

4𝜋∗(𝑇2−𝑇1)
  [4] 

 

In this formula, q is the heat input per unit length of wire. T1 is the temperature of the wire after time 

t1 and T2:temperature of the wire after time t2  

 

It is undesirable in the Therminus project to use two samples of unknown material, because this would 

require cutting larger samples off the victim’s clothing. Also the design of the device could be difficult 

for a two sided measurement device. To this end, the formula could be altered to a form where a 

sample with known thermal properties is placed on one side of the hot wire. 

Modified Transient Plane Source method (MTPS) 

Another method is the modified transient plane source method, otherwise known as MTPS. This 

method uses a spiral shaped thermal resistor, which acts as both a sensor and a heating element, see 

figure 3. The resistor is placed between a sample of the material of which the conductivity is to be 

determined, and another material of which the thermal properties are known. When heat is generated 

by the sensor, the temperature increases, changing the resistance of the thermal resistor. The 

magnitude of the temperature increase depends on the amount of heat that is lost by conduction to the 

surrounding material. 

 
Figure 3: Schematic representation of the MTPS method 

After analysing the three methods, it was determined that a variation of the guarded hot plate method 

is most suitable for this project. The main reason is the relative simplicity of a steady state 

measurement. A difference between the guarded hot plate method and the method used in this project 

is that the chosen working principle has only 1 cold plate and 1 material sample, with 1 directional 

heat-flow. 
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Appendix 2: Phoebe experiment 

The measurement device must have a certain precision in order to be useful for forensic investigation. 

As stated by Olaf Dessing [1] the ToD error must be smaller than 3 percent. For determining the 

influence of the errors in the values for conductivity and thickness of the textile on the ToD 

estimation, the AMC Phoebe model is needed. The experiment done by Olaf Dessing for errors in 

surface thermal properties is redone for the conductivity and thickness of clothes: All values are kept 

constant except for the conductivity or thickness value. The difference in ToD estimation in 

combination with the difference in input can be translated to the maximum difference in input for a 3 

percent precision. A conclusion of Olaf Dessing after his experiment was that a small conductivity 

value needs a higher precision than a higher value. Therefore the smallest possible conductivity, the 

conductivity of air, is chosen for the experiment. Experimenting with Phoebe showed that clothes with 

a large thickness need a higher absolute precision for the conductivity value. Therefore a thickness of 

35.4mm is used in Phoebe, the thickest clothing from Appendix 14: ’Clothing thickness dataset’. The 

experiment also showed that the highest absolute precision for thickness is needed at a small thickness 

and a low conductivity value. Therefore the conductivity of air is used and the smallest thickness from 

the clothing database is picked, which is 0.2mm. Table 1 below shows the results of the experiment for 

precision determination. 

 

*Note that table 1 is displayed on the next page in its entirety. 
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Table 1: Values for the accuracy value needed of conductivity and thickness for a 3% ToD estimation 

  Thermal conductivity (k) of clothes, 

at k=0.027W/mK, t=35.4mm 

Thickness (t) of clothes, at 

k=0.027W/mK, t=0.2mm 

Absolute accuracy required 

for ToD within 3% margin 

0.0021W/mK 0.2mm 

Relative accuracy required 

for ToD within 3% margin 

8% 100% 

 

As shown in the table, the maximum error for the thermal conductivity in order to have a ToD 

estimation with an error smaller than 3 percent is 0.0021W/mK. The largest acceptable measurement 

error for the thickness is 0.2mm. Note that the relative accuracy is determined for the critical required 

absolute accuracy, and is not necessarily the lowest percentage. For instance the relative accuracy for a 

textile thickness of 35.4mm at a conductivity of 0.027 is 8 percent, but the required absolute accuracy 

is 0.3mm. Therefore this thickness is not critical for the absolute required accuracy, but the relative 

accuracy has a smaller percentage. 
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Appendix 3: Morphological chart 

In table 1 below, the morphologic chart for the design of the measurement device is shown. The chart 

displays various partial solutions, which are elaborated under the table. 

Table 1: Morphologic chart for the design of the measurement device, in bolt the solutions chosen   

 

 

Parallel 

measurement 

surfaces 

Rotating 

surfaces 

 

Linear mechanical 

guide 

 

Linear electrical 

guide 

 

 

 

 

Clamping  

Pneumatic 

 

Magnetic 

 

Mechanic spring 

 
 

Mechanical drive 

 
 

 

Thickness 

measurement 

Angle 

measurement 

(potentiometer) 

 

Caliper 

 

Linear 

potentiometer 

 

Known angle 

motor 

 

 
 

Parallel measurement surfaces 

- Rotating surfaces 

o Advantages 

▪ Simple concept 

▪ Robust 

▪ Distance measurable by angle 

o Disadvantages 

▪ The surfaces are held parallel by forces on the textile 

▪ Precisely outlining the heat-body and cold-body can be difficult  

▪ Most probably needs to be combined with an electric or mechanical drive 

- Linear mechanical guide 

o Advantages 

▪ Robust 

▪ Precise outlining 

▪ Many distance measurement possibility’s applicable 

▪ Modular, various drive principles applicable 

o Disadvantages 

▪ The guide could jam 

▪ Most probably needs to be combined with an electric or mechanical drive 
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- Linear electrical guide  

o Advantages 

▪ Precise outlining 

▪ Many distance measurement possibility’s applicable, or implemented in the 

electrical guide 

▪ Does not need to be combined with an electric or mechanical drive 

o Disadvantages 

▪ Higher costs 

▪ Less robust 

Clamping 

- Pneumatic 

o Advantages 

▪ None 

o Disadvantages 

▪ Too complex to implement 

▪ Compressed air needed at crime scene 

- (Electro)magnetic 

o Advantages 

▪ Magnetic materials do not need external power 

o Disadvantages 

▪ Scales bad over distance 

▪ Electromagnetism needs too much electrical power 

▪ The force of magnetic materials cannot regulated 

- Mechanic spring 

o Advantages 

▪ No need for electrical power or compressed air 

o Disadvantages 

▪ Too complex to balance for various distances 

- Mechanical drive 

o Advantages 

▪ No need for electrical power or compressed air 

▪ Various amounts of force can be applied to measurement specimen A self-

locking drive can be used  

o Disadvantages 

▪ The applied force cannot directly be read out 

Thickness measurement 

- Angle measurement 

o Advantages 

▪ Simple principle 

o Disadvantages 

▪ Small error in angle results in a large error in thickness measurement 

- Caliper 

o Advantages 

▪ Easily applicable on mechanic systems 

▪ No need for electrical power 

o Disadvantages 

▪ Reading out of the distance is somewhat complex for the user (not just an 

output value on a screen) 
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- Linear potentiometer 

o Advantages 

▪ Easy reading out for the user by showing the distance on a screen 

▪ High precision 

o Disadvantages 

▪ More complex to implement in the device, Arduino coding needed 

- Known angle motor 

o Advantages 

▪ High precision 

▪ Combination with the clamping principle 

o Disadvantages 

▪ More complex to implement in the device, Arduino coding needed 

▪ Not applicable in combination with other clamping principles 

 

  



 

 

8 

Appendix 4: Solidworks assembly drawing 
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Appendix 5: Insulation 

Insulation 

The warm body will be insulated from the surrounding environment. An important reason is the 

reduction of heat transfer to the surrounding environment which has the potential to distort the 

measurements. Another reason that insulation is important, to reduce the total power requirement 

imposed on the power supply. The total power consumption is lowered because the efficiency of the 

device will increase upon reducing the heat transfer to the environment. This appendix will aim to 

justify the chosen insulation thickness. 

Shielding 

The assumption that the environment merely contains surfaces that exactly match the temperature of 

the environment, cannot be made. The environment may also suffer from forced convection which 

will negatively affect the measurement accuracy by affecting the measured power consumption. Thus 

the device is shielded from the environment to prevent said distortions. The shield is assumed to 

indeed remain at the environmental temperature.  

Assumptions 

In an effort to estimate said energy loss, a few formulae have to be combined. A total number of five 

assumptions are made. 

 1. The total heat flow consists of radiative heat transfer from the insulation surface.  Free 

convection from the insulation surface. And lastly, conduction from the heated  element to the 

insulation.  

 2.The energy balance is valid for steady state conduction, formula (1):  

                 (1)  𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 

 3. Material properties are homogeneous  

 4. All thermal conductivity constants are considered as constant over the expected 

 temperature range (263.15 < T < 303.15). 

 5. Due to the high thermal conductivity of aluminum (147 W/mK), the temperature  can 

be  assumed as being uniformly distributed across all dimensions. 

Formulae 

Heat transfer due to radiation is described by Stefan-Boltzmann law: formula (2). 

 

(2)    𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜀𝜎𝐴(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
4 − 𝑇∞

4) 

Heat transfer due to convection as proposed by Stuart W. Churchill and Humbert H.S. Chu [10] is 

described by (3). The Nusselt number is calculated from (4) as by J. R. Lloyd and W. R. Moran [11]. 

 

(3)    𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑁𝑢∗𝑘∗𝐴

𝐿𝑐
(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 −  𝑇∞) 

 

(4)    𝑁𝑢 =  (0.65 +  0.36( 
𝑃𝑟∗𝑔∗𝐿𝑐3

𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒∗𝜈2 )1/6 )2 

 

Qinsulation is calculated using formula (5) as described by Basic Heat and Mass Transfer by A.F. Mills 

found on page 153. When constructing the aforementioned formula, one finds that S is equal to 

formula (6). Table 1 will be linking abbreviations used in formula (4) to their real life interpretation 

and designated value. Appendix 6: ’Heat pad’ also articulated the reasoning behind the necessity for 

more in depth analysis of the problem. 
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(5)    𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑘𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝑆 × 𝛥𝑇 

 

(6)    𝑆 = 4 (
𝑏∗𝑑ℎ

𝑑𝑖
+  0.54(𝑑ℎ + 𝑏) + 0.15𝑑𝑖) +

𝑏2

𝑑𝑖
 

 

Table 1: linking abbreviations used in formula (4) to their real life interpretation and designated value. 

Abreviation di dh b 

Variable Insulation Thickness Element Thickness Element Width 

[Value] = 

[dimension] 

[30] = [mm] [10] = [mm] [60] = [mm] 

 

*Important note for formfactor equation (6): The form factor formula requires that: 𝑏 >  
𝑑𝑖

5
 , which 

remains valid for 𝑏 =  0.06 and 𝑑𝑖 =  0.03 . 

Note that formula (2) through (6) can be equated using the relationship proposed by assumption (3). 

The MATLAB script, which will be discussed shortly, is tasked with numerically solving equation (7) 

since it cannot be analytically evaluated, in a reasonably straightforward way. 

 

(7)   𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛(𝑇𝑠)  + 𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑠)  − 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑇𝑠)  =  0 
 

Also note that the MATLAB script utilizes the built in numerical solver "vpasolve(equation, variable)" 

to solve equation (7) for the surface temperature (𝑇𝑠). The built in vpasolve function is likely to make 

an undefined error in estimating the value of (𝑇𝑠) for which equation (7) holds true. The error 

introduced by the aforementioned function has not been evaluated nor has it been subject to further 

investigation. 

Values 

A MATLAB file has been written in order to attain the surface temperature over the expected 

spectrum of environmental temperatures (T∞). For the specific geographic location of the Netherlands, 

T∞ is assumed to range between -10 C° < T∞ < 30 C°. The MATLAB script, by default, will use the 

aforementioned range of  𝑇∞ to evaluate the expected surface temperatures. 

Most Critical Case 

In the most crucial case, a thick coat needs to be measured. As previously stated, the measurement 

aspect of the Therminus device will be insulated. Insulation materials which are commonly available 

do not differ orders of magnitude from the lowest expected thermal conductivity, 0.022 and 0.057 

respectively. Thus, heat flow, through the insulation, to the environment will become more significant 

(more than 300 times) as the thermal conductivity of clothing becomes lower. Significant is quantified 

by comparing the expected relative heat loss at highest thermal conductivity (𝑘 = 0.52) to the expected 

relative heat loss at the lowest thermal conductivity (𝑘 = 0.057). Using the MATLAB script grants an 

expected relative heat loss of 0.2133% for 𝑘 = 0.52 and 51.68% for 𝑘 = 0.057 respectively (at T∞ = 

303.15 K°). This ascertains the suspicion that the most critical case is for low thermal conductivity.  

The heat flow used in the measurement will evidently equal the amount of energy supplied minus the 

energy lost (8).  

 

(8)     𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 =  𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛  
 

Whilst the statement of equation (8) seems unnecessary to the inattentive, the most critical case justifies 

its importance. Namely, to meet the accuracy criterion (accuracy to which the thermal conductivity is 
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measured) the 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 term cannot justifiably be omitted. The Arduino evaluation will therefore be 

required to efficaciously estimate 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 

The MATLAB script provides the expected energy loss as function of environment temperature. The 

Therminus device has been equipped with a calibrated environment temperature sensor. The 

environment temperature consequently enables an attempt at determining the value of 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛. This 

attempt will, and regrettably so, not be flawless and thus contribute in error propagation. Repercussions 

of which are to be discussed in the appendix specifically dealing with error propagation. The 

MATLAB script provides the viewer with a set of important figures. All figures are described briefly, 

note that the figures are created for the most critical case in which k = 0.057 and d = 28 mm. It is 

imperative to note that ΔT is defined by the surface temperature from which the environment 

temperature is subtracted. 

 

  

Figure 1: ΔT as function of T∞ Figure 2: The interpolation used to determine 

what kinematic viscosity of air is applicable 

 

 

Figure 3: The relative error resulting from 

surface temperature estimation 

Figure 4: Fractional power loss for range of 

expected T∞ values 
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Figure 5: Fraction of total heat flow in system 

lost through radiative heat transfer. 

Figure 6: Total power lost to insulation as 

function of temperature. 

Important remarks 

The error caused by estimating the surface temperature in order to calculate a Nusselt number is 

negligible (maximum 0.0291%) in the grand scheme of things. The importance for the use of a proper 

heat loss model is stressed by figure 4. One can clearly tell that evaluating heat flow using formula (5) 

whilst using a surface temperature equal to the environment, is detrimental to the accuracy of the 

prediction. One must also note that the least favorable case (in which a thick coat is measured), with an 

environment temperature higher than 8C° is unlikely to be worn. Whilst the mentioned scenario is 

unlikely, the device still is required to perform sufficiently at environment temperatures up to the 

maximum expected environment temperature (T∞) of 30 C°.  Figure 5, in conjunction with figure 6, 

show the importance of modeling radiative heat transfer. The fact that total heat flow comprises for 

42.41% out of radiative heat transfer, and dwarfs convective heat transfer by a factor of approximately 

4.5, is rather high. Thus substantiating the statement that shielding is necessary.  
Outputs from MATLAB script 

Case 1 (unfavorable case): [k = 0.057 W/mK, d = 28.0*10
-3

] 

Surface Temperature delta max: 0.45984 C°. min: 0.35155 C° 

Maximum Fractional Powerloss Conductivity Measurement: 51.6827% @303.15 K° 

Max Heatpad Power Requirement: 0.15163 W 

Fraction Heatflow Total Heatloss max: 51.6827%. min: 51.4008% 

Fraction Heatflow Radiative Heatloss max: 42.4058%. min: 36.5252% 

Maximum Error Qinsulation [Error, @T]: [2.8554e-03 W, @-10 C°] 

For all Tinf = [Qisolation, Qmeasurement, @T]: [0.0783686    0.0732654           30] 

 

Case 2 (optimal case): [k = 0.057 W/mK, d = 28.0*10
-3

] 

Surface Temperature delta max: 0.45984 C°. min: 0.35155 C° 

Maximum Fractional Powerloss Conductivity Measurement: 0.21336% @303.15 K° 

Max Heatpad Power Requirement: 36.7305 W 

Fraction Heatflow Total Heatloss max: 0.21336%. min: 0.21097% 

Fraction Heatflow Radiative Heatloss max: 0.17506%. min: 0.14992% 

Maximum Error Qinsulation [Error, @T]: [2.8554e-03 W, @-10 C°] 

For all Tinf = [Qisolation, Qmeasurement, @T]: [0.0783686      36.6521           30] 

Time to Steady State 

The machine needs to run for a certain amount of time before steady state is reached and the actual 

measurements can begin. To calculate an order of magnitude of time in which steady state is reached a 
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MATLAB script was written using equation 3.58 from page 169 of Mills [7] and seeing when the power loss 

through the insulation is the same as the heat transfer through radiation and convection on the outside of the 

insulation box. This formula is for an infinite body where the temperature at depth h[m] can be calculated after 

time t[s] when a constant temperature at the surface of the body is applied. This formula was used because only 

an order of magnitude of the time was needed to check if it falls between the requirements of the device. The 

formula used is equation (9) 

 

(9)     
(𝑇 – 𝑇0)

(𝑇𝑠−𝑇0)
 =  𝑒𝑟𝑓𝑐 (

ℎ

√4∗𝑎𝑙𝑝ℎ𝑎∗𝑡
) 

 
where T is the temperature of the outer surface of the insulation. T0 is the environment temperature and Ts is 

the temperature of the warm body, h is the thickness of the insulation in meters, alpha is the thermal diffusivity 

in m^2/s and t is time in seconds. Erfc is the complimentary function of the erf function which is 

(10)    
2 

𝑝𝑖1.2 ∫ 𝑒−𝑢2

 

𝑒𝑡𝑎

0
 𝑑𝑢 

 

For MATLAB the equivalent formula on page 968 of Table B.4 from Mills is used. This is the erfc formula but 

rewritten for computer use. 

 

(11)  𝐸𝑟𝑓𝑐 𝑒𝑡𝑎 =  (𝑎1 ∗ 𝑥 +  𝑎2 ∗ 𝑥2  +  𝑎3 ∗ 𝑥3) ∗  𝑒−𝑒𝑡𝑎2
  

 

where a1 = 0.3480242, a2 = -0.0958798 and a3 = 0.7478556 as is found in Mills [7].  And  𝑥 =  (1 + 𝑝 ∗ 𝜂)−1 . 

Where 𝑝 =  0.47047 a found in Mills [7] and 𝜂 =
 ℎ

√4∗𝛼∗𝑡
 

 

According to the second MATLAB script below, using these formulas at 30mm of insulation with a thermal 

conductivity of 0.022 W/mK, steady state is reached after 435 seconds which is more than 7 minutes. This falls 

well in the production requirements where a measurement needs to be done in 30 minutes as this leaves 23 

minutes to measure k. 

 To be on the safe side and because the calculations used in the MATLAB script are not exact formulas 

for this use case and only used to give an order of magnitude, would it take hours minutes or seconds, the actual 

measurements will be done 10 minutes after the device is turned on. Leaving 20 minutes to calculate a value for 

the thermal conductivity of the sample. 

 A second script was written to check if there is an optimum insulation thickness and the time it takes to 

reach steady state. With and insulation thickness of 7 mm the time to reach steady state is the shortest with 217s, 

figure(10). However this was not a good option for insulation thickness because the power losses through the 

insulation would be higher than the desired power loss through the insulation for the experiments.   

 

Recommendations: To calculate a more precise time after which steady state is reached a different formula 

should be used. This formula is made for an infinite body with a constant surface temperature. While the 

surface temperature the insulation is not an infinite body. To calculate a more precise time after which steady 

state is reached a formula should be derived where the body is not infinite and the temperature at depth h 

should be the temperature at the outside surface of the insulation.   

 
The MATLAB script Steady state time estimate at fixed thickness produces 3 figures, figure(7) figure(8) and 

figure(9). Figure(7) gives the difference in heat flow, Qdelta (W), between Qinsulation (W) and Qradiation (W) 

and Qconvection (W). In this graph also the time points are marked when the insulation surface first has a rise 

in temperature and when steady state is reached. Figure(8) shows the temperatures of the hot body, the 

environment and the insulation surface temperature. In the graph again the time points are marked when for the 

first time there is a rise in insulation surface temperature and when steady state is reached. Figure(9) is an 

extension on figure (7) where not only is difference in heat flow, Qdelta, plotted but also the Qinsulation, 

Qradiation and Qconvection. These graphs are made with a thickness of 30mm. 
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Figure 7: Qdelta vs Time, where the timepoint steady  Figure 8: Time vs Temperarure, where temperatures  
State and surface area temperature rise are marked environment, warm body and insulation surface are 

given, and the time points of surface temp rise and 
steady state are marked 

 
Figure 9: Time vs Heat flow, in this graph Qdelta,  
Qinsulation, Qconvection and Qradiation are plotted 
 
The MATLAB script Steady state time estimate at varying thickness produces figure(10), figure(11) and 

figure(12). In figure(10) a line is plotted which gives the relation between how long it takes for steady state is 

reached and what the insulation thickness is. Here a shortest time to reach steady state can be found at 7mm 

insulation thickness, but looking at figure(11) is becomes clear that 7mm might not be the best choice for 

insulation thickness. In figure(11) a relation can be seen between thickness of insulation and the heat loss 

through the insulation, here is becomes clear that at 7mm there is still a too high heat loss according to the 

previous mentioned heat loss requirement. It is also visible that the lines flattens in the end meaning a thicker 

insulation does not provide an equal large reduction in heat loss. Figure(12) provides information on what the 

insulation surface temperature will be at different insulation thicknesses.  
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Figure 10: Insulation thickness vs time it takes  Figure 11: Insulation thickness vs heat loss through  
for steady state is reached.    insulation.  

 

 
Figure 12: Insulation thickness vs surface temperature of  
the insulation 
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% Insulation Expected Heat Loss 
% TU Delft, 05/31/2019 
% Author: Sebastiaan Thomas Njio 
clc 
clear all 
close all 

  
%Authors remark: Note that a lot of the remarks and variables  

%throughout the script are in Dutch, I would therefore recommend a Dutch 
%speaking individual to evaluate the script if nescessary. 
 

%Simulatie Specific 
k_textiel = 0.057;  % Thermische geleidbaarheid textiel 
d_textiel = 28.00*10^(-3);     % Dikte van het te meten textiel 
di = 30*10^(-3);            % Isolatie dikte 

  
%Variables 
resolutie = 1.0* 10^(-2); 
dT_meeting = 10; 
Tinf_vec = 263.15:resolutie:303.15; 
Telement_vec = Tinf_vec + dT_meeting; 
T_estimate_vec = Tinf_vec + 0.14; %Estimate 
emisivity = 0.86;   %emesivity of styrofoam 

  
%Constants 
g = 9.81;           % Valversnelling 
ki = 0.022;         % Isolatie (piepschuim) 
k_element = 147;    % Verwarmde en gekoelde element (5754 AlMg3) 

  

  
    %Geometry 
b = 60*10^(-3);    % De breedte van het verwarmde element 
W = b+2*di; %Breedte oppervlak convectie 
d_element = 10*10^(-3);     % Verwarmde element|  
d_koud = 10*10^(-3);        % De afstand van de interface tussen textiel en 
Lc = W/4; % Characteristic Length 

  
    %Important or much occuring constants. 
A = W^2;            % Surface Area on which conduction takes place 
ASigma = emisivity*(W^2 + 4*(di+d_element)*W)*5.67036713*10^(-8); 

%Stefanboltzmann * Area for Radiative heattransfer 
S = 4*b*d_element/di + (b^2)/di + 4*0.54*d_element + 4*0.54*b + 4*0.15*di; 

%Formfactor 
Qmeeting = (dT_meeting) * 1/(d_element/(b*b*k_element)+d_textiel/(b*b*k_textiel) 

+ d_koud/(b*b*k_element)); 

  
%Air Properties 
Pr = 0.71; % Prandtl Number, considered as constant 
k_air = 0.027;  

  
%Kinematic viscosity Source: https://www.engineeringtoolbox.com/air-absolute-

kinematic-viscosity-d_601.html 
vtable = [-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40; 
          12.43, 12.85, 13.28, 13.72, 14.16, 14.61, 15.06, 15.52, 15.98, 16.92, 

17.88]; 
vtable(1,:) = vtable(1,:)+273.15; 
vtable(2,:) = vtable(2,:)*10^(-6); 
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% Creating vectors 
hc = zeros(1,length(Tinf_vec)); 
Ts = zeros(1,length(Tinf_vec)); 
Nu_error = zeros(1,length(Tinf_vec)); 
Ts_error = zeros(1,length(Tinf_vec)); 
r = zeros(1,length(vtable)); 
c = zeros(1,length(vtable)); 
dT = Ts; 
counter = 1; 

  
reg = zeros(8,length(Tinf_vec)); 

  
%Much occuring constants 
C1 = (0.36^6)*Pr*g*Lc^3; C2 = k_air*A/Lc; 
C3 = ki*S; 

  
syms x 

  
for i = 1:length(Tinf_vec) 
%Read in Temperature values 
Tinf = Tinf_vec(i); 
Telement = Telement_vec(i); 
T_estimate = T_estimate_vec(i); 

     
beta = 1/(Tinf); %Note that this is not the real value of beta so an error is 

introduced. 

  
%Find appropriate kinematic viscosity 
[r,c]=find(T_estimate> vtable(1,:)); 
v = vtable(2,c(end)) + (vtable(2,c(end)+1) - vtable(2,c(end)))*(T_estimate - 

vtable(1,c(end)))/(vtable(1,c(end)+1)-vtable(1,c(end))); % Kinematic viscosity of 

air @ 273.15K; 12.45< v <16.92 

  
%CQhc = C2*(beta/(v^2))^(1/4); 
CQhc = C1*beta/(v)^2; 

  
%Temperature Calculation 
Equation = C2*(x-Tinf)*(0.65+CQhc*(x-Tinf)^(1/6))^2 + ASigma*(x^4 - Tinf^4) + 

C3*(x - Telement)==0; 
Ts(1,i) = vpasolve(Equation, x); 

  
%Error estimation 
Nu_error(1,i) = 100*(((Ts(1,i)+Tinf)/(2*Tinf))^(1/3) - 1); 

  
%Save important information 
dT(1,i) = Ts(1,i) - Tinf; 
Qrad = ASigma*(Ts(1,i)^4 - Tinf^4); %Radiative heattransfer Qrad = A*sigma*(T1^4-

T2^4) * Asumption: black surfaces 
Qhc = C2*(Ts(1,i)-Tinf)*(0.65+(CQhc*(Ts(1,i)-Tinf))^(1/6))^2;  
Qis = ki*S*(Telement-Ts(1,i)); 

  
% Registry 
reg(1,i) = Tinf; 
reg(2,i) = Qhc; 
reg(3,i) = Qrad; 
reg(4,i) = Qis; 
reg(5,i) = v;   % Display interpolation kinematic viscosity of air 
reg(6,i) = (Qhc+Qrad)/(Qmeeting + Qhc + Qrad)*100; %Fractional Powerloss 
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reg(7,i) = (Qrad/(Qmeeting + Qhc + Qrad))*100; 
reg(8,i) = CQhc/(0.36^6)*1/beta*1/(Ts(1,i)); 

  
if i/length(Tinf_vec)>counter/100 
    counter = counter + 1; 
    disp(['Progression: ',num2str(counter),'%']) 
end 
end 

  

   
%Data manipulation 
Qlossfr = reg(6,:); %Combined fractional heatloss to environment 
Qlossradfr = reg(7,:); %Fractional Heatloss due to radiation 
% Alternative heatloss 
Qdotloss_sfr = ki*S*dT_meeting/(Qmeeting + ki*S*10)*ones(1,length(reg(5,:)))*100; 

%Gesimplificeerd model fractional Heatloss 
%% Figures and Display outputs 

  

  
%%Figures 
figure() 
grid on; hold on 
x0 = 100; y0 = 600; height = 300; width = 400; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('\DeltaT vs Environmental Temperature');xlabel(['Tenvironment [T] = 

[K',char(176),']']); ylabel('\DeltaT [K]'); 
plot(Tinf_vec, dT,'-b') 

  
figure()                    %Interpolation kinematic viscosity 
grid on; hold on 
x0 = 120+width; y0 = 600; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('\nu Air vs Temperature (Lineair Interpolation)');xlabel(['Tenvironment [T] 

= [K',char(176),']']); ylabel('\nu [m^2/s]'); 
plot(Tinf_vec, reg(5,:),'-b') 

  
figure()                    %Nusselt number error 
grid on; hold on 
x0 = 140+2*width; y0 = 600; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Relative Error Nusselt Number Estimate');xlabel(['Tenvironment [T] = 

[K',char(176),']']); ylabel('Error [%]'); 
plot(Tinf_vec, Nu_error,'-b') 

  

figure()                    %Fraction Powerloss 
grid on; hold on 
x0 = 100; y0 = 520-height; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Fractional Powerloss');xlabel(['Tenvironment [T] = [C',char(176),']']); 

ylabel('Fractional Powerloss [%]'); 
plot(Tinf_vec-273.15, Qlossfr,'-b', Tinf_vec-273.15, Qdotloss_sfr,'-r') 
legend('Convection + Radiation','Imposed Ts = Tinfinite','Location','southeast') 

  
figure()                    %Radiation Fraction Powerloss 
grid on; hold on 
x0 = 120+1*width; y0 = 520-height; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Fraction Radiative Heattransfer vs Temperature');xlabel(['Tenvironment [T] 

= [K',char(176),']']); ylabel('Fraction Radiative Heattransfer [%]'); 
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plot(Tinf_vec, Qlossradfr,'-b') 

  
figure()                    %Heat Transfer Plot 
grid on; hold on 
x0 = 140+2*width; y0 = 520-height; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Heat Transfer vs Temperature');xlabel(['Tenvironment [T] = 

[K',char(176),']']); ylabel('Heat Transfer [W]'); 
plot(Tinf_vec, reg(2,:),'-b', Tinf_vec, reg(3,:),'-r',Tinf_vec,reg(2,:) + 

reg(3,:),'-m') 
legend('Qhc','Qrad','Qrad + Qhc','Location','northwest') 

  
%Display values 
disp(['Surface Temperature delta max: ', num2str(max(dT)),' C',char(176),'. min: 

', num2str(min(dT)),' C',char(176)])  
[M,I] = max(reg(6,:)); % Finding max fractional powerloss @ Temperature I 
disp(['Maximum Fractional Powerloss Conductivity Measurement: ',num2str(M),'%', ' 

@',num2str(Tinf_vec(1,I)),' K',char(176)]) 
disp(['Heatpad Power Requirement: ',num2str(Qmeeting+max(reg(4,:))),' W']) 
disp(['Fraction Heatflow Total Heatloss max: ', num2str(max(reg(6,:))), '%','. 

min: ', num2str(min(reg(6,:))), '%'])  
disp(['Fraction Heatflow Radiative Heatloss max: ', num2str(max(reg(7,:))), 

'%','. min: ', num2str(min(reg(7,:))), '%'])  
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%% Finding Steady state conduction through insulation %% 

close all 

clear all 

clear 

clc 

  

%% Variables 

Sa = 60;            % mm, Length and Width Aluminium 

Ha = 10;            % mm, height aluminium 

Thi = 30;           % mm, thickness insulation 

Te = 303.15;        % K, environment temperature 

Td = 10;            % K, Delta T between warm body and environment 

time = 900;         % s, time 

timestep = 0.01;    % s, timesteps 

  

%% Constants 

  

kp = 0.022;         % W/mK of polystyrene 

ka = 0.0252;        % W/mK of air at 275K 

cpp = 1210;         % J/kgK of polystyrene 

cpa = 1008.5;       % K/kgK of Air at 275K 

rhop = 45;          % kg/m3 of polystyrene 

rhoa = 1.288;       % kg/m3 or Air at 275K 

epla = 0.84;        % emmitance white plastic 

sigma = 5.67*10^-8; % W/m2K4, Stefan-Boltzmann constant 

Beta = 1/Te;        % 1/K 

va = 15.98*10^-6;   % m2/s of Air at 275K 

Pr = 0.71;          % - of Air at 275K 

g = 9.81;           % m/s2 gravity 

  

% erfc constants (Mills page 968 table B.4) 

a1 = 0.3480242; 

a2 = -0.0958798; 

a3 = 0.7478556; 

p = 0.47047; 

  

%% Parameters 

% Dimensions 

la = Sa/1000;                   % m, length and width of aluminium 

ha = Ha/1000;                   % m, height aluminium 

tin = Thi/1000;                 % m, thickness insulation 

l = (Sa+2*Thi)/1000;            % m, length and width insulation 

h = (Ha+Thi)/1000;              % m, height insulation 

A1 = l*l;                       % m2, top area insulation 

A2 = h*l;                       % m2, side area insulation 

  

%Time 

t = [0.01: timestep: time]';    % s, time 

  

% Thermal diffusivity 

alphap = kp/(rhop*cpp);         % m2/s of polystyrene 

alphaa = ka/(rhoa*cpa);         % m2/s of Air at 275 

  

%Heat transfer 

S = (la*la)/tin + 4* ((la*ha)/tin) + 4*0.54*ha + 4*0.54*la + 4*0.15*tin; %Shape 

factor 

  

%Temperature 

Tb = Te+Td;                     % K, temperature warm body 
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%% calculations 

%Counter 

j = 1; 

q = 1; 

w = 1; 

z = 0; 

  

% Space allocation 

n = zeros(size(t)); 

x = zeros(size(t)); 

erfc = zeros(size(t)); 

Ts = zeros(size(t)); 

Ra = zeros(size(t)); 

Nu = zeros(size(t)); 

hc = zeros(size(t)); 

Qcon = zeros(size(t)); 

Qrad = zeros(size(t)); 

Qinsul = zeros(size(t)); 

Qdelta = zeros(size(t)); 

  

  

%Loop 

for i=1:length(t) 

    n(j, 1) = h/sqrt((4*alphap*t(j))); 

    x(j, 1) = 1/(1+p*n(j)); 

    erfc(j, 1) = (a1*x(j)+a2*(x(j)^2)+a3*(x(j)^3))*exp(-(n(j)^2)); 

     

    if z == 0 

        Ts(j, 1) = erfc(j)*(Tb-Te)+Te; 

    else 

        Ts(j,1) = Ts(stop); 

    end 

         

    Ra(j, 1) = Beta*(Ts(j)-Te)*g*(l^3)/(va*alphaa); 

    Nu(j, 1) = (0.65+0.36*(Ra(j)^(1/6)))^2; 

    hc(j, 1) = ka*Nu(j)/l; 

    Qcon(j, 1) = (Ts(j)-Te)*A1*hc(j) + (Ts(j)-Te)*A2*hc(j)*4; 

    Qrad(j, 1) = A1*epla*sigma*((Ts(j)^4)-(Te^4))+4*A2*epla*sigma*((Ts(j)^4)-

(Te^4)); 

    Qinsul(j, 1) = kp*S*(Tb-Ts(j)); 

    Qdelta(j, 1) = Qinsul(j) - (Qcon(j)+Qrad(j)); 

    if Qdelta(j, 1) < 0 

        Qdelta(j,1) = 0; 

        stop = find(Qdelta,1,'last'); 

        z = 1; 

        if w == 1 

            tss = j; 

            w = 3; 

        end 

    end 

    if Qdelta(j, 1) < Qinsul(j) 

        if q == 1 

            tpen = j; 

            q = q+2; 

        end 

    end 

     

     

    j = j+1; 

end 
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%% Figures 

graph_mm = 2; 

Te = ones(size(t))*Te; 

Tb = ones(size(t))*Tb; 

% 1 

figure(1) 

plot(t, Qdelta) 

hold on 

plot(t(tpen),Qdelta(tpen),'ob',t(tss),Qdelta(tss),'*r') 

str1 = num2str(t(tpen)); 

str2 = num2str(t(tss)); 

text(t(tpen),Qdelta(tpen),str1) 

text(t(tss),Qdelta(tss),str2) 

xlabel('time s') 

ylabel('Heat flow W') 

legend('Qdelta','Ts Rise','Steady State') 

  

% 2 

figure(2) 

plot(t,Ts,t,Te,t,Tb) 

xlim([0 time]) 

ymin = Te(1) - graph_mm; 

ymax = Tb(1) + graph_mm; 

ylim([ymin ymax]) 

xlabel('Time s') 

ylabel('Temperature K') 

hold on 

plot(t(tpen),Ts(tpen),'ob',t(tss),Ts(tss),'*r') 

legend('Ts','Te','Tb','Ts Rise','Steady State') 

text(t(tpen),Ts(tpen),str1) 

text(t(tss),Ts(tss),str2) 

  

% 3 

figure(3) 

plot(t, Qdelta, t, Qinsul, t, Qcon, t, Qrad) 

legend('Qdelta','Qinsul','Qcon','Qrad') 

xlabel('time s') 

ylabel('Heat flow W') 
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%% Comparing the time to reach steady state with different insulation 

thicknesses %% 

close all 

clear all 

clear 

clc 

  

%% Variables 

Sa = 60;            % mm, Length and Width Aluminium 

Ha = 10;            % mm, height aluminium 

Te = 303.15;        % K, environment temperature 

Td = 10;            % K, Delta T between warm body and environment 

time = 900;         % s, time 

timestep = 0.01;    % s, timesteps 

  

%% Constants 

  

kp = 0.022;         % W/mK of insulation 

ka = 0.0252;        % W/mK of air at 275K 

cpp = 1210;         % J/kgK of polystyrene 

cpa = 1008.5;       % K/kgK of Air at 275K 

rhop = 45;          % kg/m3 of polystyrene 

rhoa = 1.288;       % kg/m3 or Air at 275K 

epla = 0.84;        % emmitance white plastic 

sigma = 5.67*10^-8; % W/m2K4, Stefan-Boltzmann constant 

Beta = 1/Te;        % 1/K 

va = 15.98*10^-6;   % m2/s of Air at 275K 

Pr = 0.71;          % - of Air at 275K 

g = 9.81;           % m/s2 gravity 

  

  

% erfc constants (Mills page 968 table B.4) 

a1 = 0.3480242; 

a2 = -0.0958798; 

a3 = 0.7478556; 

p = 0.47047; 

  

%% Parameters 

% Dimensions 

Thi = [2:1:50]';                % mm, thickness insulation 

la = Sa/1000;                   % m, length and width of aluminium 

ha = Ha/1000;                   % m, height aluminium 

  

  

%Time 

t = [0.01: timestep: time]';    % s, time 

  

% Thermal diffusivity 

alphap = kp/(rhop*cpp);         % m2/s of polystyrene 

alphaa = ka/(rhoa*cpa);         % m2/s of Air at 275 

  

%Temperature 

Tb = Te+Td;                     % K, temperature warm body 

  

  

  

%% calculations 

% counters 

j = 1; 

q = 1; 
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w = 1; 

u = 1; 

z = 0; 

  

% Space allocation 

% Thickness 

tin = zeros(size(Thi)); 

l = zeros(size(Thi)); 

h = zeros(size(Thi)); 

S = zeros(size(Thi)); 

A1 = zeros(size(Thi)); 

A2 = zeros(size(Thi)); 

stop = zeros(size(Thi)); 

Tscheck = zeros(size(Thi)); 

Qdeltmm = zeros(size(Thi)); 

  

%Time 

n = zeros(size(t)); 

x = zeros(size(t)); 

erfc = zeros(size(t)); 

Ts = zeros(size(t)); 

Ra = zeros(size(t)); 

Nu = zeros(size(t)); 

hc = zeros(size(t)); 

Qcon = zeros(size(t)); 

Qrad = zeros(size(t)); 

Qinsul = zeros(size(t)); 

Qdelta = zeros(size(t)); 

  

%The Loop 

for counter = 1:length(Thi) 

    tin(u, 1) = Thi(u)/1000;                 % m, thickness insulation 

    l(u, 1) = (Sa+2*Thi(u))/1000;            % m, length and width insulation 

    h(u, 1) = (Ha+Thi(u))/1000;              % m, height insulation 

    A1(u, 1) = l(u)*l(u);                    % m2, top area insulation 

    A2(u, 1) = h(u)*l(u);                    % m2, side area insulation 

    S(u, 1) = (la*la)/tin(u) + 4* ((la*ha)/tin(u)) + 4*0.54*ha + 4*0.54*la + 

4*0.15*tin(u); %Shape factor 

    n = zeros(size(t)); 

    x = zeros(size(t)); 

    erfc = zeros(size(t)); 

    Ts = zeros(size(t)); 

    Ra = zeros(size(t)); 

    Nu = zeros(size(t)); 

    hc = zeros(size(t)); 

    Qcon = zeros(size(t)); 

    Qrad = zeros(size(t)); 

    Qinsul = zeros(size(t)); 

    Qdelta = zeros(size(t)); 

    j = 1; 

     

    for i=1:length(t) 

         

        n(j, 1) = h(u)/sqrt((4*alphap*t(j))); 

        x(j, 1) = 1/(1+p*n(j)); 

        erfc(j, 1) = (a1*x(j)+a2*(x(j)^2)+a3*(x(j)^3))*exp(-(n(j)^2)); 

         

        if z == 0 

            Ts(j, 1) = erfc(j)*(Tb-Te)+Te; 

        else 
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            Ts(j,1) = Ts(stop(u)); 

        end 

         

        Ra(j, 1) = Beta*(Ts(j)-Te)*g*(l(u)^3)/(va*alphaa); 

        Nu(j, 1) = (0.65+0.36*(Ra(j)^(1/6)))^2; 

        hc(j, 1) = ka*Nu(j)/l(u); 

        Qcon(j, 1) = (Ts(j)-Te)*A1(u)*hc(j) + (Ts(j)-Te)*A2(u)*hc(j)*4; 

        Qrad(j, 1) = A1(u)*epla*sigma*((Ts(j)^4)-

(Te^4))+4*A2(u)*epla*sigma*((Ts(j)^4)-(Te^4)); 

        Qinsul(j, 1) = kp*S(u)*(Tb-Ts(j)); 

        Qdelta(j, 1) = Qinsul(j) - (Qcon(j)+Qrad(j)); 

        Qdeltmm(u, 1) = Qdelta(1); 

                

        if Qdelta(j, 1) < 0 

            Qdelta(j,1) = 0; 

            stop(u,1) = find(Qdelta,1,'last'); 

            z = 1; 

            Tscheck(u,1) = Ts(stop(u)); 

        end 

         

        j = j+1; 

    end 

     

    z = 0; 

    u = u+1; 

  

end 

  

%% Figures 

figure(1) 

stopt = stop/(1/timestep); 

plot(Thi,stopt) 

xlabel('Insulation thickness mm') 

ylabel('Time to reach steady state s') 

figure(2) 

plot(Thi,Qdeltmm) 

xlabel('Insulation thickness mm') 

ylabel('Heat loss through insulation W') 

figure(3) 

plot(Thi,Tscheck) 

xlabel('Insulation thickness mm') 

ylabel('Suface Temperature at steady state K') 
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Appendix 6: Heat pad 

Heat Pad Requirements 

The Therminus device has to fulfill a few requirements. A key requirement is the capability of 

measuring a range of thermal conductivity values. The thermal aspect from measurement depends on 

a few design parameters, namely: surface area, thickness, thermal conductivity and temperature 

difference. As stated before, the relationship is described by Fourier’s law of thermal conductivity (1).  

 

(1)     
𝜕𝑄

𝜕𝑡
=  −𝑘 ∯ ∇𝑇 𝑑𝑆

 

𝑆
 

 

The values for thermal conductivity that the Therminus device should be able to measure range from 

0.52 on the low end, and 0.057 [14] on the high end of the spectrum. Data based on a sample size of 

25 T-shirts, Appendix 14: ‘Clothing thickness dataset’ suggests that 99.73% of T-shirts is expected to be 

at least 0.44 mm thick. Thus suggesting a minimum thermal insulance of [Rth] =8.46*10
-04

 [m
2

K/W]. 

Again assuming coat thickness is normally distributed, in 95.45% of cases, coats will be thinner than 

27.37 mm. The upper bound for thermal insulance thus becomes [Rth] =4.80*10
-02

 [m
2

K/W].  

From Fourier’s law of thermal conductivity, a design index can be made, equation (2), from which one 

can deduct that the head pad is required to have a minimum  
𝑄

𝐴
  > 11.8*10

3

. The chosen heat pad has 

an index ( 
𝑄

𝐴
 ) of 13*10

3

 and will thus be able to supply sufficient heat. 

 

(2)       
𝑄

𝐴
 =  

ΔT

𝑅𝑡ℎ
  

 

Due to cleanability requirements imposed on the Therminus device, temperature sensors will only be 

placed in places that, during its lifecycle, will be unaffected by muck from the environment. Therefore 

the temperature difference will only be measured on the hot and cold body surface temperatures. The 

monitored cold and hot body surfaces will be the ones opposing the clothing surfaces. When 

considering the complete device in steady state condition, a certain temperature distribution is to be 

expected. Figure 1 shows the worst case expected temperature distribution as function of cross 

sectional distance measured from the heat pad. Figure 2 shows other extreme case in which a well 

insulating coat is measured.  
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Figure 1: Temperature distribution as 

function of cross sectional distance for shirt. 

Figure 2: Temperature distribution as 

function of cross sectional distance for coat. 
 

 A fractional power loss estimate is made by this script. The fractional power loss (Qfrac) is defined by 

two quantities and is defined according to formula (3).  

 

(3)     Q𝑓𝑟𝑎𝑐 =  
𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡+ 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  

 

Firstly quantity being the heatflux that is nescessary for carrying out the thermal conductivity 

measurement: Qmeasurement. The second being the heat that is lost through the insulation: Qinsulation, which in 

an ideal case, would be zero for several reasons. The main reason is that when said heat flux is zero, no 

error can be made in estimating said heat flux. 

 

(4)    𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑘𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝑆 × 𝛥𝑇 

 
Qinsulation is calculated using formula (4) as described by [7]. When constructing the aforementioned 

formula, one finds that S is equal to formula (5). Table 1 will be linking abbreviations used in formula 

3 to their real life interpretation and designated value. 

  

(5)    𝑆 = 4 (
𝑏∗𝑑ℎ

𝑑𝑖
+  0.54(𝑑ℎ + 𝑏) + 0.15𝑑𝑖) +

𝑏2

𝑑𝑖
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Table 1: linking abbreviations used in formula 3 to their real life interpretation and designated value. 

Abbreviation di dh b 

Variable Insulation Thickness Element Thickness Element Width 

[Value] = 

[dimension] 

[30] = [mm] [10] = [mm] [60] = [mm] 

 

The MATLAB script ("Temperature Distribution Therminus Device") which is provided alongside 

this Appendix, uses formula (4) and (5) (in conjunction with other common formulae) to estimate 

fractional heat loss as described by formula (3). Formulae (4) and (5) are specifically mentioned 

because they inherit an error caused by the assumption that ΔT = 10. In other words, an error is 

caused by the assumption that the surface temperature of the insulation will be exactly equal to the 

environment temperature. This will in practice not be the case, thus an unknown error is caused by 

this assumption. Appendix 12: ‘Heat loss insulation uncertainty’ will not suffer from this error as the 

surface temperature will not be imposed. Please reference Appendix 12 for more detail.  

Important information that is output from the script is displayed in table 2. It is imperative to stress the 

fact that the fractional power loss is a mere estimate made with an unrealistic assumption. Said 

unrealistic assumption being that the surface temperature of the insulation is exactly equal to the 

environment temperature, as stated in Appendix 5: 'Insulation'. 

 

Table 2: important information that is output by the provided MATLAB script. 

Case Corresponding to figure (1) Corresponding to figure (2) 

Input values k_textiel = 0.52; d_textiel = 0.41*10
(-3)

 k_textiel = 0.057; d_textiel = 22*10
(-3)

 

Output Required Power: 36.7333 

Fractional Powerloss: 0.22112% 

T1: 10 C° 

T2: 9.3074 C° 

T3: 0.69259 C° 

T4: 1.2212e-15 C° 

Required Power: 0.17446 

Fractional Powerloss: 46.5563% 

T1: 10 C° 

T2: 9.9982 C° 

T3: 0.0017619 C° 

T4: 1.4244e-15 C° 
 

MATLAB Code (Appendix 6: Heat pad) 

% Temperature Distribution Therminus Device 

% TU Delft, 05/31/2019 

% Author: Sebastiaan Thomas Njio 

 

clc 

clear all 

close all 

 

%Textiel waardes 

k_textiel = 0.057;          % Expected values: 0.057<k<0.52 

d_textiel = 22.00*10^(-3);   % Kleding dikte 

% Voor een maximale  

 

%Formules hitte verlies 

% Qdot = k*S*dT 

To = 0;                     % Omgevingstemperatuur 

dT = 10;                    % Temperatuur delta  

b = 60*10^-3;               % De breedte van het verwarmde element met T1 

 

% Diktes 
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d_element = 10*10^(-3);     % Verwarmde element 

di = 30*10^(-3);            % Isolatie 

d_koud = 10*10^(-3);        % De afstand van de interface tussen textiel en 

                            % koude blok tot waar de temperatuur meting is. 

 

% Thermische geleidbaarheid 

ki = 0.022;                 % Isolatie (piepschuim) 

k_element = 147;            % Verwarmde element (Alu 5754 bij 20graden c) 

 

% Much Occuring Constants 

A = b*b; 

% Berekeningen 

S = 4*b*d_element/di + (b^2)/di + 4*0.54*d_element + 4*0.54*b + 4*0.15*di; %Formfactor 

 

T1 = To+dT; % Temperatuur heatpad 

 

% Vermogens 

Qdotloss = ki*S*dT; % Dit is het vermogen wat verloren raakt door de isolatie 

Qdotmeeting = (T1 - To) * 1/(d_element/(A*k_element)+d_textiel/(A*k_textiel) + 

d_koud/(A*k_element)); 

 

Qdotheatpad = Qdotloss + Qdotmeeting; 

% Temperature Calculations 

Unknown = 0; % Dit is de hoeveelheid warmte die via de zijkanten van het textiel wegvloeit. 

 

T2 = T1 - d_element/(k_element*A)*Qdotmeeting; 

T3 = T2 - d_textiel/(k_textiel*A)*Qdotmeeting; 

T4 = T3 - d_koud/(k_element*A)*Qdotmeeting; %Check if indeed the T4 ~ 0 

 

% Displaying all outputs 

disp(['Required Power: ', num2str(Qdotheatpad)])  

disp(['Fractional Powerloss: ', num2str(Qdotloss/Qdotheatpad*100),'%']) 

 

disp(['T1: ',num2str(T1),' C',char(176)]) 

disp(['T2: ',num2str(T2),' C',char(176)]) 

disp(['T3: ',num2str(T3),' C',char(176)]) 

disp(['T4: ',num2str(T4),' C',char(176)]) 

 

%Plotting figure 

dTot = linspace (0, d_element + d_koud + d_textiel, 4); 

Temperatures = [T1, T2, T3, T4]; 

 

figure() 

hold on; grid minor 

title('Expected Temperature Distribution Cross Sectional Distance'); xlabel('Cross Section Distance [d] 

= [mm]'); ylabel(['\delta Temperature [T] = [C',char(176),']']); 

plot(dTot(1,[1, 2]), Temperatures(1,[1, 2]),'-r',dTot(1,[2, 3]), Temperatures(1,[2, 3]),'-m',dTot(1,[3, 4]), 

Temperatures(1,[3, 4]),'-b') 

legend('Hot Body','Textile','Cold Body','Location','northeast') 

  



 

 

30 

Appendix 7: Electrical circuit 

Two drawings have been made for the electrical circuit. The first drawing, figure 1, displays the circuit 

for the prototype. Please note that the figures to which this appendix refers are too big to fit 

appropriately inside the text. Throughout this Appendix, both figure 1 and 2  are of great relevance, 

which are provided at the end of the appendix. Making use of three external power supplies and thus 

not meeting the requirement of having a mobile device as this is dependent on power sockets. The 

Arduino is powered by a 12V adapter connected to a power socket and the peltier element and heat 

pad are both connected to a PSU of which the voltage and amperage can be regulated. This was done 

to test and calibrate the device. 

 Ideally the device would be made as is in the second drawing, figure 2. Making use of batteries 

in series or a bigger battery. For this to work voltage regulators need to be implemented between the 

power supply and the Arduino, the peltier element and the heating pad. Because each run on different 

voltages. The total power draw of the circuit amount to about 100W from the various devices in the 

circuit. The batteries used for this circuit needs to be able to deliver amount of power for the duration 

of the testing and ideally be not too big or heavy to keep the device portable. Two examples of such 

kind of batteries would be those used in electric bikes or the ones used by photographers to power 

their flashes. 

 Both circuits have in common the peltier element (PE), the heating pad (HP), the Arduino, 

three different temperature sensors, one for the cold body temperature (CBT) one for hot body 

temperature (WBT) and one for the environment temperature (ET) and a linear potentiometer(LP). 

A fan is used in the system to cool the heatsink connected to the peltier element.  

 In the drawings all positive wires are coloured red, all ground wires are coloured black. The 

orange wires coming from the sensors are being read by the Arduino at the analog ports. The purple 

wires going to the mosfets connected to the peltier element and heatpad are used for pulse width 

modulation (PWM) control. 

PWM control by digital pins 5 and 6 and the mosfets are connected to these pins to control the 

peltier element and the heatpad. These pins were chosen because they are timed at 980Hz [15] and 

have an 8 bit resolution meaning 256 steps, while the other pwm pins of the Arduino are timed at 

490Hz and 8 bit resolution. Using pins 5 and 6 means that 1/980Hz = 0.001s = 1ms is divided in 256 

parts, every part being equal to 1ms/256 = 0.004ms = 4μs. Which means that the PWM control can be 

set from 0 to 255 where every step adds 4μs to the width of the signal. The signal gives the full voltage 

for the amount of time the signal is width and 0 after that until this repeats again at the next ms.  

 The sensors are connected to the digital pins on the Arduino to give them voltage. Each sensor 

has a specific pin. Warm body heat sensor pin 2. Cold body heat sensor pin 3. Environment heat 

sensor on pin 4. Potentiometer on pin 7. They are in the same order connected to the analog pins on 

the Arduino to read the values. Warm body hear sensor pin A0. Cold body heat sensor pin A1. 

Environment heat sensor pin A2. Potentiometer pin A3.  

The analog pins on the Arduino read a voltage range from 0V to 5V with 10-bit resolution, 

which is 1024 steps. Which means every step corresponds to a 0.005V increase. Creating an as large as 

possible voltage difference between the maximum and the minimum of the sensor increases the 

accuracy of the sensor. Due to the added resistance the voltage range over the sensor is always smaller 

than 5 volt. For specific voltage ranges corresponding to the temperature or potentiometer respectively, 

please consult Appendix 10: 'Thermistor Uncertainty' or Appendix 11: 'Linear Potentiometer 

Uncertainty'. But the resistor can be chosen so that the difference is as large as possible for that specific 

sensor. To ensure the biggest range of voltage that can be measured an ideal resistor needs to be 

calculated and placed in the circuit. The general formula for the output voltage read by the Arduino 

for each sensor is formula (1); 

  

(1)                                                                   𝑉𝑜𝑢𝑡 =
𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟

𝑅+𝑅𝑠𝑒𝑛𝑠𝑜𝑟
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Here Vout is what is measured by the Arduino, Rsensor is what the resistance is of the sensor, R is the 

added resistance in the circuit and 𝑉𝑖𝑛 is the voltage the Arduino puts in the circuit. The minimum and 

maximum resistance the sensor becomes is known via the datasheet of the sensor. The output voltage 

between these two resistances needs to be as large as possible to get the best sensitivity in the 

measurement. 

 

(2)                                                    𝛥𝑉 =
𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥

𝑅+𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥
−

𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛

𝑅+𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛
  

 

In formula (2) ΔV is the difference in voltage output between maximal sensor resistance and minimal 

sensor resistance. In this formula 𝑉𝑖𝑛 is known, 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥 is known, 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛 is known. What is 

needed is the optimal R for the largest ΔV. 

 This is done by calculating the derivative of the formula and setting it to zero. 

 

(3)                                                                                   
𝑑𝛥𝑉

𝑑𝑅
=

𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥2∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛−𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥∗𝑅2−𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛2+𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛∗𝑅2

(𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛+𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥∗𝑅+𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛∗𝑟+𝑅2)
2 = 0  

 

Which means that the denominator needs to be set to zero. Resulting in the following equation, 

formula (4), and simplifying it. Rewriting gives formulas (5) and (6). 

 

(4)     𝑉𝑖𝑛 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥2  ∗  𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛 –  𝑉𝑖𝑛 ∗  𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥 ∗  𝑅2–  𝑉𝑖𝑛 ∗  𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛2

+  𝑉𝑖𝑛 ∗  𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛 ∗  𝑅2 = 0 

 

= 

(5)        𝑅 = √
𝑉𝑖𝑛 ∗  𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛2  –  𝑉𝑖𝑛 ∗  𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥2  ∗  𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛

𝑉𝑖𝑛 ∗ (𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛 − 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥)
 

= 

(6)                                               𝑅 =  √𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛 
 

This formula (6) is put in a MATLAB script. In this MATLAB script the formula gets the minimum 

and maximum resistance the sensor can become and the output of the MATLAB script is the 

resistance that should be used to give the biggest voltage difference the Arduino can read. The 

resistances giving the biggest voltage difference are: 

Potentiometer = 438 Ω 

Temperature sensor for the hot body = 6.324 kΩ 

Temperature sensor for the cold body = 12.64 kΩ 

Temperature sensor for environment = 1.9 kΩ 

The resistances used for the MOSFET's are only there to prevent short circuiting for which a 

resistance of 10kΩ is used in both cases. The fan is connected to the 5V pin of the Arduino and is 

operational at constant speed.  
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Figure 1: Circuit drawing using external power supply for the Arduino, heat pad and peltier element. 

In this drawing LP = Linear Potentiometer, ET = Environment Temperature, CBT = Cold Body 

Temperature, WBT = Warm Body Temperature, PE = Peltier element, HP = Heat pad 

 
Figure 2: Circuit drawing using batteries. . In this drawing LP = Linear Potentiometer, ET = 

Environment Temperature, CBT = Cold Body Temperature, WBT = Warm Body Temperature, PE 

= Peltier element, HP = Heat pad 

%% A file created to calculate the resistors giving the largest dV%%  
clc 
clear all 
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clear 
close all 

  
Vi = 5;         % V going in the system 

  
%Tempresistors 5K Heatpad Peltier 
Rvmaxt1 = 20000;  % Ohms, maximum resistance given by sensor -10 Celsius 
Rvmint1 = 2000;   % Ohms, minimum resistance given by sensor 50 Celsius 

  
RTemp1 = sqrt(Rvmaxt1*Rvmint1)  %Ohm 

  
%Tempresistors 10K Heatpad Peltier 
Rvmaxt2 = 40000;  % Ohms, maximum resistance given by sensor -10 Celsius 
Rvmint2 = 4000;   % Ohms, minimum resistance given by sensor 50 Celsius 

  
RTemp2 = sqrt(Rvmaxt2*Rvmint2)  %Ohm 

  
%Tempsensor environment 
Rvmaxt3 = 2417;   %Ohm, maximum resistance given by sensor 
Rvmint3 = 1495;   %Ohm, minimum resistance given by sensor 

  
RTemp3 = sqrt(Rvmaxt3*Rvmint3)  %Ohm 

  
%Potresistors 
Rvmaxp = 10660;  %Ohm, maximum resistance given by potmeter 
Rvminp = 18;   %Ohm, minimum resistance given by potmeter 

  
Rpot = sqrt(Rvmaxp*Rvminp)      %Ohm 
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Appendix 8: Arduino code 

In the code for the Arduino first the pins are assigned, after which the variables are assigned and 

constants calculated. Then the void setup starts where the pins are turned on and after that comes the 

loop where everything else happens.  

In these four parts of the code a constant order was maintained. This is done to keep a clear overview 

of the document. The order is as follows: 

1. Warm body temperature sensor 

2. Cold body temperature sensor  

3. Environment temperature sensor 

4. Potentiometer 

5. Heating pad 

6. Peltier element 

7. Calculating the thermal conductivity 

8. Printing the values on the screen. 
 

For the temperature sensors the value read by the analog pins is an integer from 0 to 1023. This integer is 

converted in the voltage corresponding to that value, 0V corresponds with 0 and 5V corresponds with 1023. 

From there the resistance of the sensor at that time is calculated. The sensors need to be calibrated. The warm 

and cold body temperature sensors use the Steinhart-Hart equation [13]. The environment sensor uses an 

equation found in its document sheet. The environment sensor only needed to be calibrated at one temperature 

for the equation to work at different temperatures as well. This was done using a bucket of melting ice which is 0 

degree Celsius. On basis of this calibrated sensor, the other temperature sensors are be calibrated as well. For 

the Steinhart-Hart equation 3 output resistances need to be found for 3 different temperatures. The 

temperatures used are a bucket of melting ice, 0 degrees Celsius, room temperature of 23.11 degrees Celsius 

and a bucket of heated water at 41 degrees Celsius. With these values the Steinhart constants were determined, 

which were implemented in the Arduino code. After the calibration the resistances of the sensors are 

transformed to temperature values in both Celsius and Kelvin. As stated in Appendix 7: ‘Electrical circuit’, the 

required ranges of the sensor outputs are spread out over the 1024 steps in order to maximize the sensitivity of 

the sensors. 

For the potentiometer the output voltage is linear in relation to the distance travelled. Reading 

the value from the analog pin when the potentiometer is at the lowest position corresponds with 0 mm. 

Also the value when the potentiometer is at the highest position the value is read. Measuring the 

distance, with an (external) calibrated calliper, between the highest and lowest position a linear relation 

was created to calculate the distance travelled by the pin on the potentiometer.  

In section 5 and 6 the heating pad and the peltier element are controlled by a PID control. 

The values are found experimentally until a stable system was achieved. For the heating pad the PID 

control values are kp = 8, ki = 3 and kd = 0.01. For the peltier element these values come to kp = 30, 

ki= 10 and kd = 5. For the heating pad the temperature difference between the warm body and the 

environment was the value to be controlled. The difference between those should be 10 degrees 

Celsius. The average of the last three values of the environment sensor where taken to calculate this to 

negate a sudden jump in the environment temperature. These jumps happen at points when the actual 

temperature is in between two values that can be read by the Arduino.  

 For the peltier element the difference between the cold body and the environment is being 

controlled. The desired difference between these two values should be 0 degrees Celsius. Here again 

the average of the last three environment temperature values is used.  

 After the PID value is determined, it is converted to a PWM (Pulse Width Modulation) signal 

the Arduino can use. First the PID value is converted into a integer ranging from 0 to 255. After that 

the PID value is checked against a hard cap value. If the PID value is higher than the hard cap value it 

will be set back to the hard cap value, to make sure the circuit doesn’t overheat. The hard cap value is 

set at 120 out of 255, which means at a maximum the circuit is at maximum voltage for a period of 
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480μs per 1000μs. See Appendix 7: ‘Electrical circuit’ explanation on PWM. The hard cap value is the 

same for both the peltier element and the heat.  

 In section 7 the thermal conductivity of the sample is calculated. To do this the PWM value of 

the heating pad is used as from this value the power to keep the warm body 10 degrees warmer than 

the cold body can be calculated. This is calculated by a linear fit model. This model was created by 

notating both the voltage as the amperage for every PWM value.  

 After the generated power by the heat pad is calculated the power loss through insulation is 

being deducted. This gives the power going through the samples. Using formula (1) taken form Mills 

[7]:  

 

(1)     𝑄𝑐𝑙𝑜𝑡ℎ𝑒𝑠 =
∆𝑇

𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑘𝑠𝑎𝑚𝑝𝑙𝑒
∗𝐴𝑎𝑙𝑢−2∗

𝑙𝑎𝑙𝑢
𝑘𝑎𝑙𝑢

∗𝐴𝑎𝑙𝑢

 

 

Rearranging this formula gives formula (2) for the thermal conductivity k: 

 

(2)      𝑘𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑙𝑠𝑎𝑚𝑝𝑙𝑒

∆𝑇∗𝐴𝑎𝑙𝑢/𝑄𝑐𝑙𝑜𝑡ℎ𝑒𝑠−2∗
𝑙𝑎𝑙𝑢
𝑘𝑎𝑙𝑢

 

 

Where 𝑘𝑠𝑎𝑚𝑝𝑙𝑒 is the thermal conductivity of the sample. 𝑙𝑠𝑎𝑚𝑝𝑙𝑒 is the thickness of the sample 

measured by the potentiometer. ∆𝑇 is the temperature difference between the warm body and the cold 

body measured by the appropriate sensors. 𝐴𝑎𝑙𝑢 is a the surface area of the aluminum bodies. 𝑄𝑐𝑙𝑜𝑡ℎ𝑒𝑠 

is the power going through the samples. 𝐼𝑎𝑙𝑢 is the thickness of the aluminum bodies and 𝑘𝑎𝑙𝑢 is the 

thermal conductivity of the aluminum bodies. 

 After the 𝑘𝑠𝑎𝑚𝑝𝑙𝑒 is calculated and the steady state has been reached, the calculated values are 

averaged. Steady state is reached after 435 seconds as calculated in Appendix 5: ‘Insulation’. After the 

measurement has run this amount of time the k values get added to each other and then divided by the 

amount of k values added, resulting in an average value. The longer the program runs after steady state 

has been reached, the more certain the thermal conductivity value becomes.  

 The last section of the code, section 8, is printing all values of interest on the monitor of the pc. 

There is an interval added here at 5000ms, which means the values only get displayed every 5 second 

to keep the screen readable. 

Arduino Code 

/* Troughout this document the following order has been used:  

 *  1. Warm Body Temperature Sensor (WB) 

 *  2. Cold Body Temperature Sensor (CB) 

 *  3. Environment Temperature Sensor (E) 

 *  4. Potentiometer (PM) 

 *  5. Heating Pad  (HP) 

 *  6. Peltier Element (PE) 

 *  7. Calculating Thermal Conductiviy 

 *  8. Printing (To read the values on screen) 

 *  Everywhere. Which means this order is used when 

 *  1. Defining variables 

 *  2. Calculating constants 

 *  3. Void Setup 

 *  4. Void Loop 

  

 

*/ 

 

// Defining Variables // 

/* Pins */ 

int TempWarmBodyPinRead = A0; 

int TempWarmBodyPinPower = 2; 

int TempColdBodyPinRead = A1; 

int TempColdBodyPinPower = 3; 

int TempEnvironmentPin = A2; 

int TempEnvironmentPower = 4; 

int PotPin = A3; 
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int PotPower = 7; 

int HeatPadPin = 6; 

int PeltierElementPin = 5; 

 

//'Calculating' Constants // 

/*1. Warm Body Temperature Sensor(WB)*/ 

int WBRead;                                       // Stores value read by the arduino for the sensor; 0-1023 

float TWB, TcWB, VWB, VoWB, RTWB;                 // Used Variables to calculate the Temperature of the Warm Body temperature sensor 

float VinWB = 5;                                  // Voltage going in the sensor circuit 

float CVoWB = VinWB/1023;                         // Voltage per step the arduino is able to read.  

float RWB = 6800;                                 // Ohm, resistance in series to the temperature sensor 

//WB Steinhart Constant constants 

float AWB = 1.212613474*pow(10, -3); 

float BWB = 2.33064152*pow(10, -4); 

float CWB = 2.715745132*pow(10, -7); 

float LRTWB, TKSWB, TKWB;                         // Used Variables to calculate the Temperature of the Warm Body temperature sensor 

/*2. Cold Body Temperature Sensor (WB)*/ 

int CBRead;                                       // Stores value read by the arduino for the sensor; 0-1023 

float TCB, TcCB, VCB, VoCB, RTCB;                 // Used Variables to calculate the Temperature of the Cold Body temperature sensor 

float VinCB = 5;                                  // Voltage going in the sensor circuit 

float CVoCB = VinCB/1023;                         // Voltage per step the arduino is able to read 

float RCB = 12000;                                // Ohm, resistance in series to the temperature sensor 

//CB Steinhart Constant constants 

float ACB = 1.179356240*pow(10, -3); 

float BCB = 1.995722535*pow(10, -4); 

float CCB = 4.351300849*pow(10, -7); 

float LRTCB, TKSCB, TKCB;                         // Used Variables to calculate the Temperature of the Warm Body temperature sensor 

/* 3. Environment Temperature Sensor (E)*/ 

int ERead;                                        // Stores value read by the arduino for the sensor; 0-1023 

float RE = 1800;                                  // Ohm, resistance in series to the temperature sensor 

float R25E = 2000;                                // resistance of thermistor at 25 Celsius 

float ktE, TcE, RTE, VoE, TKE;                    // Used Variables to calculate the Temperature of the Environment temperature sensor 

float VinE = 5;                                   // Voltage going in the sensor circuit 

float CVoE = VinE/1024;                           // Voltage per step the arduino is able to read 

float TcEStart = 23.23;                           // Calibrated value added to formula according to datasheet   

float aE = 7.88*pow(10, -3);                      // Value found in datasheet of sensor to calculate temperature 

float BE = 1.937*pow(10, -5);                     // Value found in datasheet of sensor to calculate temperature 

/* 4. Potentiometer (PM)*/ 

int PRead;                                        // Stores value read by the arduino for the sensor; 0-1023 

float mmmaxPM = 59.8;                             // mm, value the potmeter should give at highest point of device  

float mmminPM = 0;                                // mm, value the potmeter should give at lowest point of device 

float mmPM;                                       // Used Variables to calculate the distance traveled by the potentiometer 

float mmStart = 28.26;                            // mm, value used to zero the potentiometer when device is at lowest point 

float PMmax = 892;                                // Value read by PotPin(A3) at heighest point of device 

float PMmin = 291;                                // Value read by PotPin(A3) at lowest point of device  

float StepsPM = PMmax - PMmin;                    // Total steps measured by PotMeter in the range of device 

float DStepsPM = mmmaxPM / StepsPM;               // mm per step measured by the arduino 

/* 5. Heating Pad  (HP)*/ 

float DTWEBHP = 10;                               // K, Desired Temperature Difference between Warm Body sensor and Environment sensor 

float ADTWEBHP;                                   // Actual Temperature Difference between Warm Body sensor and Environment sensor  

int PWMValueHP;                                   // PWM value output over HeatPadPin(11) used to control the heatpad (The PWMvalue*4microseconds is the width  

                                                  //  of the pulse per millisecond and gets repeated every ms until the PWMvalue changes, PWMValue rangeg between 0 and 255) 

float PWMValueHPi;                                // intermediate PWM value 

int HardCapValue = 120;                           // Maximum value PWM value is allowed to be, this is the same for the peltier element 

// PID Constants 

float kpWEB = 8.0;  

float kiWEB = 3.0; 

float kdWEB = 0.01; 

float PID_EWEB, PIDHP, dStepHP, ETimeHP, TKE1, TKE2, TKE3;  // Variables used in the PID control for the Heatpad 

unsigned long TimeHP;                             // s, Variable used to make timesteps for the PID control 

unsigned long PreTimeHP = 0;                      // s, Variable used to make timesteps for the PID control 

float PID_PEWEB = 0;                              // Setting start values for PID control on 0 

float PID_pWEB = 0; 

float PID_iWEB = 0; 

float PID_dWEB = 0; 

/* 6. Peltier Element (PE)*/ 

float DTCEBPE = 0;                                // Desired Temperature Difference between Cold Body sensor and Environment sensor 

float ADTCEBPE;                                   // Actual Temperature Difference between Cold Body sensor and Environment sensor 

int PWMValuePE;                                   // PWM value output over HeatPadPin(11) used to control the heatpad 

float PWMValuePEi;                                // intermediate PWM value 

// PID Constants 

float kpCEB = 30.0;  

float kiCEB = 10.0; 

float kdCEB = 5.0; 

float PID_ECEB, PIDPE, dStepPE, ETimePE;          // Variables used in the PID control for the Peltier Element 

unsigned long TimePE;                             // s, Variable used to make timesteps for the PID control 

unsigned long PreTimePE = 0;                      // s, Variable used to make timesteps for the PID control 

float PID_PECEB = 0;                              // Setting start values for PID control on 0 

float PID_pCEB = 0; 

float PID_iCEB = 0; 

float PID_dCEB = 0; 

/* 7. Calculating Thermal Conductivity */ 

// Power 

float QB0 = -0.042823;                            // Power output by heatpad is calculated by Q[W] = QB0 + QB1*PWMvalueHP 

float QB1 = 0.12766;                              // Values found by linear fit through data found by PSU 

float Qinsul = 0.5;                               // W, Calculated powerloss through the insulation 
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float QHP, Qclothes, QdeltaT;                     // Variables used in calculating the thermal conductivity of clothes 

//Thermal  

float lalu = 0.01;                                // m, thickness alu 

float kalu = 147;                                 // W/mK, Thermal conducitivity alu 

float Aalu = 0.06*0.06;                           // m2, Area aluminum 

float Ralu = 2*(lalu/(kalu*Aalu));                // K/W, Resistance Alu for Warm and Cold body combined 

float Rtotal, kclothes, lclothes, kclothesi, kclothessum; //Variables used in calculating the thermal conductivity of clothes 

unsigned long n = 0;                              // Total values of k calculated for average, changes in loop 

unsigned long Counterk = 60000;                   // ms, time it takes for the system to reach steady state            

unsigned long kTimer;                             // ms, used to see if steady state is reached 

/* 8. Printing (To read the values on screen)*/ 

unsigned long Counter  = 0;                       // ms, keep track of when to show values on screen  

const long interval = 5000;                       // ms, used to show value at intervals on screen 

 

 

void setup() { 

  Serial.begin(9600); 

  // Power to Sensors 

  pinMode(TempWarmBodyPinPower, OUTPUT); 

  pinMode(TempColdBodyPinPower, OUTPUT); 

  pinMode(TempEnvironmentPower, OUTPUT); 

  pinMode(PotPower, OUTPUT); 

  digitalWrite(TempWarmBodyPinPower, HIGH); 

  digitalWrite(TempColdBodyPinPower, HIGH); 

  digitalWrite(TempEnvironmentPower, HIGH); 

  digitalWrite(PotPower, HIGH); 

  //Heatpad output 

  pinMode(HeatPadPin, OUTPUT); 

  //Peltier output 

  pinMode(PeltierElementPin, OUTPUT); 

} 

 

void loop() { 

 

 

/* WarmBodyTemperatureSensor() */ 

  // Reading data from Warm Body Sensor and converting it // 

  WBRead = analogRead(TempWarmBodyPinRead);       // Read Pin A0, gives value between 0-1023, depending on voltage over sensor 

  VoWB = CVoWB*WBRead;                            // Convert read value to voltage 

  RTWB = (VoWB*RWB)/(VinWB -VoWB);                // Calculate Resistance of Temp Sensor 

  // Steinhart-hart equation broken down in easier blocks [1/T = A + B*ln(R) + C * (ln(R)^3)] 

  LRTWB = log(RTWB);                              // Calculate ln(R) 

  TKSWB = AWB + BWB*LRTWB + CWB*(pow(LRTWB, 3));  // 1/K, calculate 1/T 

  TKWB = pow(TKSWB, -1);                          // K, calculate T in Kelvin 

  TcWB = TKWB - 273;                              // C, calculate T in Celsius 

 

/* ColdBodyTemperatureSensor() */ 

  // Reading data from Cold Body Sensor and converting it // 

  CBRead = analogRead(TempColdBodyPinRead);       // Read Pin A1, gives value between 0-1023, depending on voltage over sensor 

  VoCB = CVoCB*CBRead;                            // Convert read value to voltage 

  RTCB = (VoCB*RCB)/(VinCB -VoCB);                // Calculate Resistance of Temp Sensor 

  // Steinhart-hart equation broken down in easier blocks [1/T = A + B*ln(R) + C * (ln(R)^3)] 

  LRTCB = log(RTCB);                              // Calculate ln(R) 

  TKSCB = ACB + BCB*LRTCB + CCB*(pow(LRTCB, 3));  // 1/K, calculate 1/T 

  TKCB = pow(TKSCB, -1);                          // K, calculate T in Kelvin 

  TcCB = TKCB - 273;                              // C, calculate T in Celsius 

 

/* EnvironmentTemperatureSensor() */   

  //Reading data from Environment Sensor and converting it 

  ERead = analogRead(TempEnvironmentPin);         // Read Pin A2, gives value between 0-1023, depending on voltage over sensor 

  VoE = CVoE * ERead;                             // Convert read value to voltage 

  RTE = (VoE*RE)/(VinE -VoE);                     // Calculate Resistance of Temp Sensor 

  ktE = RTE/R25E;                                 // Calculate variable according to datasheet 

  TcE = TcEStart + ((sqrt(pow(aE,2) - 4*BE + 4*BE*ktE)-aE)/(2*BE)); // C, Calculate T in C according to datasheet 

  TKE = TcE + 273;                                // K, calculate T in Kelvin 

   

/* PotentioMeter() */ 

  //Reading data from potentio meter and converting it 

  PRead = analogRead(PotPin);                     // Read Pin A3, gives value between 0-1023, depending on voltage over sensor 

  mmPM = DStepsPM * PRead - mmStart;              // mm, convert read value to mm 

 

/* HeatingPad() */ 

    // Controlling the HeatPad 

    TKE3 = TKE2; 

    TKE2 = TKE1; 

    TKE1 = TKE; 

    TKE = (TKE1 + TKE2 + TKE3)/3;                 // K, Average Environment Temperature reading attenuate outliner 

    ADTWEBHP = TKWB - TKE;                        // Calculating actual temperature difference between Warm body en environment 

    PID_PEWEB = PID_EWEB;                         // Storing previous PID error value  

    PID_EWEB = DTWEBHP - ADTWEBHP;                // Calculating current PID error 

    // Calculating the p of PID  

    PID_pWEB = kpWEB*PID_EWEB;                    // Calculating p 

    // Calculating the i of PID 

    PreTimeHP = TimeHP;                           // ms, Storing previous time 

    TimeHP = millis();                            // ms, Storing current time 

    ETimeHP = (float)(TimeHP-PreTimeHP)/1000;     // s, calculatin time difference and converting to s 
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    PID_iWEB = PID_iWEB + (kiWEB * PID_EWEB)*ETimeHP; // calculating i 

    // Calculating the d of PID 

    dStepHP = PID_EWEB - PID_PEWEB;               // Calculating difference between previous error and current error 

    PID_dWEB = kdWEB * ((dStepHP)/ETimeHP);       // Calculating d 

    // PID 

    PIDHP = PID_pWEB + PID_iWEB + PID_dWEB;       // Calculating PID = p+i+d 

    // Changing the PID value to a PWM value     

    PWMValueHPi = PIDHP;                           

    PWMValueHP = int(PWMValueHPi); 

    if (PWMValueHP > HardCapValue){               // Creating a hard cap at 120 for PWM control to not melt the system 

      PWMValueHP = HardCapValue; 

    } 

    if (PWMValueHP <=0){ 

      PWMValueHP = 0; 

    } 

    // Output 

 

    analogWrite(HeatPadPin, PWMValueHP);          // Controlling the HeatPadPin(6) with the calculated PWM value 

 

/*PeltierElement() */ 

    // Controlling the Peltier 

    ADTCEBPE = TKE - TKCB;                        // Calculating actual temperature difference between Cold body en environment 

    PID_PECEB = PID_ECEB;                         // Storing previous PID error value  

    PID_ECEB = DTCEBPE - ADTCEBPE;                // Calculating current PID error 

    // Calculating the p of PID  

    PID_pCEB = kpCEB*PID_ECEB;                    // Calculating p 

    // Calculating the i of PID 

    PreTimePE = TimePE;                           // ms, Storing previous time 

    TimePE = millis();                            // ms, Storing current time 

    ETimePE = (float)(TimePE-PreTimePE)/1000;     // s, calculatin time difference and converting to s 

    PID_iCEB = PID_iCEB + (kiCEB * PID_ECEB)*ETimePE; // calculating i 

    // Calculating the d of PID 

    dStepPE = PID_ECEB - PID_PECEB;               // Calculating difference between previous error and current error 

    PID_dCEB = kdCEB * ((dStepPE)/ETimePE);       // Calculating d 

    //PID 

    PIDPE = PID_pCEB + PID_iCEB + PID_dCEB;       // Calculating PID = p+i+d 

    // Changing the PID value to a PWM value    

    PWMValuePEi = PIDPE; 

    PWMValuePE = int(PWMValuePEi);                // Creating a hard cap at 120 for PWM control to not melt the system 

    if (PWMValuePE > HardCapValue){ 

      PWMValuePE = HardCapValue; 

    } 

    if (PWMValuePE <=0){ 

      PWMValuePE = 0; 

    } 

    // Output 

    analogWrite(PeltierElementPin, PWMValuePE);   // Controlling the PeltierElementPin(5) with the calculated PWM value 

 

/*  Calculating Thermal Conductivity */ 

    // Calculating power 

    QHP = QB0 + QB1*PWMValueHP;                   // W, Calculating the power the Heatpad uses to keep the warm body at the desired tempterature 

    Qclothes = QHP - Qinsul;                      // W, Taking away the power lost through the insulation 

    if (Qclothes < 0){                            // Keeping it positive 

      Qclothes = 0; 

    } 

    QdeltaT = TKWB - TKCB;                        // K, Temperature difference between Warm Body and Cold Body 

    // Calculating Thermal values 

    lclothes =  mmPM/1000;                        // m, thickness of sample 

    kclothesi = lclothes/((QdeltaT*Aalu/Qclothes)-(2*lalu/kalu));  // W/mK, thermal conductivity of clothes, intermediate value 

    kTimer = millis();                            // ms, steady state timer 

    if (kTimer >= Counterk){                      // This statement happens after steady state has been reached 

      n = n + 1;                                  // Counter how often this loop has been done 

      kclothessum = kclothesi + kclothessum;      // Add intermediate values together 

      kclothes = (kclothessum)/n;                 // W/mK, average, divide sum of intermediate values after steady state by amount of calculated intermediate values after steady state 

has been reached 

    } 

 

/* Print */ 

  // Print values on screen after a set interval 

  unsigned long PrintTime = millis(); 

  if (PrintTime - Counter >= interval){ 

    Counter = PrintTime; 

    // Print Warm body  

    Serial.print("Warm Body: "); 

//    Serial.print(WBRead); 

//    Serial.print(" Read ");  

//    Serial.print(VoWB); 

//    Serial.print(" Volt "); 

    Serial.print(TcWB); 

    Serial.println(" C ");  

    // Print Cold body 

    Serial.print("Cold Body: "); 

//    Serial.print(CBRead); 

//    Serial.print(" Read ");  

//    Serial.print(VoCB); 

//    Serial.print(" Volt "); 
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//    Serial.print(RTCB); 

//    Serial.print(" Ohm "); 

    Serial.print(TcCB); 

    Serial.println(" C "); 

    // Print Environment 

    Serial.print("Environment: "); 

//    Serial.print(ERead); 

//    Serial.print(" Read ");  

//    Serial.print(VoE); 

//    Serial.print(" Volt "); 

    Serial.print(TcE); 

    Serial.println(" C "); 

    //Print Potmeter 

    Serial.print("Potmeter: "); 

    Serial.print(mmPM); 

    Serial.println(" mm"); 

    //Print HeatPad 

    Serial.print("Heatpad: "); 

    Serial.print(PWMValueHP); 

    Serial.println(" PWMHP "); 

    //Print Peltier 

    Serial.print("Peltier: "); 

    Serial.print(PWMValuePE); 

    Serial.println(" PWMPE ");  

    Serial.print("Thermal conductivity: "); 

    Serial.print(kclothesi); 

    Serial.print(" Intermediate "); 

    Serial.print(kclothes, 6); 

    Serial.println(" Steady State "); 

    Serial.print(kclothessum); 

    Serial.print(" k Sum "); 

    Serial.print(kTimer); 

    Serial.println(" Time "); 

    Serial.print(PID_dWEB); 

    Serial.print(" d "); 

    Serial.print(PID_iWEB); 

    Serial.print(" i "); 

    Serial.print(PID_pWEB); 

    Serial.println(" p "); 

    Serial.println("");  

    } 

} 
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Appendix 9: Thermal conductivity measurement uncertainty 

Defining Aspired Precision 

As stated in the report, a measurement accuracy within 8% of the real thermal conductivity, is desired. 

This appendix grants insight in the aspects contributing to the accuracy of the Therminus device. 

Formula (1), which efficaciously describes the thermal conductivity, is derived for the Therminus 

device specifically. 

 

(1)    𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 =  𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒( 
𝐴∗𝛥𝑇

𝑄
 −  2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 )(−1) 

 

Where 𝐴 is the surface area (in m
2

) on which the measurement takes place. 𝛥𝑇 is the temperature 

difference (in K) between the warm and cold body. 𝛥𝑇 is a value for which engineers ought to choose 

an appropriate value. 𝑄 is the heat flow (in Watt) needed to sustain the aforementioned temperature 

difference 𝛥𝑇. 

Parameter Remarks 

Some parameters either have no, or do not have known, uncertainties. The parameter with unknown 

uncertainty is: 𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡. Geometric uncertainties can be accounted for by measuring the real value after 

the manufacturing process has been completed. Examples of such values are: 𝐴 and 𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡. The 

uncertainty of 𝑄 is caused two factors 𝑄 = 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 −  𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛. First factor (𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑) being the 

uncertainty of the voltage drop, and the resistance the heat pad has, in practice. In other words, the 

first factor is caused by the uncertainty associated with the electrical circuit design. The second factor 

(𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛) is caused by the error that is made by estimating the heat loss to the insulation. The 

prototype Therminus device does not suffer from the latter, it rather suffers from an error made by the 

former instead. 

Consequently, three uncertainties remain. Both 𝛥𝑇 and 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒 are caused in part by sensor inaccuracy 

and the magnifying effect caused by the discrete voltage mapping as carried out by Arduino. To 

establish the maximum uncertainty corresponding to both 𝛥𝑇 and 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒, MATLAB files have been 

created to simulate the Arduino and, consequently, the error caused by the setups. Appendix 10: 

‘Thermistor uncertainty’ (for 𝜎𝛥𝑇) and Appendix 11: ‘Linear potentiometer uncertainty’ (for 𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 ) 

contain more information about the origin of the uncertainties alongside the aforementioned 

MATLAB files.  

The uncertainty of 𝑄 remains, which could be regarded as the most complex one to analyze. In part 

because the formulae used to derive 𝑄 are quite nasty. Never mind the fact that the formulae used are 

an attempt to describe reality, placing emphasis on the word attempt. In other words, the exact 

uncertainty for Q, along with its origins, remain unsure. Although no conclusive answer can be given as 

to what value 𝜎𝑄 will turn out to be in reality, an estimate for its maximum acceptable value will be 

established. 

General Formula Error Propagation 

The uncertainty of the thermal conductivity measurement is caused by the propagation of two errors. 

The first error is caused by the inaccurate measurement of 𝛥𝑇. The second error is caused by the 

inaccuracy of the thickness measurement. Formula (2) defines how error propagation takes place. 

 

(2)   𝜎𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒
= √(

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇
)

2
 (𝜎𝛥𝑇)2 + (

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
)

2
 (𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒

)2 + (
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄
)

2
 (𝜎𝑄)2   
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To determine all components in formula (2), the members (
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇
 and 

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
) are derived 

independently. Note that both 𝜎𝛥𝑇 and 𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 are results attained from theoretical analysis which are 

analyzed in their respective appendices. 

Formulae 𝜟𝑻 Error Propagation 

From formulae (3), (4) and (5), formula (6) can be derived. Note that formula (6) merely formulates a 

result attained by applying u-substitution as defined by formulae (3) through (5). 

 

(3)     𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒  =
𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝑢
 

 

(4)     𝑢 =  
𝐴

𝑄
𝛥𝑇 − 2

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 

 

(5)     
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇
=

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑢
 

𝜕𝑢

𝜕𝛥𝑇
 

 

(6)   
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇
=  − 

𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒∗𝐴∗𝛥𝑇

𝑄
( 

𝐴∗𝛥𝑇

𝑄
 −  2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 )(−2) 

 

Now that formula (6) has been defined, it can be substituted back into formula (2). 

Formulae 𝒅𝒕𝒆𝒙𝒕𝒊𝒍𝒆 Error Propagation 

The derivation 
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 of is much more straightforward than the derivation examined in the former 

paragraph. Formula (7) depicts the relationship of 𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 derived with respect to 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒. 

 

(7)     
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
=  ( 

𝐴∗𝛥𝑇

𝑄
 −  2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 )(−1) 

Formulae 𝑸 Error Propagation 

Before discussing the derivation of 𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 with respect to 𝑄, an important remark has to be made. The 

assertion that equation (8) can be used, infers that the formula used to describe 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is exactly 

right and introduces no additional error. During the analysis, the assumption that 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is indeed 

exactly right, is made. A more in depth analysis into the derivation of 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is given in Appendix 

5: ‘Insulation’.  

 

(8)     𝑄 = 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 −  𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

 

(9)     
𝜕𝑄

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛
=  −1 

 

(10)    
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛
=  

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄

𝜕𝑄

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

 

(11)  
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄
=  𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒 ∗ 𝐴 ∗ 𝛥𝑇 ∗ (𝑄 ∗ ( 

𝐴∗𝛥𝑇

𝑄
 −  2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 ))(−2)  
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(12)  
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

=  𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒 ∗ 𝐴 ∗ 𝛥𝑇 ∗ ((𝑄
𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑

−  𝑄
𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

) ∗ ( 
𝐴∗𝛥𝑇

𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑− 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 −  2 ∗
𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡

 ))

(−2)

 

Resulting Uncertainty Formula 

A MATLAB script has been used to solve equation (2). Equation (13) can be constructed from the set 

of derived formulae (6), (7) and (12).  

 

(13) 𝜎𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

2 =  (
𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒∗𝐴∗𝛥𝑇

𝑄
( 

𝐴∗𝛥𝑇

𝑄
 −  2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 )(−2))2 (𝜎𝛥𝑇)2 + (( 

𝐴∗𝛥𝑇

𝑄
 −  2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 )(−1))2 (𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒

)2  − 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒 ∗ 𝐴 ∗

𝛥𝑇 ∗ ((𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛) ∗ ( 
𝐴∗𝛥𝑇

𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑− 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 −  2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 ))(−2)(𝜎𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

)2 

 

The error 𝜎𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 ought not to exceed 8% of the actual thermal conductivity, see Appendix 2: ‘Phoebe 

experiment’. One can obviously deduct that the narrowest bounds are applicable when 𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 is as 

small as possible. 

As previously stated in the smallest thermal conductivity which is expected to be the worst case 

𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 = 0.057 
𝑊

𝑚𝐾
 . Thus logically leading to an allowable error of ± 4.56 ∗ 10

(−3)
.  Two cases are 

evaluated in order to establish the prototype performance.  

Two Evaluated Cases 

First case being the most extreme case being a well insulating thick coat in an environment temperature 

that does not exceed 30 C°. The Arduino Uno is deemed inappropriate due to several reasons. The 

first case for which the maximum uncertainty, with its respective conditions, assumes an Arduino Uno 

is implemented. The second case which is analyzed, assumes an SAM3X controller precision is 

implemented to read sensor values for equivalent circuitry.  

For both cases the error is evaluated for the most critical case. The most critical case assumes a 

thermal resistivity of Rth = 2.0826 where Rth = 
𝑘

𝑑
 = 0.057/0.02737. As mentioned in Appendix 6: ‘Heat 

pad’, 95.45% of coats is expected to be thinner than 27.37mm.  

Uncertainty Values 

Tables 1 and 2 list the worst case uncertainties that are expected for the Arduino Uno and Due 

respectively. Note that the uncertainties are calculated from several MATLAB files. 

Table 1: Highest expected uncertainty for respective quantity using the Arduino Uno 

Case 1 Arduino Uno 

Quantity Value unit At condition 

𝜎𝛥𝑇 6.3896e-02 C° At Tenvironment = 39.34 C° 

𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 4.869e03 mm At dtextile = 0.4 mm 

𝜎𝑄 1.7694e-05 W At Tenvironment = 11.48 C° 

 

Table 2: Highest expected uncertainty for respective quantity using the Arduino Due 

Case 2 Arduino Due 

Quantity Value unit At condition 

𝜎𝛥𝑇 2*1.6417e-02 C° At Tenvironment = 38.85 C° 

𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 1.221e-03mm At dtextile = 23.56 mm 

𝜎𝑄 1.7694e-05 W At Tenvironment = 11.48 C° 

 

Note that for both Arduino Uno and Arduino Due the value for 𝜎𝑄 are equal since the same 

interpolation method is used in order to calculate the heat loss through the insulation. 



 

 

43 

Resulting Error Estimate 

Tables 3 and 4 list the results that are attained from MATLAB script Therminus_Error_Propagation 

which is provided at the end of this Appendix. Table 3 provides the expected values as attained from 

the aforementioned MATLAB script when an Arduino Uno is used. 

Table 3: highest expected uncertainty for respective quantity using the Arduino Uno 

Case 3 Arduino Uno 

Quantity Value unit Relative Uncertainty 

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇
 

-0.05702 

 

0.639% 

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 

2.036 

 

0.0178% 

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 
-0.7782 0.0227% 

𝜎𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 0.0123 W/mK 21.58% 

 

Table 4: highest expected uncertainty for respective quantity using the Arduino Uno 

Case 4 Arduino Due 

Quantity Value unit Relative Uncertainty 

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇
 

-0.05702 

 

0.1642% 

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 

2.036 

 

0.0045% 

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 
-0.7782 

 

0.0227% 

𝜎𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 0.0028 W/mK 4.9528% 

 

Lineair Interpolation Heat Loss Model Justification 

If the heat flow through the insulation would be determined accurately instead of using lineair 

interpolation, both resulting errors for case 3 and 4, will become smaller.  

For the Arduino Uno the reduced error is of no important matter since the error associated with the 

still exceeds the desired 8%. When perfectly implementing the insulation heat loss model, the 

expected error for the Arduino Uno is 20.29%, this is an improvement. While theoretically possible to 

implement such model, it will be extremely cumbersome in practice and therefore not recommended. 

For the Arduino Due the reduction in the total error made is less significant, namely 4.9527%. A more 

interesting matter is the maximum error that can be made for the insulation heat loss estimate. For the 

Arduino Due, the aforementioned maximum error is 7.688%, or in an absolute sense, 5.993e-03. The 

error made using the proposed linear interpolation is approximately 340 times smaller than the 

maximum allowable error thus justifying the usage of linear interpolation. 

% Therminus Error Propagation 
% TU Delft, 05/31/2019 
% Author: Sebastiaan Thomas Njio 

  
clc 
close all 
clear variables 

  
%Important values  
dtextile = 28*10^(-3); 
k_accuracy = 1 - 0.08;              % 1 - Accuracy 
Qmeasurement = [0.0732654, 0.0732654]; % [Case 1; Case 2] (Both the same value) 
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Qinsulationreal = [0.0783692, 0.0774926]; % [Case 1; Case 2], This one is case specific 

  
%Qinsulation 
Qinsulation = [0.077961, 0.0774926]; %[Lin Interpolation max Error @ 11.48C] 

  
% Values attained for 12 Bit arduino measurement with Calibrated Sensors 
sdT = [2*1.6417e-02, 2*1.2970e-02];     %[@T = 38.85, @T = -9.138] 
sdtextile = [1.038e-03, 1.038e-03];       %[@d = 27.98mm, @d = 27.98mm] 

  

  
% Values for 10 Bit arduino measurement with Calibrated Sensors 
%sdT = [2*6.3896e-02, 2*5.1713e-02];     %[@T = 39.34, @T = -9.879] 
%sdtextile = [4.869e-03, 0.004886];       %[@d = 0.4, @d = 71.52mm] 
%sdtextile = [4.869e03 , 4.767e-03];       %[@d = 0.4mm, @d = 28.02mm] 

  
sQ = [1.7694e-05, 1.7694e-05];            %[@T = -10, @T= -10] 

  
%Constants 
delement = 10*10^(-3); 
kelement = 147; 
b = 60*10^(-3); 
l = 60*10^(-3); 
dT = 10; 
Q = zeros(1,length(Qinsulation)); 

  
%Values which need to be calculated 
sktextile = zeros(2,length(Qinsulation)); 
skmax = zeros(1,length(Qinsulation)); 
ddT = zeros(1,length(Qinsulation)); 
ddtextile = zeros(1,length(Qinsulation)); 
ktextile = zeros(1,length(Qinsulation)); 
dQ = zeros(1,length(Qinsulation)); 

  
A = b*l; 
for i = 1:length(Qinsulation) 
Q(1,i) = Qinsulation(1,i)+Qmeasurement(1,i); 
    ddT(1,i) = - dtextile*A*dT/Qmeasurement(1,i) * (A*dT/Qmeasurement(1,i) -2*delement/kelement)^(-2); 
    ddtextile(1,i) = 1/(A*dT/Qmeasurement(1,i) - 2*delement/kelement); 
    dQ(1,i) = -dtextile*A*dT*((Qmeasurement(1,i)*(A*dT/Qmeasurement(1,i) - 2*delement/kelement))^(-2)); 

     
    sktextile(1,i) = sqrt((ddT(1,i)*sdT(1,i))^2 + (ddtextile(1,i)*sdtextile(1,i))^2); 
    sktextile(2,i) = sqrt((ddT(1,i)*sdT(1,i))^2 + (ddtextile(1,i)*sdtextile(1,i))^2 + (dQ(1,i)*sQ(1,i))^2); 

     
    ktextile(1,i) = dtextile/(A*dT/Qmeasurement(1,i) - 2*delement/kelement); 

     
    % Determine max allowed sQ in order to remain at k_accuracy 
    skmax(1,i) = (1-k_accuracy)*ktextile(1,i); 
    sQ(1,i) = sqrt(((skmax(1,i))^2  -  (ddT(1,i)*sdT(1,i))^2 + (ddtextile(1,i)*sdtextile(1,i))^2)*(dQ(1,i))^(-2)); 

  

     
end 
     

%OUTPUTS to user 
disp(['dktextile/ddT = ', num2str(ddT(1,1),4)]); 
    disp(['dktextile/ddtextile = ', num2str(ddtextile(1,1),4)]); 
    disp(['dktextile/dQ = ', num2str(dQ(1,1),4)]); 
    disp(['Error without Qerror: ', num2str(sktextile(1,1)/ktextile(1,1)*100, 8), '% with k = ', num2str(ktextile(1,1),4)]) 
    disp(['Allowable Qmeasurement Error [Absolute, Relative]: [', num2str(sQ(1,1), 4), ', ', 
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num2str(sQ(1,1)/Qinsulation(1,1)*100,4),'%]']) 
    fprintf('\n'); disp(['Relative error [No Q error]: ',num2str(100*sktextile(1,1)/ktextile(1,1)),'%']) 
    disp(['Relative error [Error, @Qerror %]: [',num2str(100*sktextile(2,1)/ktextile(1,1)),'%, ',num2str((Qinsulation(1,1)-

Qinsulationreal(1,1))/Qinsulationreal(1,1)*100),'%]']);fprintf('\n') 
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Appendix 10: Thermistor uncertainty 

This Appendix aims to provide insight into uncertainty that is caused by the sensor setup. 

Thermistor Sensor Setup 

The setup and its resistor values (in order to maximize the voltage range) is described in Appendix 7: 

‘Electrical Circuit’. The values that are given in this Appendix are calculated on the basis of a 12bit 

logic board. Note that the Arduino used in the current Therminus device might not have 12bit read 

capability on analog read ports. Hence an Arduino with 12bit read capabilities is recommended. 

 

  

Figure 1: Calibrated thermistor resistance as 

function of temperature 

Figure 2: Measured voltage at temperature 

  

Figure 3: The absolute error resulting from 

the rounding error caused by discrete 

Arduino values 

Figure 4: Fractional power loss for range of 

expected T∞ values 
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Figure 5: Absolute voltage error expected to 

occur at certain temperature 

Figure 6: Absolute temperature error at 

measured voltage 

Important values from the script are extracted and displayed to the user. The parameters are given at 

the end of the Appendix. 

 

Parameters as Used in Error Propagation Appendix 

To determine the maximum temperature delta error 𝜎𝛥𝑇. The temperature difference is measured 

between two sensors, both sensors are assumed to cause the same (maximum) error 1.6417e-02. The 

maximum absolute error is caused by the combination of the discrete voltage measurement (by 

Arduino) the required voltage read to resistance mapping, and the resistance to temperature mapping. 

Please note that errors caused by floating point approximation is not considered.  

As previously mentioned, two sensors are used thus resulting in a maximum error 𝜎𝛥𝑇  =  2 ∗
(1.6417e − 02).  

MATLAB Script Outputs 

Steinhart-Hart Equation constants 

AR: 1.0157e-03 | BR: 2.7418e-04 | CR: 4.5791e-08 

 

Temperature Delta Body: 10 C° 

Measured Voltage [max, min]: [3.8106, 1.3811] 

Uncertainty Voltage Measurement Arduino: 1.2210e-03 Volt 

 

Expected Measured Arduino Step Range [max, min]: [3121, 1131] 

Usefull occupancy of arduino voltage range: 48.6% 

Max Temperature Uncertainty Sensor [error, @T]: [1.6417e-02 C°, 38.85 C°] 

Maximum Relative Uncertainty: 0.1642% 

 

Max Temperature Error for T < 8 C°, [Error, @T] : [1.2970e-02 C°, -9.138 C°] 

Maximum Relative Uncertainty: 0.1297% 

 

% Temperature Sensor Calibrated 
% TU Delft, 05/31/2019 
% Author: Sebastiaan Thomas Njio 

  
clc 
clear all 
close all 

  
Resolution = 2^12-1; % Resolution of Arduino Volt measurement 
T = 263.15:0.02:313.15; % Temperature range which is expected 
Rchosen = 6.8*10^3; 
Tplot = T -273.15; 

  
%Measured Steinhart-Hart Equation Values (1/T = A + B*ln(R) + C(ln(R)^3) 
AR = 1.015659556e-3; BR = 2.741829352e-4; CR = 0.4579094890e-7; 

  
%Allocate RAM for variables 
Rthermistor = zeros(1,length(T)); 
Utheoretical = zeros(1,length(Rthermistor)); 
Umeasured = zeros(1,length(Rthermistor));  
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reg = zeros(4,length(T)); 

  
for i = 1:length(T) 
x = 1/(2*CR)*(AR -1/T(i)); y = sqrt((BR/(3*CR))^3 + x^2); 

  
Rthermistor(1,i) = exp((y-x)^(1/3)-(y+x)^(1/3)); 
Utheoretical(1,i) = 5 * Rthermistor(1,i) / (Rchosen + Rthermistor(1,i)); 
Umeasured(1,i) = 5/Resolution*round(Utheoretical(1,i)*Resolution/5); 

  
end 

  
%Important Vectors and Variables 
Rthmax = max(Rthermistor); Rthmin = min(Rthermistor); 
Umax = max(Utheoretical(1,:)); Umin = min(Utheoretical(1,:)); 

  
Ux = linspace(0, 5, Resolution +1);  
Uxp = Umin:0.002:Umax; 
Ux = 5/Resolution*round(Uxp*Resolution/5); 

  
Rmeasured = zeros(1,length(Ux)); 
Ttheoretical = zeros(1,length(Uxp)); 
Tmeasured = zeros(1,length(Ux)); 
reg2 = zeros(2,length(Ux)); 
for i = 1:length(Uxp) 
    Ttheoretical(1,i) = 1/(AR + BR*log(Rchosen*Uxp(1,i)/(5-Uxp(1,i))) + CR*(log(Rchosen*Uxp(1,i)/(5-Uxp(1,i))))^3) - 

273.15; 
    Tmeasured(1,i) = 1/(AR + BR*log(Rchosen*Ux(1,i)/(5-Ux(1,i))) + CR*(log(Rchosen*Ux(1,i)/(5-Ux(1,i))))^3) - 273.15;  
    if i<length(Uxp) 
    reg2(1,i) = Ux(1,i+1) - Ux(1,i); %Log the Voltage difference made between steps 
    reg2(2,i) = Uxp(1,i); 
    end 
end 

  
%Important Paramaters 
smin = floor(Umin*Resolution/5); smax = ceil(Umax*Resolution/5); 
Terror = abs(Tmeasured-Ttheoretical); 
Uerror = abs(Umeasured - Utheoretical); 

  
[Terrmax, Terrmax_i] = max(Terror); 

  
%% Plotting Figures 
disp(['*Note that values will be reported in rounded form.']);  
disp(['For accurate representation consult the script.']); fprintf('\n') 
disp(['Steinhart-Hart Equation constants']) 
disp(['AR: ',num2str(AR,'%.4e'),' | ', 'BR: ',num2str(BR,'%.4e'),' | ', 'CR: ',num2str(CR,'%.4e'),]); fprintf('\n') 
disp(['Temperature Delta Body: 10 C',char(176)]) 
disp(['Measured Voltage [max, min]: [',num2str(Umax),', ', num2str(Umin),']']) 
disp(['Uncertainty Voltage Measurement Arduino: ',num2str(5/Resolution,'%.4e'),' Volt']); fprintf('\n') 
disp(['Expected Measured Arduino Step Range [max, min]: ','[',num2str(smax),', ', num2str(smin),']']) 
disp(['Usefull occupancy of arduino voltage range: ',num2str((smax-smin)/Resolution*100,4),'%']) 
disp(['Max Temperature Uncertainty Sensor [error, @T]: [', num2str(Terrmax,'%.4e'),' CÔøΩ, 

',num2str(Ttheoretical(1,Terrmax_i),4),' C',char(176),']']);  
disp(['Maximum Relative Uncertainty: ',num2str(Terrmax*10,4),'%']);fprintf('\n') 

 
%Establishing max Error made untill 8C 
i = max(find(fliplr(Ttheoretical) <= 8)); 
[Terror8, index] = max(Terror(1,i:end)); 
index = i-1+index; 
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disp(['Max Temperature Error for T < 8 CÔøΩ, [Error, @T] : [', num2str(Terror8,'%.4e'),' CÔøΩ, 

',num2str(Ttheoretical(1,index),4),' CÔøΩ]']) 
disp(['Maximum Relative Uncertainty: ',num2str(Terror8*10,4),'%']);fprintf('\n') 

  
%% Figure Drawing 
%                                       ///        FIRST FIGURES        \\\ 
figure()                 % PLOT HIGH FIDELITY VOLTAGE VS TEMPERATURE 
hold on, grid minor; 
x0 = 100; y0 = 600; height = 300; width = 400; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Resistance Thermistor');xlabel(['Temperature: [T] = [C',char(176),']']); ylabel('Resistance: [R] = [\Omega]'); 
plot(Tplot, Rthermistor,'-b') 
legend('Resistance Thermistor','Location','northeast') 

  
figure()                % Error 
hold on, grid minor; 
x0 = 100; y0 = 600 - (80+height); 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Error For Range Of Temperatures');xlabel(['Temperature: [T] = [C',char(176),']']); ylabel(['Absolute Error [\DeltaT] = 

[C',char(176),']']); 
plot(Ttheoretical, Terror,'-b') 
legend('Absolute Error','Location','northeast') 

  
%                                       ///       SECOND FIGURES      \\\ 

  
figure()                % PLOT REAL TEMP, MEASURED TEMP FOR MEASURED VOLTAGE 
hold on, grid minor; 
x0 = 100 + (20+width); y0 = 600; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Voltage vs Temperature'); xlabel(['Temperature: [T] = [C',char(176),']']); ylabel([' Voltage [U] = [V]']); 
plot(Tplot, Utheoretical,'-b', Tplot, Umeasured, '-r') 
legend('Theoretical Voltage','Measured Voltage','Location','northeast') 

  
figure()                % PLOT ERROR VOLTAGE VS TEMPERATURE 
hold on, grid minor; 
x0 = 100 + 1*(20+width); y0 = 600 - 1*(80+ height); 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Voltage Measurement Error vs Real Temperature');xlabel(['Temperature: [T] = [C',char(176),']']); ylabel(' Absolute 

Error Voltage Measurement [U] = [V]'); 
plot(Tplot,Uerror,'-b') 
legend('Error Voltage Measurement','Location','northeast') 

  
%                                       ///       TERTIARY FIGURES      \\\ 

  
figure()                % PLOT REAL TEMP, MEASURED TEMP FOR MEASURED VOLTAGE 
hold on, grid minor; 
x0 = 100 + 2*(20+width); y0 = 600; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Temperature Vs Voltage'); xlabel([' Voltage [U] = [V]']); ylabel(['Temperature: [T] = [C',char(176),']']); 
plot(Ux,Ttheoretical,'-b',Ux,Tmeasured,'-r') %Ux,Tmeasured,'.b',        'Theoretical Voltage', 
legend('Tmeasured','Theoretical Temperature','Location','northeast') 

  
figure()                % PLOT ERROR VOLTAGE VS TEMPERATURE 
hold on, grid minor; 
x0 = 100 + 2*(20+width); y0 = 600 - 1*(80+ height); 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Absolute Error Temperature Measurement'); xlabel('Voltage [U] = [V]'); ylabel(['Temperature: [T] = [C',char(176),']']); 
plot(Ux,Terror,'-b') 



 

 

50 

legend('Absolute Error','Location','northeast') 
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Appendix 11: Linear potentiometer uncertainty 

This appendix aims to provide insight into uncertainty that is caused by the specific sensor and 

measurement setup as implemented in the proposed Therminus device. 

 

Lineair Potentiometer Uncertainty 

The linear potentiometer (LP sensor) setup and its resistor values (in order to maximize the voltage 

range) is described in the Electrical Circuit Appendix. The values that are given in this specific 

Appendix are calculated on the basis of a 12bit logic board. Note that the Arduino used in the current 

Therminus device might not have 12bit read capability on analog read ports. Hence an Arduino with 

12bit read capabilities is recommended. 

 

  

Figure (1): Calibrated lineair potentiometer 

upper bound voltage at real distance 

Figure (2): Calibrated lineair potentiometer 

lower bound voltage at real distance 

 

 

Figure (3): The absolute error resulting from 

the rounding error caused by discrete 

Arduino values at specific thickness 

Figure (4): Thickness uncertainty as caused by 

Arduino rounding error for thickness range 

 

Important values from the script are extracted and displayed to the user. The MATLAB output is 

given at the end of the appendix alongside the actual MATLAB script. 

 

Parameters as Used in Error Propagation Appendix 

To determine the maximum thickness error 𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
. The linear potentiometer, by default, is not 

calibrated which causes it to have a certain precision. To attain the highest possible accuracy, the LP 

sensor is calibrated. The maximum absolute error is caused by the combination of the discrete voltage 

measurement (by Arduino) the voltage read to resistance mapping, and the resistance to thickness 

mapping. Please note that errors caused by floating point approximation are not considered.  
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Since the error is the result of a number of different factors, the maximum error will be of only 

concern. The absolute value for maximum error is 𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 =  1.221𝑒 − 03 mm.   

 

MATLAB Script Outputs 

Measured Voltage [Umax, Umin]: [4.7889, 0.18443] 

Theoretical arduino step range [max, min]: [3922, 151] 

Useful occupancy of arduino step range: 92.09% 

 

Display maximum uncertainties @ thicknesses [mm]:  

Uncertainty [mm] @ Thickness [mm]:        0.001221      23.56 

 

% Lineair Potentiometer Sensor Error Estimation 
% TU Delft, 05/31/2019 
% Author: Sebastiaan Thomas Njio 

  
clc 
clear variables 
close all 

  
Resolution = 2^12-1; 

  
d = 0:2*10^(-5):100*10^(-3); %range of thicknesses 

  
%Declare Constants 
Rmax = 10.66*10^(3); Rmin = 18;  
Rchosen = 470; %Ohm 
Umax = 5*Rmax/(Rchosen +Rmax); Umin = 5*Rmin/(Rchosen +Rmin); 

  
Utheoretical = linspace(Umin, Umax, length(d)); 
Umeasured = zeros(2,length(Utheoretical)); 

  
Steps = (Resolution/5*Utheoretical); 
smax = round(Steps(end)); smin = round(Steps(1,1)); 

  
%Same mutation that will be performed by arduino 
Umeasured(1,:) = 5/Resolution*round(Steps); 
Umeasured(2,:) = 5/Resolution*round(Steps); 

  
% Voltage to Thickness Calculation made by Arduino 
A1 = d(end) / (smax - smin); B1 = -A1*smin; 
% Thickness of the measured material 
dmeasurement([1, 2],:) = 1000*[A1*round(Steps) + B1; A1*round(Steps) + B1]; 

  

  
%Errors 
C=1:length(d); Error = zeros(2,length(d)); 
Error(1,:) = (Umeasured(1,:) - Utheoretical(1,:)); 
Error(2,:) = (Utheoretical(1,:) - Umeasured(2,:));  
Error(3,:) = abs(Error(1,:)) + abs(Error(2,:)); %Uncertainty,  
% Range of values measured when in reality, d(1,:) should be measured 
dikte = 28*10^(-3); 
Index2_1 = max(find(d(1,:)<=dikte -0.3*10^(-3))); Index2_2 = max(find(d(1,:)<=dikte-0.3*10^(-3))); 
[StepUncertainty(1,1), Index1] = max(Error(3,:)); 
[StepUncertainty(2,1), Index2] = max(Error(3,1:Index2_2));  
%Find max error for 0.45 < d < 28 mm 
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StepUncertainty(1,2) = d(1,Index1)*1000; 
StepUncertainty(2,2) = d(1,Index2)*1000; 
Text = zeros(2,1); Text = char(Text); 
Text = ['Uncertainty [mm]:         '; '@ Thickness [mm]:         ']; 

  
clear Index1 Index2 Index2_1 Index2_2 
dplot = d*1000; 
%% Output values 
disp(['Measured Voltage [Umax, Umin]: [',num2str(Umax),', ', num2str(Umin),']']) 
disp(['Theoretical arduino step range [max, min]: [',num2str(smax),', ', num2str(smin),']']) 
disp(['Useful occupancy of arduino step range: ',num2str((smax-smin)/Resolution*100,4),'%']); fprintf('\n')  
disp(['*Note that the provided range depends on the orientation of the device.']) 
disp(['Display maximum uncertainties @ thicknesses [mm]: ']) 
disp([Text, num2str(StepUncertainty,4)]) 

  
%% Figures 

  
%                                       ///        FIRST FIGURES        \\\ 
figure()           
hold on, grid minor; 
x0 = 100; y0 = 600; height = 300; width = 400; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Measured Voltage vs Distance'); xlabel('Distance [d] = [mm]'); ylabel('Voltage [U] = [V]'); 
plot(dplot, Umeasured(1,:), '--r', dplot, Utheoretical,'-g') 
legend('Upper Bound','Theoretical','Location','northwest') 

  
figure()              
hold on, grid minor; 
x0 = 100; y0 = 600 - (80+height); 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Error Measured Voltage'); xlabel('Distance [d] = [mm]'); ylabel('Measured Voltage: [U] = [V]'); 
plot(dplot, Error(1,:), '-r', dplot, (Error(2,:)), '-b') 
legend('Upper Bound Error','Lower Bound Error','Location','northwest') 

   

  
%                                       ///       SECOND FIGURES      \\\ 

  
figure()   
hold on, grid minor; 
x0 = 100 + (20+width); y0 = 600; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Temperature Vs Voltage'); xlabel('Distance [d] = [mm]'); ylabel([' Voltage [U] = [V]']); 
plot(dplot, Umeasured(2,:), '--b', dplot, Utheoretical,'-g') 
legend('Lower Bound','Theoretical','Location','northwest') 

  
figure()  
hold on, grid minor; 
x0 = 100 + 1*(20+width); y0 = 600 - 1*(80+ height); 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Uncertainty Thickness as Function of Thickness');xlabel('Distance [d] = [mm]'); ylabel('Uncertainty Distance [d] = 

[mm]'); 
plot(dplot, Error(3,:) , '-b') 
legend('Error','Location','northwest') 

  
%                                       ///       TERTIARY FIGURES      \\\ 
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figure() 
hold on, grid minor; 
x0 = 100 + 2*(20+width); y0 = 600; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Uncertainty As Function Of Thickness'); xlabel('Distance [d] = [mm]'); ylabel('Uncertainty Distance [d] = [mm]'); 
plot(dplot, Umeasured(1,:), '--r', dplot, Utheoretical,'-g', dplot, Umeasured(2,:), '--b') 
legend('Upper Bound','Theoretical','Lower Bound','Location','southeast') 
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Appendix 12: Heat loss insulation uncertainty 

This Appendix describes the proposed linear interpolation to estimate the real heat loss to the 

environment through the insulation as function of measured environment temperature. 

Heat Loss Interpolation  

Appendix 5: ‘Insulation’ proposes a model for estimating important parameters inherent to the 

insulation design. The energy balance is too complicated in order to be solved analytically. As 

mentioned in Appendix Insulation, the energy balance is solved by means of a numerical solver. To 

reduce the required floating point operations necessary for estimating the heat flow through the 

insulation, the linear interpolation model is proposed. From Appendix 9: ‘Thermal conductivity 

measurement uncertainty’ a maximum error is attained in order not to exceed the 8% measurement 

accuracy requirement as stated in Appendix 2: ‘Phoebe experiment’. 

 
Figure 1: Graph of the absolute temperature error versus the temperature 

Important values from the script are extracted and displayed to the user. The MATLAB output, which 

outputs the linear interpolation values, is given at the end of the appendix alongside the actual 

MATLAB script. 

Parameters as Used in Error Propagation Appendix 

The maximum heat flow error will in theory 𝜎𝑄 be caused by the linear interpolation model. The 

values for linear interpolation are calculated from the real values from the MATLAB script as 

provided in Appendix 5: ‘Insulation’. The final interpolation values are calculated by the MATLAB 

script that is provided at the end of this specific Appendix. Note that the provided script loads certain 

variables from the insulation heat loss script. Thus requiring a line of code to save said variables to a 

separate file. The resulting value for 𝜎𝑄 =  1.7694𝑒 − 05 which is represented by the maximum 

absolute error (error = |proposed value - real value|). Note that this error occurs at an environment 

temperature of 11.48 C°. 

The aforementioned line of code that is required to be run: 
save('Qis_0.057_28.mat', 'reg','Qmeeting','Qisgok','Tinf_vec') 
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Outputs by MATLAB script 

Max Heat Flow Insulation [Qismax, @T]: [0.0783686           30] 

Min Heat Flow Insulation [Qismin, @T]: [0.077489          -10] 

 

Proposed Lineair Fit for Isolation Heat Flow (Q = A*T + B): (Q = 2.199e-05*T + 0.077709) 

Maximum Error Caused by Approximation [Error, @T]: [1.7694e-05, 11.48] 

Heat flow @max Error [Qis_linfit, @T]: [0.077961, 11.48] 

MATLAB Code 

% Insulation Heat Flow Linear Interpolation for Arduino Application 
% TU Delft, 05/31/2019 
% Author: Sebastiaan Thomas Njio 

  
clc 
close all 
clear variables 

  
%% Read data 
load('Qis_0.057_28.mat', 'reg','Qmeeting','Qisgok','Tinf_vec') 
Qis = reg(4,:); 
Qis_simple = Qisgok; 
Tinf_vec=Tinf_vec-273.15; 

  
clear reg Qisgok %Clear unnescessary variables in order to prevent workspace clutter 

  
%% Calculations 
[Qismax, indexmax]=max(Qis); 
[Qismin, indexmin]=min(Qis); 
Tinf_vec(1,indexmax); 

  
A = (Qismax - Qismin)/(Tinf_vec(1,indexmax)-Tinf_vec(1,indexmin)); 
B = Qismax - A*Tinf_vec(1,indexmax); 

  
Qis_linfit = A.*Tinf_vec + B; 
Qis_error = Qis - Qis_linfit; 
[Qis_errormax, indexerrormax] = max(Qis_error); 

  
% Display values to user 
disp(['Max Heat Flow Insulation [Qismax, @T]: [',num2str([Qismax, Tinf_vec(1,indexmax)]),']']); 
disp(['Min Heat Flow Insulation [Qismin, @T]: [',num2str([Qismin, Tinf_vec(1,indexmin)]),']']); fprintf('\n'); 
disp(['Proposed Lineair Fit for Isolation Heat Flow (Q = A*T + B): (Q = ',num2str(A),'*T + ',num2str(B),')']) 
disp(['Maximum Error Caused by Approximation [Error, @T]: [',num2str(Qis_errormax),', 

',num2str(Tinf_vec(indexerrormax)),']']) 
disp(['Heat flow @max Error [Qis_linfit, @T]: [',num2str(Qis_linfit(indexerrormax)),', 

',num2str(Tinf_vec(indexerrormax)),']']) 

 
%                                       ///        FIRST FIGURES        \\\ 
figure()                 % PLOT HIGH FIDELITY VOLTAGE VS TEMPERATURE 
hold on, grid minor; 
x0 = 100; y0 = 600; height = 300; width = 400; 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('title'); xlabel('xlabel'); ylabel('ylabel') 
plot(Tinf_vec, Qis,'-b',Tinf_vec,Qis_simple*ones(length(Tinf_vec)),'-g',Tinf_vec,Qis_linfit,'r') 
legend('Real Qis','Simple Qis','Interpolation Qis','Location','northeast') 
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figure()                % Error 
hold on, grid minor; 
x0 = 100; y0 = 600 - (80+height); 
set(gcf,'units','points','position',[x0,y0,width,height]); 
title('Error For Range Of Temperatures');xlabel(['Temperature: [T] = [C',char(176),']']); ylabel(['Absolute Error [\DeltaT] = 

[C',char(176),']']); 
plot(Tinf_vec, Qis_error,'-b') 
legend('Absolute Error','Location','northeast') 
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Appendix 13: General project planning 

A general outline of the project planning was made at the beginning of the project, with a generic 

description of the different milestones within the project. The planning consists of 9 tasks. A more 

detailed description of the planning is displayed in table 1. 

1. Final concept choice (2 days): e.g. evaluation criteria 

2. Design (e.g. parts)  (1 week) 

3. Design Freeze 

4. Research / test samples in the lab (phoebe) (3 days) 

5. Detailed design (frame etc.) (1 week) 

6. Make prototype (3 days) 

7. Test / validate / calibrate (1 week) 

8. Report 

9. Presentation 

 

Table 1: A detailed overview of the project planning 

Week Moment Events (day) Activities 

1 March 25-29  
 

Final Concept Selection 

2 April 1-5 
 

Study PHOEBE+contact lab 

3 April  8-12 Exams 
 

4 April 15-19 Exams Selection of parts (Wednesday 17) 

5 April 22- 26  
 

Design, Design freeze, part selection 

6 April/May 29-3 
 

Lab tests 

7 May 6-10 
 

First prototype and Tests 

8 May 13-17 Interim Report II (16) Tests and Validation 

9 May 20-24 
 

Final Report 

10 May 27-31 
 

Allocated for delays 

11 June 3-7 Final Paper Deadline (7) Allocated for additional delays 

12 June 11-14 Oral Exam (12) 
 

13 June 17-21 Final presentation (20) 
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Appendix 14: Clothing thickness dataset  

A dataset is created of thicknesses of clothing pieces, by measuring the thickness of 25 winter coats, 25 

summer coats, 25 sweaters and 25 T-shirts with a caliper. Based on this dataset, a good estimation is 

made on the average thickness of clothing pieces as well as the variance and minimum and maximum 

thickness. This information is used for calculations and experiments. The gathered information is 

shown in table 1. 

Table 1: Dataset of thicknesses of clothing pieces. 

Piece of clothing Winter coat Summer coat Sweater T-shirt 

Set 1 (Average) 3.34 1.096 1.77 0.76 

1 3.45 0.69 2.35 0.6 

2 3.05 2.5 1.3 0.95 

3 2 0.78 1.2 0.85 

4 2.8 0.765 1.95 0.8 

5 5.4 0.745 2.05 0.6 

Set 2 (Average) 10.102 1.08 2.02 1.042 

1 8.16 1.3 0.75 1.03 

2 12.7 1.1 1.25 1.27 

3 8.55 0.8 3.8 0.91 

4 6.8 1.2 3.1 1.11 

5 14.3 1 1.2 0.89 

Set 3 (Average) 8.448 2.8512 4.898 0.93 

1 11.42 3.5 4.29 1.12 

2 5.89 1.7 6.33 1.59 

3 7.48 4.7 7.7 0.47 

4 10.41 1.98 2.59 0.25 

5 7.04 2.376 3.58 1.22 

Set 4 (Average) 7.2 0.6 1.76 0.58 

1 6 0.4 1.5 0.4 

2 10 0.4 1.7 0.7 

3 7 0.7 2.5 0.4 

4 7 1.1 1.7 0.5 

5 6 0.4 1.4 0.9 

Set 5 (Average) 14.308 0.61 2.64 0.67 

1 5.24 0.5 3 0.5 

2 12 0.6 4.3 0.6 

3 14.3 0.3 2.7 1.3 

4 4.6 0.2 2 0.6 
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5 35.4 1.45 1.2 0.35 

Average of all sets 8.6796 1.24744 2.6176 0.7964 

Max 35.4 4.7 7.7 1.59 

Min 2 0.2 0.75 0.25 

Variance 42.91 1.14 2.78 0.12 

 

 

 
 


