

Measuring thermal conductivity of textiles for

time of death estimation

By

Ivo Sebastiaan Best (4484509)

Nicolaas Sebastian Noort (4087445)

Sebastiaan Thomas Njio (4517393)

Jason Morgan van Schijndel (4490339)

Fabian Matthias Verhage (4591801)

CONFIDENTIAL

Supervisor: Dr.ir. A.Loeve

Delft University of Technology

1

Abstract 3

I. Introduction 3

II. Design process 3

A. Design requirements 3

B. Functional design and justifications 3

1) Conductivity measurement method 3

2) Insulation 4

3) Temperature Difference 4

4) Temperature Control 6

C. Prototype design 6

1) Mechanical design 6

a - Defining partial solutions 6

b - Material Selection 7

2) Electrical design 7

a - Heat Pad 7

b - Peltier Element 8

c - Temperature Sensors 8

d - Arduino and temperature control 8

e - MOSFET For PWM Control 8

III. Concept Validation 8

IV. Results 9

V. Discussion 9

A. Limitations and recommendations for future research 9

VI. Conclusion 10

Acknowledgements 10

Sources 10

Appendix I: Measuring principles 1

Guarded hot plate method 1

Hot wire method 1

Modified Transient Plane Source method (MTPS) 2

Appendix 2: Phoebe experiment 3

Appendix 3: Morphological chart 5

Appendix 4: Solidworks assembly drawing 8

Appendix 5: Insulation 9

Insulation 9

Shielding 9

Assumptions 9

Values 10

Most Critical Case 10

2

Important remarks 12

Outputs from MATLAB script 12

Time to Steady State 12

Appendix 6: Heat pad 26

Appendix 7: Electrical circuit 30

Appendix 8: Arduino code 34

Arduino Code 35

Appendix 9: Thermal conductivity measurement uncertainty 40

Defining Aspired Precision 40

Parameter Remarks 40

General Formula Error Propagation 40

Formulae 𝜟𝑻 Error Propagation 41

Formulae 𝒅𝒕𝒆𝒙𝒕𝒊𝒍𝒆 Error Propagation 41

Formulae 𝑸 Error Propagation 41

Resulting Uncertainty Formula 42

Two Evaluated Cases 42

Uncertainty Values 42

Resulting Error Estimate 43

Lineair Interpolation Heat Loss Model Justification 43

Appendix 10: Thermistor uncertainty 46

Thermistor Sensor Setup 46

Parameters as Used in Error Propagation Appendix 47

MATLAB Script Outputs 47

Appendix 11: Linear potentiometer uncertainty 51

Appendix 12: Heat loss insulation uncertainty 55

Heat Loss Interpolation 55

Parameters as Used in Error Propagation Appendix 55

Outputs by MATLAB script 56

MATLAB Code 56

Appendix 13: General project planning 58

Appendix 14: Clothing thickness dataset 59

3

Abstract

 This project was conducted as part of the research

project Therminus, a collaboration between the

Netherlands Forensic Institution (NFI), the

Amsterdam Academic Medical Centre (AMC) and the

TU Delft, which was initiated with the goal to increase

the accuracy of time of death estimations. The objective

of this project was to design and produce a prototype

which can accurately measure the thermal conductivity

and thickness of a sample of the clothing worn by the

deceased. A design process was undergone which

resulted in the construction of an initial prototype. At

the TU Delft no suitable conductivity measurement

device was available for checking the experimental

measurements of the prototype. Thus, validation of the

prototype was done by measuring the conductivity of

materials with known thermal properties. Initial testing

showed that the prototype did not accurately measure

thermal conductivity. This was deemed to be due to the

fact that actual heat loss was higher than calculated.

After adjusting the heat loss and testing paper and

cotton samples conductivity values comparable to

tabulated values were found by the device. In order to

build on the outcomes of this project, future research

could be done focusing on investigating to what extent

a relationship exists between the level of compression

of a material and the value of thermal conductivity

which is found.

I. Introduction

In 2017 the lives of 158 people were taken by homicide

in the Netherlands [1]. The resulting investigations

were not always conclusive. In fact, in 2017 less than

26% of registered crimes in the Netherlands were

resolved [2]. In order to resolve more murders the

exact Time of Death (ToD) of the victim should be

determined. This would aid the process of identifying

and eliminating suspects. Currently the ToD estimation

is done using the Henssge model. This method uses

the ambient body temperature, rectal body

temperature and bodyweight of the deceased [3].

However, the model relies on various assumptions and

there are many conditions under which it can’t be

applied. This makes the model user-dependent and it

has a high uncertainty. A more intricate ToD

estimation, called Phoebe [3], is created to replace the

outdated Henssge model. In Project Therminus

methods of measuring thermal properties of clothes

and surfaces are being developed in order to use the

properties as input in the Phoebe model. Within this

project the focus lies on measuring the thermal

conductivity of textiles. Clothes act as insulators to keep

us warm and protected from the elements, but the

conductivity of clothing varies across different kinds of

fabrics. The aim of the project is to design and produce

a prototype which can accurately measure the thermal

conductivity and thickness of a sample of the clothing

worn by the deceased.

II. Design process

A. Design requirements

As the device must be suitable for use at crime scenes,

it must conform to several requirements determined in

previous research on the project. First and foremost,

the device must be able to measure the thermal

conductivity of any clothing sample with an error small

enough that it leads to an error in the ToD estimation

of less than 3 percent [3, 8]. This 3 percent error in the

ToD estimation translates to an 8 percent maximum

error in the thermal conductivity and was found by

testing the Phoebe model at the thermal conductivity

level which has the lowest acceptable absolute error as

stated Appendix in 2 Phoebe experiment. The clothing

sample can be cut, but damage to materials should be

minimal [3]. Additionally, the device must conduct its

conductivity measurement within a timeframe of less

than 30 minutes, since forensicists have limited time at

crime scenes [9, 3, 8]. On top of that, no cross-

contamination may take place, which means the device

should be either cleanable or disposable [9]. Cleaning

will be done with alcohol, chlorine and UV-light.

Finally, the device should be low cost and portable [9].

These requirements form the basis for the design of the

device. In the next paragraph design choices are

outlined. Each design choice is justified by the fact that

it contributes to the fulfilment of least one requirement.

B. Functional design and justifications

1) Conductivity measurement method

Several methods of measuring the thermal conductivity

of a material exist. The choice of working principle for

the design process undergone in this project was made

by evaluating working principles discussed in previous

research [3]. Particular consideration was given to 3

concepts, which are briefly summarized in Appendix 1

Measuring principles. After analysing the three

methods, a steady state method with 1-directional heat

flow as visualised in figure 1 was deemed most suitable

4

for this project. This method involves placing the

sample material in between two aluminium plates, one

of which is heated by a heat pad and one of which is

cooled by a Peltier element. The heat flows through the

sample from the hot body to the cold body, which are

both kept at a constant temperature. This setup is

surrounded by a strong insulator, so as to minimize loss

of heat to the environment. The amount of heat added

can be chosen, and given that the temperatures of the

cold and hot bodies are held constant, such that

thermal conductivity k can be determined using

Fourier’s law of heat conduction (1) [7]:

(1) 𝑄 =
𝐴

𝑑
𝑘 𝛥𝑇

In which Q is the amount of heat that is conducted

through the sample, A is the area of the hot and cold

body, d is the thickness of the sample and 𝛥𝑇 is the

temperature difference.

Figure 1: Schematic representation of a steady state method

with 1-directional heat flow [6]

Because the aforementioned measurement method

relies on a one-directional heat flow, it is crucial for the

accuracy of results that most of the heat flows in the

predetermined direction, and that the fraction of heat

lost can be accurately estimated. The following

paragraph describes how this has been ensured and

why the design choice for insulation was made.

2) Insulation

In order to achieve reliable estimations of the thermal

conductivity, measurements must be made in a

controlled environment. Since crimes can take place in

varying settings, the environment contains unknown

factors which can distort the measurements. Examples

of such unknowns are airflow due to the wind, which

leads to thermal convection, and an unknown radiative

heat transfer with the environment. To eliminate these

unknowns the device must be insulated. An important

result of this is a reduction of heat transfer to the

surrounding environment and less uncertainty

regarding the flow of heat. As insulation material

Polyisocyanurate (PIR) was chosen, due to the fact that

it is one of the strongest insulators available, having a

thermal conductivity of 0.022 W/(mK). In choosing the

thickness of the insulation a trade-off had to be made.

Given that the device must be portable, a compact

design is required, meaning that the insulation can not

be too thick. A compact design also reduces the cost of

materials. On the other hand, the insulation has to be

thick enough to reduce the amount of heat lost to the

environment to an acceptable level.

Appendix 5 Insulation, gives a proper in depth

explanation on which insulation thickness was chosen.

The result is an insulation thickness of 30mm. This

gave a good trade-off between size, insulation

effectiveness and time it takes to reach steady state

operation. Figure 2 shows that, after 30mm of

insulation thickness the heat loss through the insulation

flattens this means a larger thickness only provides a

minor increase in insulation effectiveness.

Figure 2: Power loss through the insulation in comparison to

the insulation thickness.

3) Temperature Difference

A temperature difference between the insulation

surface and the environment temperature is to be

5

expected. Appendix 5 Insulation describes the method

used for evaluating the exact heat flow through the

proposed insulation. The insulation is to separate the

environment from the hot body which will be kept at a

10 degree temperature difference with respect to the

environment. The radiative heat transfer is hard to

account for in an unknown environment, thus in order

to increase the accuracy of the Therminus device,

shielding is proposed. Shielding the device has two

beneficial effects. The first beneficial effect is that

unknown radiation sources, from the environment, will

not distort measurements. The second benefit is that a

controlled environment, around the insulation, is

created. The controlled environment allows for the

description of both radiative and convective heat

transfer. The thermal conductivity of a specimen is

determined using equation (2).

(2) 𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 = 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒 ∗ (
𝐴∗𝛥𝑇

𝑄
 − 2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
)(−1)

Q as present in equation (2), is the amount of heat that

is conducted through the specimen. The value for Q is

determined by use of equation (3). Thus requiring

description for both the heat loss through insulation

𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛, and 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑.

(3) 𝑄 = 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

Minimizing 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 with respect to the 𝑄 necessary

for measurements, also minimizes any errors caused by

mistakes made in the 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 estimation.

The surface temperature of the insulation will be

logically low (as compared to the environment) since

the amount of heat that needs to be dissipated is

dispersed over a large surface area. Figure (3) depicts

the expected insulation surface temperature for the

range of expected environment temperatures. Please

note that the surface temperature, as depicted in figure

3, seems to be related in a linearly inversely

proportional way. Also note that figure 3 is retrieved

from Appendix 5 Insulation. Figure 4 as retrieved from

Appendix 13 Heat loss insulation uncertainty, depicts

the absolute error made when assuming linear

interpolation. The significance of the aforementioned

assumption is defined in Appendix 10 Thermal

conductivity measurement uncertainty. The error

made by assuming linear interpolation as a valid

method for estimating the heat loss through insulation

is small and constitutes a small amount (~6%) of the

total error. Please note that this value is subject to

change when using a different voltage measurement

logic board. Details of which are to be found in

Appendix 10 Thermal conductivity measurement

uncertainty.

Figure 3: Expected temperature difference between

insulation surface and environment temperature

Figure 4: Absolute Error when assuming linear

interpolation insulation heat loss model

6

4) Temperature Control

To maintain the aforementioned 10 degrees

temperature difference, the heat pad will have to

operate at a range of 0.15W to 40W see Appendix 6

Heat pad. Also, the peltier element will have to remove

heat from the system in order to keep the cold body at

the environment temperature. The current within the

electronic circuit cannot be easily manipulated.

Therefore, both heating and cooling elements are

controlled using the onboard PWM controller on an

Arduino. An Arduino was chosen to control this signal

due to having experience with using one in earlier

projects. The maximum current draw of the heat pad

and peltier element is 4000 mA. This high current

poses a challenge, as regular Bipolar Junction

transistors (BJT) cannot efficaciously switch such high

currents without burning out. Therefore BJT

transistors are omitted from the design considerations.

The solution for the proposed problem is stated in the

electrical circuit design.

C. Prototype design

In this section, both the mechanical and electrical

design of the prototype are discussed. The

mechanical design subsection describes partial

solutions to the stated design problems, as well as

displaying the SolidWorks model and justifying

the choice of materials. The electrical design

subsection describes a number of important

electrical components and their accuracy.

Additionally, control mechanisms and circuitry

considerations are mentioned.

1) Mechanical design

a - Defining partial solutions
At the start of the project a morphological chart was

created, Appendix 3 Morphological chart, outlining

problems and potential solutions discussed in previous

research on the Therminus project [1,8]. The chart can

be found in Appendix 4 Solidworks assembly drawing.

The main problems identified were the following:

-How will the steady-state system be kept at a stable

temperature difference? (1)

-How will the system be insulated from the

environment to reduce heat leaks? (2)

-How will the device bring the hot and cold parts

together as to measure the sample? (3)

Several solutions were found for these questions. The

final design can be found in figure 5.

The solution for (1) is reliant on two subsystems. The

hot body is heated by a heat pad to the desired constant

temperature. The cold body is held at environment

temperature with a peltier element{13}, heat sink{20}

and fan combination.

The insulation (2) for the hot body system has to ensure

that the heat loss (to the environment) is minimal in

order to have an accurate estimation of how much heat

is conducted by the sample. As solution the hot body is

contained in a hollow box{4} filled with insulation

material made to size. The respective box has square

openings to allow for assembly. Temperature sensors

Figure 5: Part of the drawing of the assembly from the SolidWorks model with numbers referencing to its respective parts.

The rightmost drawing is a view through the centre of the model to outline internal parts

7

are placed on the surfaces of both the hot and cold

body{5}, whilst opposing the sample of which the

thermal conductivity is to be measured. The placement

of the temperature sensors results in more

cumbersome mathematical formulae, but is offset with

the increased usability and cleanability of the device.

The used formulae with the respective uncertainty

analysis can be referenced in detail by consulting

Appendix 10 Thermal conductivity measurement

uncertainty.

For the last problem (3) a linear rail guide{17} is used.

The bottom part{1} is the cold body system and will be

kept stationary and the hot body will be able to move

up and down. The box of the bottom part will be fitted

with an extruded piece, in which a vertical square

tube{2} is mounted. On the vertical square tube a linear

rail guide is mounted, on which the hot body box is

assembled. The guide rail will add additional rigidity to

the system. The propulsion system consists of a worm

drive and belts{10,11}. The worm drive is self-locking,

making it possible to accurately set elevation levels on

the system. A linear potentiometer{16} is assembled on

the square tube and attached to the hot-body box in

order to measure the distance between the hot-body

and cold-body boxes. The addition of a linear

potentiometer is justified by the requirement of Phoebe

(imposed on the user) to input a thickness of the

analysed specimen.

b - Material Selection
Figure 5 displays drawings of the prototype, as

modelled in SolidWorks. Gross dimensions and

complete views can be found in Appendix 4 Solidworks

assembly drawing. The square tube {2} is made of

aluminium, because it is rigid and lightweight. The

upper box {4} and lower structure {1} are 3D printed

out of PLA. Justification for PLA follows from four

properties being that PLA is lightweight, a good

insulator (k=0.13 W/mK), inexpensive and can be

made to the desired dimensions. The supporting rods

{14} and drive rods {9} are made of steel instead of

aluminium, as these parts are considered critical

mechanical parts of the device. The conductive

material {5}, previously referred to as hot and cold

body, aluminium Alloy 5754 (k=147 W/mK) is chosen.

This specific alloy has a high thermal conductivity, is

extremely resistant to corrosion and resistant to the

mentioned cleaning methods. Both PLA and

aluminium meet the previously defined design

requirements imposed on the materials.

2) Electrical design

a - Heat Pad

A key requirement, the device has to fulfil, is that it

must be capable of measuring a range of thermal

conductivity values. The chosen conductivity

measurement method, as described on page four, relies

on a heat pad to provide the heat which is to be

conducted through the sample. This is considered

adequate for the Therminus device. The heat pad is

able to create the desired 10 degree temperature

difference. The thermal aspect of the measurement

depends on a few design parameters, namely: surface

area, thickness, thermal conductivity and temperature

difference. As stated before, the relationship between

specimen, heatflow and geometric properties are given

by fourier’s law of steady state thermal conductivity

which states that

(1) 𝑄 =
𝐴

𝐿
𝑘 𝛥𝑇

The values for thermal conductivity that the Therminus

device should be able to measure range from 0.057 on

the low end, and 0.52 on the high end of the spectrum

[14]. Data based on a sample size of 25 T-shirts, see

Appendix 14 Clothing thickness dataset suggests that

99.73% of T-shirts is expected to be at least 0.44 mm

thick. Thus suggesting a minimum thermal resistivity of

[𝑅𝑡ℎ] =8.46*10
-4

 [m
2

K/W]. Once more assuming

clothing thickness is normally distributed, in 99.73% of

cases, coats will be thinner than 28mm. The upper

bound for thermal resistivity thus becomes [𝑅𝑡ℎ]

=4.80*10
-02

 [m
2

K/W].

From Fourier’s law of thermal conductivity a design

parameter is derived (4)

(4)
𝑄

𝐴
=

𝛥𝑇

𝑅𝑡ℎ

One can deduct that the head pad is required to have a

minimum index (Q/A) > 11.8*10
3

. The chosen heat

pad has a power of 48W heat pad and a surface area of

0.036 m
2

. The heat pad has a performance index (Q/A)

of 13*10
3

 and will therefore be able to supply sufficient

heat for at least 99.73% of T-shirts. Please consult

Appendix 6 Heat pad for the used formulae and the

used MATLAB script.

8

b - Peltier Element

A peltier element is used to remove heat that is

conducted by the sample, in order to maintain the

desired temperature difference. The element is shaped

like a square and transfers heat from one surface to the

other. Peltier is fixed to the cold aluminium body and

is PID controlled, see Appendix 8 Arduino code for

the PID control code. Since the peltier element is

merely used to remove heat from the system (to

maintain steady state), said element does not detract

from the accuracy of the device. The former claim is

used as justification to omit said peltier from the

uncertainty analysis as carried out in Appendix 10

Thermistor uncertainty. Uncertainties related to the

cold body are inaccuracies which are primarily

attributable to the electrical temperature measurement

setup.

c - Temperature Sensors

Three temperature sensors are used in the prototype.

The environment temperature sensor is a PTC sensor,

meaning its resistance increases with temperature, with

a base resistance of 2 kΩ at 25 degrees Celsius. The

other two sensors are thin film sensors, designed

specifically to measure surface temperatures. Their

thin construction enables fast temperature response,

allowing for quick and accurate surface temperature

measurements. These sensors are placed against the

hot and cold bodies. For these sensors a higher base

resistance, 5kΩ at 25 degrees Celsius, was chosen. All

three sensors can viably be used in temperatures

ranging from -50 to 150 degrees Celsius and have a

prespecified accuracy of 1%. The process of calibration

lowers the maximum temperature uncertainty from

6.758% to 1.278%, see Appendix 10 Thermistor

uncertainty. For the calibration process see Appendix

7 Electrical circuit.

d - Arduino and temperature control

The prototype uses an arduino UNO to power and/or

control the electrical components used. See Appendix

7 Electrical circuit for the electrical circuit and how

everything is connected to each other. Temperature

control is handled by means of a PID controller (see

Appendix 8 Arduino code) implemented in the

arduino software uploaded onto the arduino. The

choice for a software based control system comes

mainly from usability and flexibility point of view. Two

PID controllers are used in conjunction to control the

duty cycles of both the heat pad and the peltier element

respectively. Both duty cycles are controlled through

PWM. PWM allows the heat pad and peltier to

function at the desired voltage and current whilst also

enabling control. An important remark is that the

Arduino Uno does possess a 16-bit timer which can be

enabled through low level software modifications.

Whilst theoretically possible, one might refrain from

doing so since this can have negative consequences for

the usage of standard Arduino libraries.

e - MOSFET For PWM Control

The heating and cooling elements require currents

(4000 mA) which Arduino (max 40 mA) is incapable of

supplying. For this reason the required current is

provided by external power supplies, thereby not

passing through the delicate Arduino circuitry.

Standard issue semiconductor transistors cannot switch

such high currents effectively, which is why the use of

MOSFETs is justified. A suitable logic-level MOSFET

is the IRLZ44N by International Rectifier. The

IRLZ44N can switch the required current without

introducing noticeable transient behaviour since its

transient spans ~100ns.

In the worst imaginable case the resistance of the

MOSFET will amount to 32 μΩ causing a voltage drop

of ~12.8 μVolt. The voltage drop (worst case:

<1.06*10
-04

 % of smallest voltage drop) incurred by the

MOSFET, is small and thus will not be considered in

further analysis (error propagation and device

performance). The MOSFET’s are also suitable for use

in a PWM controlled circuit because their transient

behaviour is excellent when considering the limitations

imposed by the arduino PWM controller. The PWM

controller on the arduino board has a minimum duty

cycle of 3.8 μs whilst the rise and settle time of the

MOSFET’s, combined, do not exceed 100 ns. Since

the MOSFET’s are switching currents far below their

maximum currents, the maximum operating

temperature never approaches the T-junction,

therefore no heat sinks are required.

III. Concept Validation

The prototype has to be tested in order to prove that

the concept of choice results in a working device.

Looking at the design requirements mentioned in the

9

design process section, it can be said that the accuracy

of the device’s conductivity measurement should be

evaluated in order to conclude whether or not the

device functions at an acceptable level. One way to test

this is to have the conductivity of test samples measured

by a validated measurement device in a university

laboratory or through a third party. However, at the TU

Delft no suitable conductivity measurement device is

available for checking the measurements of the

prototype. After consulting with a professor of

thermodynamics at the TU Delft, the conclusion was

drawn that a second validated measurement device

would have to be designed to validate the prototype.

This is not feasible within this project. Therefore,

validation of the prototype must be done by measuring

the conductivity of materials with known thermal

properties. Since the apparatus is designed to measure

textile samples, which have a low conductivity [3],

samples with known values for conductivity rather than

table values are required to assess the accuracy of the

device. After searching for suitable materials, the

construction grade isolation material expanded

polystyrene (EPS) with a conductivity of 0.04W/mK

was found. This material has a consistent thermal

conductivity value and can easily be manipulated to the

desired shape.

The difference between the theoretical and

experimental value is the error, which has to be

reduced to a maximum error of 8%.

IV. Results

During preliminary testing the device did not accurately

measure the thermal conductivity values of the

verification sample. For the EPS sample mentioned

above, a value of 0.04 W/mK was meant to be found,

but the value found by the device was 0.4 W/mK. After

adjusting the potentiometer settings and properly

pressing the hot body onto the material a value of 0.17

W/mK was found.

Although this value was closer to the real

conductivity of the EPS sample, the measurement was

still inaccurate. To correct for this the absolute heat loss

through the insulation was adjusted in the model and

eventually the right value of 0.04 W/mK was found for

EPS.

To check whether the device would now also

provide accurate measurements for other materials, a

test was done with paper, which was found to have a

thermal conductivity value of 0.05W/mK [12].

Additionally, a test was done with a t-shirt of 100%

cotton for which the tabulated value was 0.029W/mK

[12]. With the adjusted heat loss values, conductivity

values were found by the device which are comparable

to the values tabulated in the Engineering Toolbox

[12].

V. Discussion

The wrong conductivity values initially given by the

device (see Results) where fixed by changing the

expected power loss through the insulation. The

expected theoretical value is 0.078W, Appendix 5

Insulation and was consequently changed to 0.5W.

This is believed to be a justified change because the

proposed insulation differs from the realized

insulation. The realized insulation differs from the

aspired insulation in a few fundamental ways. First of

all the real insulation does not fully make contact with

the warm body, consequently creating a layer of air with

varying thickness between them. The outer layer of the

insulation box is made from PLA which has lower

thermal conductivity (0.13 W/mK) than the

polyisocyanurate (0.022 W/mK). Between this outer

layer of PLA and the polyisocyanurate another layer of

air can be found, again of varying thickness. It is

imperative to note that depending on the air pocket

size, internal convection can occur. Internal convection

will further degrade the insulation effectivity. Secondly,

the device does not yet have the proposed shield, which

means forced convection and unknown radiative heat

transfer might occur. Lastly, two metal bolts are

inserted into the insulation which are connected to two

aluminium bodies for belt connection. Those two

aluminium bodies are on the outside of the insulation,

practically acting as a heatsink.

A. Limitations and recommendations for future
research

One limiting factor in the accuracy of the prototype is

the fact that the Arduino UNO is practically limited to

8 bit PWM output which means that it can only control

duty cycles of the heat pad and peltier element in 256

steps. In part due to the discrete nature of voltage

measurement chips, the worst case thermal

conductivity error expected to be 22% (see Appendix 9

Thermal conductivity measurement uncertainty). This

error could be reduced by switching to a development

board with a 12 bit read functionality. An example of

such a development board is the Arduino DUE.

However, this board implements the SAM3X chip

which is limited to inputs of 3.3V maximum.

Consequently, switching from the UNO to the DUE

was not feasible do to the electrical circuit, as it would

entail having to redesign the electrical circuit,

recalibrate the PID controller, potentiometer and

temperature sensors. It is recommended to use the

Arduino DUE in future Therminus projects, Appendix

10

9 Thermal conductivity measurement uncertainty

contains the justification for the recommendation.

Another issue that occurred was heating of the cables.

The resistance of the arduino cables combined with the

current passing through the cables, caused the cables to

heat up over time. To avoid melting cables, the

prototype was not used at maximum power. This

meant both an increase in the time until achieving

steady state and that the device could not measure the

full range of textile samples. The problem can be

solved by using cables with a larger cross section to

reduce their resistance.

A number of recommendations can be given for the

mechanical improvement of this prototype. The linear

potentiometer should be attached closer to the upper

box to improve accuracy due to the reduced bending

moment. The linear rail should be of the ball bearing

variety instead of the plastic bearing since the earlier has

higher stiffness.

A potential improvement for a second version

of the prototype is a more simple transmission system

with the use of a spindle attached to the moving box,

powered by the upper handle. Such a spindle would

reduce the amount of moving parts necessary in the

device. Additionally, a containment box should be

implemented in the second version. This box

surrounds the heat-pad and heatsink systems and

allows for a controlled environment in order to

minimize external effects on the measuring process,

like convection and radiation. For the first iteration this

box was not made, because validation of the design

occurs indoors in a stable environment.

Another limitation faced in this project is the fact that

compression of the fabric might affect the readings of

the thermal conductivity of the fabric. This was thought

to be the case since air, which has its own thermal

conductivity, is pressed out of the material. To

investigate the effect fabric compression has on the

measurements, an experimental study is required.

Future research could therefore be aimed at finding the

extent to which a relationship exists between the level

of compression of a material and the value of thermal

conductivity which is found.

VI. Conclusion

This project was set up to further the progress of the

Therminus research project which aims to increase the

accuracy of ToD estimations. One objective of the

Therminus project was to create a device capable of

accurately estimating the thermal conductivity of

clothing of the deceased. In this project such a device

was designed and a prototype was built. Preliminary

testing of the prototype did not yield the expected

results. This was in part due to the lack of a validated

conductivity measurement device to verify results.

Nevertheless, promising steps were made towards the

goal of the Therminus project. Important lessons were

learnt over the course of the project, resulting in a

number of recommendations for mechanical and

electrical improvements in future prototypes. In

particular, the expected heat loss through the insulation

should be more accurately calculable. To this end, the

prototype’s insulation should more closely resemble

the insulation theorised in the design. Additionally, the

use of a development board with a 12-bit read

functionality would help in attaining the desired

accuracy. By generating these new insights this project

has furthered the Therminus research project,

providing a foundation for future prototyping and

testing. Through further research, design and

prototyping the target of developing a portable device

that can estimate the thermal conductivity of a given

textile with a margin of 8% is achievable.

 Acknowledgements

A special thanks to:

Dr. Ir. A.J. Loeve TU Delft

Jos van Driel TU Delft

Sources

[1] Centraal Bureau voor de Statistiek (2018).

Overledenen; moord en doodslag; pleeglocatie

Nederland. Retrieved 5 June 2019 from

https://opendata.cbs.nl/statline/#/CBS/nl/dataset/8145

3NED/table?ts=1559398808493

[2] Centraal Bureau voor de Statistiek (2019).

Geregistreerde criminaliteit; soort misdrijf, regio.

Retrieved 5 June 2019 from

https://statline.cbs.nl/Statweb/publication/?DM=SLNL

&PA=83648NED&D1=0,3-

4&D2=0&D3=0&D4=a&HDR=T&STB=G2,G1,G3&

VW=T

[3] Dessing, O. (2018). Surface testing methods to

define thermal properties of surfaces at crime scenes.

TU Delft, Delft
[4] Faghani, F. (2010) Thermal conductivity

measurement of pedot : pss by 3-omega technique.

Master’s thesis, Linkping University

[5] "Richtlijn Forensische Geneeskunde Postmortaal

interval", Forensisch Medisch genootschap, vol. 1, no.

1, 2012.

https://opendata.cbs.nl/statline/#/CBS/nl/dataset/81453NED/table?ts=1559398808493
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/81453NED/table?ts=1559398808493
https://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=83648NED&D1=0,3-4&D2=0&D3=0&D4=a&HDR=T&STB=G2,G1,G3&VW=T
https://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=83648NED&D1=0,3-4&D2=0&D3=0&D4=a&HDR=T&STB=G2,G1,G3&VW=T
https://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=83648NED&D1=0,3-4&D2=0&D3=0&D4=a&HDR=T&STB=G2,G1,G3&VW=T
https://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=83648NED&D1=0,3-4&D2=0&D3=0&D4=a&HDR=T&STB=G2,G1,G3&VW=T

11

[6] (2019, January). Thermal conductivity. Retrieved

from

https://en.wikipedia.org/wiki/Thermal_conductivity

[7] Mills, A.F. (1999). Basic Heat and Mass Transfer.
Pearson Education Limited.

[8] Castellano, M., Elzer, T., Jokic, D., & Rijnders, K.

(2019). Determining Thermal Conductivity of Textiles

for Forensic Investigations. TU Delft.

[9] Stolk, M., Ramsey, C., Tantuo, B., & Vijayaragavan,

J. (2018). Improving the ToD estimate by measuring

thermal conductivity. TU Delft.

[10] Churchill, S., & Chu, H. (1975). Correlating

equations for laminar and turbulent free convection

from a vertical plate. International Journal of Heat and

Mass Transfer, 18(11), 1323-1329.

[11] Lloyd, J., & Moran, W. R. (1974). Natural

Convection Adjacent to Horizontal Surface of Various

Planforms. Journal of Heat Transfer(96), 443-447.

[12] Engineering Toolbox (2019) Thermal

Conductivity of common Materials and Gases,

retrieved from

https://www.engineeringtoolbox.com/thermal-

conductivity-d_429.html

[13] Steinhart-Hart Temperature Calculator. (2016)

Retrieved from

https://daycounter.com/Calculators/Steinhart-Hart-

Thermistor-Calculator.phtml

[14] Das, A. Alagirusamy, R. Kumar, P. (2011) Study

of heat transfer through multiplayer clothing

assemblies: A theoretical prediction (Vol. 11, No. 2).

New Delhi, Indian Institute of Technology

[15] Arduino (2019) Arduino PWM control

https://www.arduino.cc/reference/en/language/functio

ns/analog-io/analogwrite/

https://en.wikipedia.org/wiki/Thermal_conductivity
https://daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml
https://daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

Appendix I: Measuring principles

Guarded hot plate method

The guarded hot plate method is a steady-state technique used to determine the thermal conductivity

of an insulating material and is commonly used in laboratories. The fact that the measurement occurs

at steady state means that the clothing sample must reach a thermal equilibrium for an accurate

estimate of the thermal conductivity. The method works as follows: two samples of equal dimensions

are placed on either side of a heated plate, as can be seen in figure 1. Cold plates are then placed

against the samples of the insulating material. This entire system is insulated, so as to prevent heat loss

to the environment. Heat from the hot plate flows through the sample materials and into the cold

plates. The setup is pictured below. Once equilibrium is reached, the thermal conductivity is calculated

using the rise in temperature of the cold plates, which represents the heat conduction through the

insulator. Thermal conductivity can be calculated using the equation given below. Variables included in

formula (1) are as follows: Q is the total amount of energy supplied through the hot plate, d is the

distance between the heater and the cold plate, A is the contact area of the samples with the plates and

(𝑇ℎ𝑜𝑡-𝑇𝑐𝑜𝑙𝑑) represents the difference in temperature between the heat plate and the cold plates.

(1) 𝑘 =
𝑄∗𝑑

𝐴∗(𝑇ℎ𝑜𝑡−𝑇𝑐𝑜𝑙𝑑)
 [7]

Figure 1: Schematic illustration of the guarded hot plate method. The arrows indicate thermocouples used to

measure the temperature of the sample.

Hot wire method

The hot wire method is a transient technique for measuring conductivity of materials, which means

that no thermal equilibrium is required for an accurate conductivity measurement. The technique

consists of a wire that is heated, a sample of material with known conductivity and a sample of the

textile, see figure 2. The value for the conductivity of the textile is unknown but desired. When the

wire is heated, the electrical resistance of the wire changes over a specified time interval. By measuring

the change of resistance the temperature change can be determined. The rate in change of

temperature of the wire is dependent of the conductivity of the sample.

Two assumptions are made in the hot wire method. Firstly, the heat flow along the wire is assumed

continuous and uniform along the wire. Secondly, both the sample with known and unknown

conductivity are assumed to be isotropic.

2

Figure 2: Setup of the hot wire method [4]

In the case that the top and bottom sample have the same unknown conductivity, the thermal

conductivity of the sample can be calculated with the following formula (2):

(2) 𝑘 =
𝑞∗(ln(𝑡2)−ln(𝑡1))

4𝜋∗(𝑇2−𝑇1)
 [4]

In this formula, q is the heat input per unit length of wire. T1 is the temperature of the wire after time

t1 and T2:temperature of the wire after time t2

It is undesirable in the Therminus project to use two samples of unknown material, because this would

require cutting larger samples off the victim’s clothing. Also the design of the device could be difficult

for a two sided measurement device. To this end, the formula could be altered to a form where a

sample with known thermal properties is placed on one side of the hot wire.

Modified Transient Plane Source method (MTPS)

Another method is the modified transient plane source method, otherwise known as MTPS. This

method uses a spiral shaped thermal resistor, which acts as both a sensor and a heating element, see

figure 3. The resistor is placed between a sample of the material of which the conductivity is to be

determined, and another material of which the thermal properties are known. When heat is generated

by the sensor, the temperature increases, changing the resistance of the thermal resistor. The

magnitude of the temperature increase depends on the amount of heat that is lost by conduction to the

surrounding material.

Figure 3: Schematic representation of the MTPS method

After analysing the three methods, it was determined that a variation of the guarded hot plate method

is most suitable for this project. The main reason is the relative simplicity of a steady state

measurement. A difference between the guarded hot plate method and the method used in this project

is that the chosen working principle has only 1 cold plate and 1 material sample, with 1 directional

heat-flow.

3

Appendix 2: Phoebe experiment

The measurement device must have a certain precision in order to be useful for forensic investigation.

As stated by Olaf Dessing [1] the ToD error must be smaller than 3 percent. For determining the

influence of the errors in the values for conductivity and thickness of the textile on the ToD

estimation, the AMC Phoebe model is needed. The experiment done by Olaf Dessing for errors in

surface thermal properties is redone for the conductivity and thickness of clothes: All values are kept

constant except for the conductivity or thickness value. The difference in ToD estimation in

combination with the difference in input can be translated to the maximum difference in input for a 3

percent precision. A conclusion of Olaf Dessing after his experiment was that a small conductivity

value needs a higher precision than a higher value. Therefore the smallest possible conductivity, the

conductivity of air, is chosen for the experiment. Experimenting with Phoebe showed that clothes with

a large thickness need a higher absolute precision for the conductivity value. Therefore a thickness of

35.4mm is used in Phoebe, the thickest clothing from Appendix 14: ’Clothing thickness dataset’. The

experiment also showed that the highest absolute precision for thickness is needed at a small thickness

and a low conductivity value. Therefore the conductivity of air is used and the smallest thickness from

the clothing database is picked, which is 0.2mm. Table 1 below shows the results of the experiment for

precision determination.

*Note that table 1 is displayed on the next page in its entirety.

4

Table 1: Values for the accuracy value needed of conductivity and thickness for a 3% ToD estimation

 Thermal conductivity (k) of clothes,

at k=0.027W/mK, t=35.4mm

Thickness (t) of clothes, at

k=0.027W/mK, t=0.2mm

Absolute accuracy required

for ToD within 3% margin

0.0021W/mK 0.2mm

Relative accuracy required

for ToD within 3% margin

8% 100%

As shown in the table, the maximum error for the thermal conductivity in order to have a ToD

estimation with an error smaller than 3 percent is 0.0021W/mK. The largest acceptable measurement

error for the thickness is 0.2mm. Note that the relative accuracy is determined for the critical required

absolute accuracy, and is not necessarily the lowest percentage. For instance the relative accuracy for a

textile thickness of 35.4mm at a conductivity of 0.027 is 8 percent, but the required absolute accuracy

is 0.3mm. Therefore this thickness is not critical for the absolute required accuracy, but the relative

accuracy has a smaller percentage.

5

Appendix 3: Morphological chart

In table 1 below, the morphologic chart for the design of the measurement device is shown. The chart

displays various partial solutions, which are elaborated under the table.

Table 1: Morphologic chart for the design of the measurement device, in bolt the solutions chosen

Parallel

measurement

surfaces

Rotating

surfaces

Linear mechanical

guide

Linear electrical

guide

Clamping

Pneumatic

Magnetic

Mechanic spring

Mechanical drive

Thickness

measurement

Angle

measurement

(potentiometer)

Caliper

Linear

potentiometer

Known angle

motor

Parallel measurement surfaces

- Rotating surfaces

o Advantages

▪ Simple concept

▪ Robust

▪ Distance measurable by angle

o Disadvantages

▪ The surfaces are held parallel by forces on the textile

▪ Precisely outlining the heat-body and cold-body can be difficult

▪ Most probably needs to be combined with an electric or mechanical drive

- Linear mechanical guide

o Advantages

▪ Robust

▪ Precise outlining

▪ Many distance measurement possibility’s applicable

▪ Modular, various drive principles applicable

o Disadvantages

▪ The guide could jam

▪ Most probably needs to be combined with an electric or mechanical drive

6

- Linear electrical guide

o Advantages

▪ Precise outlining

▪ Many distance measurement possibility’s applicable, or implemented in the

electrical guide

▪ Does not need to be combined with an electric or mechanical drive

o Disadvantages

▪ Higher costs

▪ Less robust

Clamping

- Pneumatic

o Advantages

▪ None

o Disadvantages

▪ Too complex to implement

▪ Compressed air needed at crime scene

- (Electro)magnetic

o Advantages

▪ Magnetic materials do not need external power

o Disadvantages

▪ Scales bad over distance

▪ Electromagnetism needs too much electrical power

▪ The force of magnetic materials cannot regulated

- Mechanic spring

o Advantages

▪ No need for electrical power or compressed air

o Disadvantages

▪ Too complex to balance for various distances

- Mechanical drive

o Advantages

▪ No need for electrical power or compressed air

▪ Various amounts of force can be applied to measurement specimen A self-

locking drive can be used

o Disadvantages

▪ The applied force cannot directly be read out

Thickness measurement

- Angle measurement

o Advantages

▪ Simple principle

o Disadvantages

▪ Small error in angle results in a large error in thickness measurement

- Caliper

o Advantages

▪ Easily applicable on mechanic systems

▪ No need for electrical power

o Disadvantages

▪ Reading out of the distance is somewhat complex for the user (not just an

output value on a screen)

7

- Linear potentiometer

o Advantages

▪ Easy reading out for the user by showing the distance on a screen

▪ High precision

o Disadvantages

▪ More complex to implement in the device, Arduino coding needed

- Known angle motor

o Advantages

▪ High precision

▪ Combination with the clamping principle

o Disadvantages

▪ More complex to implement in the device, Arduino coding needed

▪ Not applicable in combination with other clamping principles

8

Appendix 4: Solidworks assembly drawing

9

Appendix 5: Insulation

Insulation

The warm body will be insulated from the surrounding environment. An important reason is the

reduction of heat transfer to the surrounding environment which has the potential to distort the

measurements. Another reason that insulation is important, to reduce the total power requirement

imposed on the power supply. The total power consumption is lowered because the efficiency of the

device will increase upon reducing the heat transfer to the environment. This appendix will aim to

justify the chosen insulation thickness.

Shielding

The assumption that the environment merely contains surfaces that exactly match the temperature of

the environment, cannot be made. The environment may also suffer from forced convection which

will negatively affect the measurement accuracy by affecting the measured power consumption. Thus

the device is shielded from the environment to prevent said distortions. The shield is assumed to

indeed remain at the environmental temperature.

Assumptions

In an effort to estimate said energy loss, a few formulae have to be combined. A total number of five

assumptions are made.

 1. The total heat flow consists of radiative heat transfer from the insulation surface. Free

convection from the insulation surface. And lastly, conduction from the heated element to the

insulation.

 2.The energy balance is valid for steady state conduction, formula (1):

 (1) 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

 3. Material properties are homogeneous

 4. All thermal conductivity constants are considered as constant over the expected

 temperature range (263.15 < T < 303.15).

 5. Due to the high thermal conductivity of aluminum (147 W/mK), the temperature can

be assumed as being uniformly distributed across all dimensions.

Formulae

Heat transfer due to radiation is described by Stefan-Boltzmann law: formula (2).

(2) 𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜀𝜎𝐴(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
4 − 𝑇∞

4)

Heat transfer due to convection as proposed by Stuart W. Churchill and Humbert H.S. Chu [10] is

described by (3). The Nusselt number is calculated from (4) as by J. R. Lloyd and W. R. Moran [11].

(3) 𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑁𝑢∗𝑘∗𝐴

𝐿𝑐
(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇∞)

(4) 𝑁𝑢 = (0.65 + 0.36(
𝑃𝑟∗𝑔∗𝐿𝑐3

𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒∗𝜈2)1/6)2

Qinsulation is calculated using formula (5) as described by Basic Heat and Mass Transfer by A.F. Mills

found on page 153. When constructing the aforementioned formula, one finds that S is equal to

formula (6). Table 1 will be linking abbreviations used in formula (4) to their real life interpretation

and designated value. Appendix 6: ’Heat pad’ also articulated the reasoning behind the necessity for

more in depth analysis of the problem.

10

(5) 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝑆 × 𝛥𝑇

(6) 𝑆 = 4 (
𝑏∗𝑑ℎ

𝑑𝑖
+ 0.54(𝑑ℎ + 𝑏) + 0.15𝑑𝑖) +

𝑏2

𝑑𝑖

Table 1: linking abbreviations used in formula (4) to their real life interpretation and designated value.

Abreviation di dh b

Variable Insulation Thickness Element Thickness Element Width

[Value] =

[dimension]

[30] = [mm] [10] = [mm] [60] = [mm]

*Important note for formfactor equation (6): The form factor formula requires that: 𝑏 >
𝑑𝑖

5
 , which

remains valid for 𝑏 = 0.06 and 𝑑𝑖 = 0.03 .

Note that formula (2) through (6) can be equated using the relationship proposed by assumption (3).

The MATLAB script, which will be discussed shortly, is tasked with numerically solving equation (7)

since it cannot be analytically evaluated, in a reasonably straightforward way.

(7) 𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛(𝑇𝑠) + 𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑠) − 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑇𝑠) = 0

Also note that the MATLAB script utilizes the built in numerical solver "vpasolve(equation, variable)"

to solve equation (7) for the surface temperature (𝑇𝑠). The built in vpasolve function is likely to make

an undefined error in estimating the value of (𝑇𝑠) for which equation (7) holds true. The error

introduced by the aforementioned function has not been evaluated nor has it been subject to further

investigation.

Values

A MATLAB file has been written in order to attain the surface temperature over the expected

spectrum of environmental temperatures (T∞). For the specific geographic location of the Netherlands,

T∞ is assumed to range between -10 C° < T∞ < 30 C°. The MATLAB script, by default, will use the

aforementioned range of 𝑇∞ to evaluate the expected surface temperatures.

Most Critical Case

In the most crucial case, a thick coat needs to be measured. As previously stated, the measurement

aspect of the Therminus device will be insulated. Insulation materials which are commonly available

do not differ orders of magnitude from the lowest expected thermal conductivity, 0.022 and 0.057

respectively. Thus, heat flow, through the insulation, to the environment will become more significant

(more than 300 times) as the thermal conductivity of clothing becomes lower. Significant is quantified

by comparing the expected relative heat loss at highest thermal conductivity (𝑘 = 0.52) to the expected

relative heat loss at the lowest thermal conductivity (𝑘 = 0.057). Using the MATLAB script grants an

expected relative heat loss of 0.2133% for 𝑘 = 0.52 and 51.68% for 𝑘 = 0.057 respectively (at T∞ =

303.15 K°). This ascertains the suspicion that the most critical case is for low thermal conductivity.

The heat flow used in the measurement will evidently equal the amount of energy supplied minus the

energy lost (8).

(8) 𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 = 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

Whilst the statement of equation (8) seems unnecessary to the inattentive, the most critical case justifies

its importance. Namely, to meet the accuracy criterion (accuracy to which the thermal conductivity is

11

measured) the 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 term cannot justifiably be omitted. The Arduino evaluation will therefore be

required to efficaciously estimate 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛.

The MATLAB script provides the expected energy loss as function of environment temperature. The

Therminus device has been equipped with a calibrated environment temperature sensor. The

environment temperature consequently enables an attempt at determining the value of 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛. This

attempt will, and regrettably so, not be flawless and thus contribute in error propagation. Repercussions

of which are to be discussed in the appendix specifically dealing with error propagation. The

MATLAB script provides the viewer with a set of important figures. All figures are described briefly,

note that the figures are created for the most critical case in which k = 0.057 and d = 28 mm. It is

imperative to note that ΔT is defined by the surface temperature from which the environment

temperature is subtracted.

Figure 1: ΔT as function of T∞ Figure 2: The interpolation used to determine

what kinematic viscosity of air is applicable

Figure 3: The relative error resulting from

surface temperature estimation

Figure 4: Fractional power loss for range of

expected T∞ values

12

Figure 5: Fraction of total heat flow in system

lost through radiative heat transfer.

Figure 6: Total power lost to insulation as

function of temperature.

Important remarks

The error caused by estimating the surface temperature in order to calculate a Nusselt number is

negligible (maximum 0.0291%) in the grand scheme of things. The importance for the use of a proper

heat loss model is stressed by figure 4. One can clearly tell that evaluating heat flow using formula (5)

whilst using a surface temperature equal to the environment, is detrimental to the accuracy of the

prediction. One must also note that the least favorable case (in which a thick coat is measured), with an

environment temperature higher than 8C° is unlikely to be worn. Whilst the mentioned scenario is

unlikely, the device still is required to perform sufficiently at environment temperatures up to the

maximum expected environment temperature (T∞) of 30 C°. Figure 5, in conjunction with figure 6,

show the importance of modeling radiative heat transfer. The fact that total heat flow comprises for

42.41% out of radiative heat transfer, and dwarfs convective heat transfer by a factor of approximately

4.5, is rather high. Thus substantiating the statement that shielding is necessary.
Outputs from MATLAB script

Case 1 (unfavorable case): [k = 0.057 W/mK, d = 28.0*10
-3

]

Surface Temperature delta max: 0.45984 C°. min: 0.35155 C°

Maximum Fractional Powerloss Conductivity Measurement: 51.6827% @303.15 K°

Max Heatpad Power Requirement: 0.15163 W

Fraction Heatflow Total Heatloss max: 51.6827%. min: 51.4008%

Fraction Heatflow Radiative Heatloss max: 42.4058%. min: 36.5252%

Maximum Error Qinsulation [Error, @T]: [2.8554e-03 W, @-10 C°]

For all Tinf = [Qisolation, Qmeasurement, @T]: [0.0783686 0.0732654 30]

Case 2 (optimal case): [k = 0.057 W/mK, d = 28.0*10
-3

]

Surface Temperature delta max: 0.45984 C°. min: 0.35155 C°

Maximum Fractional Powerloss Conductivity Measurement: 0.21336% @303.15 K°

Max Heatpad Power Requirement: 36.7305 W

Fraction Heatflow Total Heatloss max: 0.21336%. min: 0.21097%

Fraction Heatflow Radiative Heatloss max: 0.17506%. min: 0.14992%

Maximum Error Qinsulation [Error, @T]: [2.8554e-03 W, @-10 C°]

For all Tinf = [Qisolation, Qmeasurement, @T]: [0.0783686 36.6521 30]

Time to Steady State

The machine needs to run for a certain amount of time before steady state is reached and the actual

measurements can begin. To calculate an order of magnitude of time in which steady state is reached a

13

MATLAB script was written using equation 3.58 from page 169 of Mills [7] and seeing when the power loss

through the insulation is the same as the heat transfer through radiation and convection on the outside of the

insulation box. This formula is for an infinite body where the temperature at depth h[m] can be calculated after

time t[s] when a constant temperature at the surface of the body is applied. This formula was used because only

an order of magnitude of the time was needed to check if it falls between the requirements of the device. The

formula used is equation (9)

(9)
(𝑇 – 𝑇0)

(𝑇𝑠−𝑇0)
 = 𝑒𝑟𝑓𝑐 (

ℎ

√4∗𝑎𝑙𝑝ℎ𝑎∗𝑡
)

where T is the temperature of the outer surface of the insulation. T0 is the environment temperature and Ts is

the temperature of the warm body, h is the thickness of the insulation in meters, alpha is the thermal diffusivity

in m^2/s and t is time in seconds. Erfc is the complimentary function of the erf function which is

(10)
2

𝑝𝑖1.2 ∫ 𝑒−𝑢2

𝑒𝑡𝑎

0
 𝑑𝑢

For MATLAB the equivalent formula on page 968 of Table B.4 from Mills is used. This is the erfc formula but

rewritten for computer use.

(11) 𝐸𝑟𝑓𝑐 𝑒𝑡𝑎 = (𝑎1 ∗ 𝑥 + 𝑎2 ∗ 𝑥2 + 𝑎3 ∗ 𝑥3) ∗ 𝑒−𝑒𝑡𝑎2

where a1 = 0.3480242, a2 = -0.0958798 and a3 = 0.7478556 as is found in Mills [7]. And 𝑥 = (1 + 𝑝 ∗ 𝜂)−1 .

Where 𝑝 = 0.47047 a found in Mills [7] and 𝜂 =
 ℎ

√4∗𝛼∗𝑡

According to the second MATLAB script below, using these formulas at 30mm of insulation with a thermal

conductivity of 0.022 W/mK, steady state is reached after 435 seconds which is more than 7 minutes. This falls

well in the production requirements where a measurement needs to be done in 30 minutes as this leaves 23

minutes to measure k.

 To be on the safe side and because the calculations used in the MATLAB script are not exact formulas

for this use case and only used to give an order of magnitude, would it take hours minutes or seconds, the actual

measurements will be done 10 minutes after the device is turned on. Leaving 20 minutes to calculate a value for

the thermal conductivity of the sample.

 A second script was written to check if there is an optimum insulation thickness and the time it takes to

reach steady state. With and insulation thickness of 7 mm the time to reach steady state is the shortest with 217s,

figure(10). However this was not a good option for insulation thickness because the power losses through the

insulation would be higher than the desired power loss through the insulation for the experiments.

Recommendations: To calculate a more precise time after which steady state is reached a different formula

should be used. This formula is made for an infinite body with a constant surface temperature. While the

surface temperature the insulation is not an infinite body. To calculate a more precise time after which steady

state is reached a formula should be derived where the body is not infinite and the temperature at depth h

should be the temperature at the outside surface of the insulation.

The MATLAB script Steady state time estimate at fixed thickness produces 3 figures, figure(7) figure(8) and

figure(9). Figure(7) gives the difference in heat flow, Qdelta (W), between Qinsulation (W) and Qradiation (W)

and Qconvection (W). In this graph also the time points are marked when the insulation surface first has a rise

in temperature and when steady state is reached. Figure(8) shows the temperatures of the hot body, the

environment and the insulation surface temperature. In the graph again the time points are marked when for the

first time there is a rise in insulation surface temperature and when steady state is reached. Figure(9) is an

extension on figure (7) where not only is difference in heat flow, Qdelta, plotted but also the Qinsulation,

Qradiation and Qconvection. These graphs are made with a thickness of 30mm.

14

Figure 7: Qdelta vs Time, where the timepoint steady Figure 8: Time vs Temperarure, where temperatures
State and surface area temperature rise are marked environment, warm body and insulation surface are

given, and the time points of surface temp rise and
steady state are marked

Figure 9: Time vs Heat flow, in this graph Qdelta,
Qinsulation, Qconvection and Qradiation are plotted

The MATLAB script Steady state time estimate at varying thickness produces figure(10), figure(11) and

figure(12). In figure(10) a line is plotted which gives the relation between how long it takes for steady state is

reached and what the insulation thickness is. Here a shortest time to reach steady state can be found at 7mm

insulation thickness, but looking at figure(11) is becomes clear that 7mm might not be the best choice for

insulation thickness. In figure(11) a relation can be seen between thickness of insulation and the heat loss

through the insulation, here is becomes clear that at 7mm there is still a too high heat loss according to the

previous mentioned heat loss requirement. It is also visible that the lines flattens in the end meaning a thicker

insulation does not provide an equal large reduction in heat loss. Figure(12) provides information on what the

insulation surface temperature will be at different insulation thicknesses.

15

Figure 10: Insulation thickness vs time it takes Figure 11: Insulation thickness vs heat loss through
for steady state is reached. insulation.

Figure 12: Insulation thickness vs surface temperature of
the insulation

16

% Insulation Expected Heat Loss
% TU Delft, 05/31/2019
% Author: Sebastiaan Thomas Njio
clc
clear all
close all

%Authors remark: Note that a lot of the remarks and variables

%throughout the script are in Dutch, I would therefore recommend a Dutch
%speaking individual to evaluate the script if nescessary.

%Simulatie Specific
k_textiel = 0.057; % Thermische geleidbaarheid textiel
d_textiel = 28.00*10^(-3); % Dikte van het te meten textiel
di = 30*10^(-3); % Isolatie dikte

%Variables
resolutie = 1.0* 10^(-2);
dT_meeting = 10;
Tinf_vec = 263.15:resolutie:303.15;
Telement_vec = Tinf_vec + dT_meeting;
T_estimate_vec = Tinf_vec + 0.14; %Estimate
emisivity = 0.86; %emesivity of styrofoam

%Constants
g = 9.81; % Valversnelling
ki = 0.022; % Isolatie (piepschuim)
k_element = 147; % Verwarmde en gekoelde element (5754 AlMg3)

 %Geometry
b = 60*10^(-3); % De breedte van het verwarmde element
W = b+2*di; %Breedte oppervlak convectie
d_element = 10*10^(-3); % Verwarmde element|
d_koud = 10*10^(-3); % De afstand van de interface tussen textiel en
Lc = W/4; % Characteristic Length

 %Important or much occuring constants.
A = W^2; % Surface Area on which conduction takes place
ASigma = emisivity*(W^2 + 4*(di+d_element)*W)*5.67036713*10^(-8);

%Stefanboltzmann * Area for Radiative heattransfer
S = 4*b*d_element/di + (b^2)/di + 4*0.54*d_element + 4*0.54*b + 4*0.15*di;

%Formfactor
Qmeeting = (dT_meeting) * 1/(d_element/(b*b*k_element)+d_textiel/(b*b*k_textiel)

+ d_koud/(b*b*k_element));

%Air Properties
Pr = 0.71; % Prandtl Number, considered as constant
k_air = 0.027;

%Kinematic viscosity Source: https://www.engineeringtoolbox.com/air-absolute-

kinematic-viscosity-d_601.html
vtable = [-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40;
 12.43, 12.85, 13.28, 13.72, 14.16, 14.61, 15.06, 15.52, 15.98, 16.92,

17.88];
vtable(1,:) = vtable(1,:)+273.15;
vtable(2,:) = vtable(2,:)*10^(-6);

17

% Creating vectors
hc = zeros(1,length(Tinf_vec));
Ts = zeros(1,length(Tinf_vec));
Nu_error = zeros(1,length(Tinf_vec));
Ts_error = zeros(1,length(Tinf_vec));
r = zeros(1,length(vtable));
c = zeros(1,length(vtable));
dT = Ts;
counter = 1;

reg = zeros(8,length(Tinf_vec));

%Much occuring constants
C1 = (0.36^6)*Pr*g*Lc^3; C2 = k_air*A/Lc;
C3 = ki*S;

syms x

for i = 1:length(Tinf_vec)
%Read in Temperature values
Tinf = Tinf_vec(i);
Telement = Telement_vec(i);
T_estimate = T_estimate_vec(i);

beta = 1/(Tinf); %Note that this is not the real value of beta so an error is

introduced.

%Find appropriate kinematic viscosity
[r,c]=find(T_estimate> vtable(1,:));
v = vtable(2,c(end)) + (vtable(2,c(end)+1) - vtable(2,c(end)))*(T_estimate -

vtable(1,c(end)))/(vtable(1,c(end)+1)-vtable(1,c(end))); % Kinematic viscosity of

air @ 273.15K; 12.45< v <16.92

%CQhc = C2*(beta/(v^2))^(1/4);
CQhc = C1*beta/(v)^2;

%Temperature Calculation
Equation = C2*(x-Tinf)*(0.65+CQhc*(x-Tinf)^(1/6))^2 + ASigma*(x^4 - Tinf^4) +

C3*(x - Telement)==0;
Ts(1,i) = vpasolve(Equation, x);

%Error estimation
Nu_error(1,i) = 100*(((Ts(1,i)+Tinf)/(2*Tinf))^(1/3) - 1);

%Save important information
dT(1,i) = Ts(1,i) - Tinf;
Qrad = ASigma*(Ts(1,i)^4 - Tinf^4); %Radiative heattransfer Qrad = A*sigma*(T1^4-

T2^4) * Asumption: black surfaces
Qhc = C2*(Ts(1,i)-Tinf)*(0.65+(CQhc*(Ts(1,i)-Tinf))^(1/6))^2;
Qis = ki*S*(Telement-Ts(1,i));

% Registry
reg(1,i) = Tinf;
reg(2,i) = Qhc;
reg(3,i) = Qrad;
reg(4,i) = Qis;
reg(5,i) = v; % Display interpolation kinematic viscosity of air
reg(6,i) = (Qhc+Qrad)/(Qmeeting + Qhc + Qrad)*100; %Fractional Powerloss

18

reg(7,i) = (Qrad/(Qmeeting + Qhc + Qrad))*100;
reg(8,i) = CQhc/(0.36^6)*1/beta*1/(Ts(1,i));

if i/length(Tinf_vec)>counter/100
 counter = counter + 1;
 disp(['Progression: ',num2str(counter),'%'])
end
end

%Data manipulation
Qlossfr = reg(6,:); %Combined fractional heatloss to environment
Qlossradfr = reg(7,:); %Fractional Heatloss due to radiation
% Alternative heatloss
Qdotloss_sfr = ki*S*dT_meeting/(Qmeeting + ki*S*10)*ones(1,length(reg(5,:)))*100;

%Gesimplificeerd model fractional Heatloss
%% Figures and Display outputs

%%Figures
figure()
grid on; hold on
x0 = 100; y0 = 600; height = 300; width = 400;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('\DeltaT vs Environmental Temperature');xlabel(['Tenvironment [T] =

[K',char(176),']']); ylabel('\DeltaT [K]');
plot(Tinf_vec, dT,'-b')

figure() %Interpolation kinematic viscosity
grid on; hold on
x0 = 120+width; y0 = 600;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('\nu Air vs Temperature (Lineair Interpolation)');xlabel(['Tenvironment [T]

= [K',char(176),']']); ylabel('\nu [m^2/s]');
plot(Tinf_vec, reg(5,:),'-b')

figure() %Nusselt number error
grid on; hold on
x0 = 140+2*width; y0 = 600;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Relative Error Nusselt Number Estimate');xlabel(['Tenvironment [T] =

[K',char(176),']']); ylabel('Error [%]');
plot(Tinf_vec, Nu_error,'-b')

figure() %Fraction Powerloss
grid on; hold on
x0 = 100; y0 = 520-height;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Fractional Powerloss');xlabel(['Tenvironment [T] = [C',char(176),']']);

ylabel('Fractional Powerloss [%]');
plot(Tinf_vec-273.15, Qlossfr,'-b', Tinf_vec-273.15, Qdotloss_sfr,'-r')
legend('Convection + Radiation','Imposed Ts = Tinfinite','Location','southeast')

figure() %Radiation Fraction Powerloss
grid on; hold on
x0 = 120+1*width; y0 = 520-height;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Fraction Radiative Heattransfer vs Temperature');xlabel(['Tenvironment [T]

= [K',char(176),']']); ylabel('Fraction Radiative Heattransfer [%]');

19

plot(Tinf_vec, Qlossradfr,'-b')

figure() %Heat Transfer Plot
grid on; hold on
x0 = 140+2*width; y0 = 520-height;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Heat Transfer vs Temperature');xlabel(['Tenvironment [T] =

[K',char(176),']']); ylabel('Heat Transfer [W]');
plot(Tinf_vec, reg(2,:),'-b', Tinf_vec, reg(3,:),'-r',Tinf_vec,reg(2,:) +

reg(3,:),'-m')
legend('Qhc','Qrad','Qrad + Qhc','Location','northwest')

%Display values
disp(['Surface Temperature delta max: ', num2str(max(dT)),' C',char(176),'. min:

', num2str(min(dT)),' C',char(176)])
[M,I] = max(reg(6,:)); % Finding max fractional powerloss @ Temperature I
disp(['Maximum Fractional Powerloss Conductivity Measurement: ',num2str(M),'%', '

@',num2str(Tinf_vec(1,I)),' K',char(176)])
disp(['Heatpad Power Requirement: ',num2str(Qmeeting+max(reg(4,:))),' W'])
disp(['Fraction Heatflow Total Heatloss max: ', num2str(max(reg(6,:))), '%','.

min: ', num2str(min(reg(6,:))), '%'])
disp(['Fraction Heatflow Radiative Heatloss max: ', num2str(max(reg(7,:))),

'%','. min: ', num2str(min(reg(7,:))), '%'])

20

%% Finding Steady state conduction through insulation %%

close all

clear all

clear

clc

%% Variables

Sa = 60; % mm, Length and Width Aluminium

Ha = 10; % mm, height aluminium

Thi = 30; % mm, thickness insulation

Te = 303.15; % K, environment temperature

Td = 10; % K, Delta T between warm body and environment

time = 900; % s, time

timestep = 0.01; % s, timesteps

%% Constants

kp = 0.022; % W/mK of polystyrene

ka = 0.0252; % W/mK of air at 275K

cpp = 1210; % J/kgK of polystyrene

cpa = 1008.5; % K/kgK of Air at 275K

rhop = 45; % kg/m3 of polystyrene

rhoa = 1.288; % kg/m3 or Air at 275K

epla = 0.84; % emmitance white plastic

sigma = 5.67*10^-8; % W/m2K4, Stefan-Boltzmann constant

Beta = 1/Te; % 1/K

va = 15.98*10^-6; % m2/s of Air at 275K

Pr = 0.71; % - of Air at 275K

g = 9.81; % m/s2 gravity

% erfc constants (Mills page 968 table B.4)

a1 = 0.3480242;

a2 = -0.0958798;

a3 = 0.7478556;

p = 0.47047;

%% Parameters

% Dimensions

la = Sa/1000; % m, length and width of aluminium

ha = Ha/1000; % m, height aluminium

tin = Thi/1000; % m, thickness insulation

l = (Sa+2*Thi)/1000; % m, length and width insulation

h = (Ha+Thi)/1000; % m, height insulation

A1 = l*l; % m2, top area insulation

A2 = h*l; % m2, side area insulation

%Time

t = [0.01: timestep: time]'; % s, time

% Thermal diffusivity

alphap = kp/(rhop*cpp); % m2/s of polystyrene

alphaa = ka/(rhoa*cpa); % m2/s of Air at 275

%Heat transfer

S = (la*la)/tin + 4* ((la*ha)/tin) + 4*0.54*ha + 4*0.54*la + 4*0.15*tin; %Shape

factor

%Temperature

Tb = Te+Td; % K, temperature warm body

21

%% calculations

%Counter

j = 1;

q = 1;

w = 1;

z = 0;

% Space allocation

n = zeros(size(t));

x = zeros(size(t));

erfc = zeros(size(t));

Ts = zeros(size(t));

Ra = zeros(size(t));

Nu = zeros(size(t));

hc = zeros(size(t));

Qcon = zeros(size(t));

Qrad = zeros(size(t));

Qinsul = zeros(size(t));

Qdelta = zeros(size(t));

%Loop

for i=1:length(t)

 n(j, 1) = h/sqrt((4*alphap*t(j)));

 x(j, 1) = 1/(1+p*n(j));

 erfc(j, 1) = (a1*x(j)+a2*(x(j)^2)+a3*(x(j)^3))*exp(-(n(j)^2));

 if z == 0

 Ts(j, 1) = erfc(j)*(Tb-Te)+Te;

 else

 Ts(j,1) = Ts(stop);

 end

 Ra(j, 1) = Beta*(Ts(j)-Te)*g*(l^3)/(va*alphaa);

 Nu(j, 1) = (0.65+0.36*(Ra(j)^(1/6)))^2;

 hc(j, 1) = ka*Nu(j)/l;

 Qcon(j, 1) = (Ts(j)-Te)*A1*hc(j) + (Ts(j)-Te)*A2*hc(j)*4;

 Qrad(j, 1) = A1*epla*sigma*((Ts(j)^4)-(Te^4))+4*A2*epla*sigma*((Ts(j)^4)-

(Te^4));

 Qinsul(j, 1) = kp*S*(Tb-Ts(j));

 Qdelta(j, 1) = Qinsul(j) - (Qcon(j)+Qrad(j));

 if Qdelta(j, 1) < 0

 Qdelta(j,1) = 0;

 stop = find(Qdelta,1,'last');

 z = 1;

 if w == 1

 tss = j;

 w = 3;

 end

 end

 if Qdelta(j, 1) < Qinsul(j)

 if q == 1

 tpen = j;

 q = q+2;

 end

 end

 j = j+1;

end

22

%% Figures

graph_mm = 2;

Te = ones(size(t))*Te;

Tb = ones(size(t))*Tb;

% 1

figure(1)

plot(t, Qdelta)

hold on

plot(t(tpen),Qdelta(tpen),'ob',t(tss),Qdelta(tss),'*r')

str1 = num2str(t(tpen));

str2 = num2str(t(tss));

text(t(tpen),Qdelta(tpen),str1)

text(t(tss),Qdelta(tss),str2)

xlabel('time s')

ylabel('Heat flow W')

legend('Qdelta','Ts Rise','Steady State')

% 2

figure(2)

plot(t,Ts,t,Te,t,Tb)

xlim([0 time])

ymin = Te(1) - graph_mm;

ymax = Tb(1) + graph_mm;

ylim([ymin ymax])

xlabel('Time s')

ylabel('Temperature K')

hold on

plot(t(tpen),Ts(tpen),'ob',t(tss),Ts(tss),'*r')

legend('Ts','Te','Tb','Ts Rise','Steady State')

text(t(tpen),Ts(tpen),str1)

text(t(tss),Ts(tss),str2)

% 3

figure(3)

plot(t, Qdelta, t, Qinsul, t, Qcon, t, Qrad)

legend('Qdelta','Qinsul','Qcon','Qrad')

xlabel('time s')

ylabel('Heat flow W')

23

%% Comparing the time to reach steady state with different insulation

thicknesses %%

close all

clear all

clear

clc

%% Variables

Sa = 60; % mm, Length and Width Aluminium

Ha = 10; % mm, height aluminium

Te = 303.15; % K, environment temperature

Td = 10; % K, Delta T between warm body and environment

time = 900; % s, time

timestep = 0.01; % s, timesteps

%% Constants

kp = 0.022; % W/mK of insulation

ka = 0.0252; % W/mK of air at 275K

cpp = 1210; % J/kgK of polystyrene

cpa = 1008.5; % K/kgK of Air at 275K

rhop = 45; % kg/m3 of polystyrene

rhoa = 1.288; % kg/m3 or Air at 275K

epla = 0.84; % emmitance white plastic

sigma = 5.67*10^-8; % W/m2K4, Stefan-Boltzmann constant

Beta = 1/Te; % 1/K

va = 15.98*10^-6; % m2/s of Air at 275K

Pr = 0.71; % - of Air at 275K

g = 9.81; % m/s2 gravity

% erfc constants (Mills page 968 table B.4)

a1 = 0.3480242;

a2 = -0.0958798;

a3 = 0.7478556;

p = 0.47047;

%% Parameters

% Dimensions

Thi = [2:1:50]'; % mm, thickness insulation

la = Sa/1000; % m, length and width of aluminium

ha = Ha/1000; % m, height aluminium

%Time

t = [0.01: timestep: time]'; % s, time

% Thermal diffusivity

alphap = kp/(rhop*cpp); % m2/s of polystyrene

alphaa = ka/(rhoa*cpa); % m2/s of Air at 275

%Temperature

Tb = Te+Td; % K, temperature warm body

%% calculations

% counters

j = 1;

q = 1;

24

w = 1;

u = 1;

z = 0;

% Space allocation

% Thickness

tin = zeros(size(Thi));

l = zeros(size(Thi));

h = zeros(size(Thi));

S = zeros(size(Thi));

A1 = zeros(size(Thi));

A2 = zeros(size(Thi));

stop = zeros(size(Thi));

Tscheck = zeros(size(Thi));

Qdeltmm = zeros(size(Thi));

%Time

n = zeros(size(t));

x = zeros(size(t));

erfc = zeros(size(t));

Ts = zeros(size(t));

Ra = zeros(size(t));

Nu = zeros(size(t));

hc = zeros(size(t));

Qcon = zeros(size(t));

Qrad = zeros(size(t));

Qinsul = zeros(size(t));

Qdelta = zeros(size(t));

%The Loop

for counter = 1:length(Thi)

 tin(u, 1) = Thi(u)/1000; % m, thickness insulation

 l(u, 1) = (Sa+2*Thi(u))/1000; % m, length and width insulation

 h(u, 1) = (Ha+Thi(u))/1000; % m, height insulation

 A1(u, 1) = l(u)*l(u); % m2, top area insulation

 A2(u, 1) = h(u)*l(u); % m2, side area insulation

 S(u, 1) = (la*la)/tin(u) + 4* ((la*ha)/tin(u)) + 4*0.54*ha + 4*0.54*la +

4*0.15*tin(u); %Shape factor

 n = zeros(size(t));

 x = zeros(size(t));

 erfc = zeros(size(t));

 Ts = zeros(size(t));

 Ra = zeros(size(t));

 Nu = zeros(size(t));

 hc = zeros(size(t));

 Qcon = zeros(size(t));

 Qrad = zeros(size(t));

 Qinsul = zeros(size(t));

 Qdelta = zeros(size(t));

 j = 1;

 for i=1:length(t)

 n(j, 1) = h(u)/sqrt((4*alphap*t(j)));

 x(j, 1) = 1/(1+p*n(j));

 erfc(j, 1) = (a1*x(j)+a2*(x(j)^2)+a3*(x(j)^3))*exp(-(n(j)^2));

 if z == 0

 Ts(j, 1) = erfc(j)*(Tb-Te)+Te;

 else

25

 Ts(j,1) = Ts(stop(u));

 end

 Ra(j, 1) = Beta*(Ts(j)-Te)*g*(l(u)^3)/(va*alphaa);

 Nu(j, 1) = (0.65+0.36*(Ra(j)^(1/6)))^2;

 hc(j, 1) = ka*Nu(j)/l(u);

 Qcon(j, 1) = (Ts(j)-Te)*A1(u)*hc(j) + (Ts(j)-Te)*A2(u)*hc(j)*4;

 Qrad(j, 1) = A1(u)*epla*sigma*((Ts(j)^4)-

(Te^4))+4*A2(u)*epla*sigma*((Ts(j)^4)-(Te^4));

 Qinsul(j, 1) = kp*S(u)*(Tb-Ts(j));

 Qdelta(j, 1) = Qinsul(j) - (Qcon(j)+Qrad(j));

 Qdeltmm(u, 1) = Qdelta(1);

 if Qdelta(j, 1) < 0

 Qdelta(j,1) = 0;

 stop(u,1) = find(Qdelta,1,'last');

 z = 1;

 Tscheck(u,1) = Ts(stop(u));

 end

 j = j+1;

 end

 z = 0;

 u = u+1;

end

%% Figures

figure(1)

stopt = stop/(1/timestep);

plot(Thi,stopt)

xlabel('Insulation thickness mm')

ylabel('Time to reach steady state s')

figure(2)

plot(Thi,Qdeltmm)

xlabel('Insulation thickness mm')

ylabel('Heat loss through insulation W')

figure(3)

plot(Thi,Tscheck)

xlabel('Insulation thickness mm')

ylabel('Suface Temperature at steady state K')

26

Appendix 6: Heat pad

Heat Pad Requirements

The Therminus device has to fulfill a few requirements. A key requirement is the capability of

measuring a range of thermal conductivity values. The thermal aspect from measurement depends on

a few design parameters, namely: surface area, thickness, thermal conductivity and temperature

difference. As stated before, the relationship is described by Fourier’s law of thermal conductivity (1).

(1)
𝜕𝑄

𝜕𝑡
= −𝑘 ∯ ∇𝑇 𝑑𝑆

𝑆

The values for thermal conductivity that the Therminus device should be able to measure range from

0.52 on the low end, and 0.057 [14] on the high end of the spectrum. Data based on a sample size of

25 T-shirts, Appendix 14: ‘Clothing thickness dataset’ suggests that 99.73% of T-shirts is expected to be

at least 0.44 mm thick. Thus suggesting a minimum thermal insulance of [Rth] =8.46*10
-04

 [m
2

K/W].

Again assuming coat thickness is normally distributed, in 95.45% of cases, coats will be thinner than

27.37 mm. The upper bound for thermal insulance thus becomes [Rth] =4.80*10
-02

 [m
2

K/W].

From Fourier’s law of thermal conductivity, a design index can be made, equation (2), from which one

can deduct that the head pad is required to have a minimum
𝑄

𝐴
 > 11.8*10

3

. The chosen heat pad has

an index (
𝑄

𝐴
) of 13*10

3

 and will thus be able to supply sufficient heat.

(2)
𝑄

𝐴
 =

ΔT

𝑅𝑡ℎ

Due to cleanability requirements imposed on the Therminus device, temperature sensors will only be

placed in places that, during its lifecycle, will be unaffected by muck from the environment. Therefore

the temperature difference will only be measured on the hot and cold body surface temperatures. The

monitored cold and hot body surfaces will be the ones opposing the clothing surfaces. When

considering the complete device in steady state condition, a certain temperature distribution is to be

expected. Figure 1 shows the worst case expected temperature distribution as function of cross

sectional distance measured from the heat pad. Figure 2 shows other extreme case in which a well

insulating coat is measured.

27

Figure 1: Temperature distribution as

function of cross sectional distance for shirt.

Figure 2: Temperature distribution as

function of cross sectional distance for coat.

 A fractional power loss estimate is made by this script. The fractional power loss (Qfrac) is defined by

two quantities and is defined according to formula (3).

(3) Q𝑓𝑟𝑎𝑐 =
𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡+ 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

Firstly quantity being the heatflux that is nescessary for carrying out the thermal conductivity

measurement: Qmeasurement. The second being the heat that is lost through the insulation: Qinsulation, which in

an ideal case, would be zero for several reasons. The main reason is that when said heat flux is zero, no

error can be made in estimating said heat flux.

(4) 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝑆 × 𝛥𝑇

Qinsulation is calculated using formula (4) as described by [7]. When constructing the aforementioned

formula, one finds that S is equal to formula (5). Table 1 will be linking abbreviations used in formula

3 to their real life interpretation and designated value.

(5) 𝑆 = 4 (
𝑏∗𝑑ℎ

𝑑𝑖
+ 0.54(𝑑ℎ + 𝑏) + 0.15𝑑𝑖) +

𝑏2

𝑑𝑖

28

Table 1: linking abbreviations used in formula 3 to their real life interpretation and designated value.

Abbreviation di dh b

Variable Insulation Thickness Element Thickness Element Width

[Value] =

[dimension]

[30] = [mm] [10] = [mm] [60] = [mm]

The MATLAB script ("Temperature Distribution Therminus Device") which is provided alongside

this Appendix, uses formula (4) and (5) (in conjunction with other common formulae) to estimate

fractional heat loss as described by formula (3). Formulae (4) and (5) are specifically mentioned

because they inherit an error caused by the assumption that ΔT = 10. In other words, an error is

caused by the assumption that the surface temperature of the insulation will be exactly equal to the

environment temperature. This will in practice not be the case, thus an unknown error is caused by

this assumption. Appendix 12: ‘Heat loss insulation uncertainty’ will not suffer from this error as the

surface temperature will not be imposed. Please reference Appendix 12 for more detail.

Important information that is output from the script is displayed in table 2. It is imperative to stress the

fact that the fractional power loss is a mere estimate made with an unrealistic assumption. Said

unrealistic assumption being that the surface temperature of the insulation is exactly equal to the

environment temperature, as stated in Appendix 5: 'Insulation'.

Table 2: important information that is output by the provided MATLAB script.

Case Corresponding to figure (1) Corresponding to figure (2)

Input values k_textiel = 0.52; d_textiel = 0.41*10
(-3)

 k_textiel = 0.057; d_textiel = 22*10
(-3)

Output Required Power: 36.7333

Fractional Powerloss: 0.22112%

T1: 10 C°

T2: 9.3074 C°

T3: 0.69259 C°

T4: 1.2212e-15 C°

Required Power: 0.17446

Fractional Powerloss: 46.5563%

T1: 10 C°

T2: 9.9982 C°

T3: 0.0017619 C°

T4: 1.4244e-15 C°

MATLAB Code (Appendix 6: Heat pad)

% Temperature Distribution Therminus Device

% TU Delft, 05/31/2019

% Author: Sebastiaan Thomas Njio

clc

clear all

close all

%Textiel waardes

k_textiel = 0.057; % Expected values: 0.057<k<0.52

d_textiel = 22.00*10^(-3); % Kleding dikte

% Voor een maximale

%Formules hitte verlies

% Qdot = k*S*dT

To = 0; % Omgevingstemperatuur

dT = 10; % Temperatuur delta

b = 60*10^-3; % De breedte van het verwarmde element met T1

% Diktes

29

d_element = 10*10^(-3); % Verwarmde element

di = 30*10^(-3); % Isolatie

d_koud = 10*10^(-3); % De afstand van de interface tussen textiel en

 % koude blok tot waar de temperatuur meting is.

% Thermische geleidbaarheid

ki = 0.022; % Isolatie (piepschuim)

k_element = 147; % Verwarmde element (Alu 5754 bij 20graden c)

% Much Occuring Constants

A = b*b;

% Berekeningen

S = 4*b*d_element/di + (b^2)/di + 4*0.54*d_element + 4*0.54*b + 4*0.15*di; %Formfactor

T1 = To+dT; % Temperatuur heatpad

% Vermogens

Qdotloss = ki*S*dT; % Dit is het vermogen wat verloren raakt door de isolatie

Qdotmeeting = (T1 - To) * 1/(d_element/(A*k_element)+d_textiel/(A*k_textiel) +

d_koud/(A*k_element));

Qdotheatpad = Qdotloss + Qdotmeeting;

% Temperature Calculations

Unknown = 0; % Dit is de hoeveelheid warmte die via de zijkanten van het textiel wegvloeit.

T2 = T1 - d_element/(k_element*A)*Qdotmeeting;

T3 = T2 - d_textiel/(k_textiel*A)*Qdotmeeting;

T4 = T3 - d_koud/(k_element*A)*Qdotmeeting; %Check if indeed the T4 ~ 0

% Displaying all outputs

disp(['Required Power: ', num2str(Qdotheatpad)])

disp(['Fractional Powerloss: ', num2str(Qdotloss/Qdotheatpad*100),'%'])

disp(['T1: ',num2str(T1),' C',char(176)])

disp(['T2: ',num2str(T2),' C',char(176)])

disp(['T3: ',num2str(T3),' C',char(176)])

disp(['T4: ',num2str(T4),' C',char(176)])

%Plotting figure

dTot = linspace (0, d_element + d_koud + d_textiel, 4);

Temperatures = [T1, T2, T3, T4];

figure()

hold on; grid minor

title('Expected Temperature Distribution Cross Sectional Distance'); xlabel('Cross Section Distance [d]

= [mm]'); ylabel(['\delta Temperature [T] = [C',char(176),']']);

plot(dTot(1,[1, 2]), Temperatures(1,[1, 2]),'-r',dTot(1,[2, 3]), Temperatures(1,[2, 3]),'-m',dTot(1,[3, 4]),

Temperatures(1,[3, 4]),'-b')

legend('Hot Body','Textile','Cold Body','Location','northeast')

30

Appendix 7: Electrical circuit

Two drawings have been made for the electrical circuit. The first drawing, figure 1, displays the circuit

for the prototype. Please note that the figures to which this appendix refers are too big to fit

appropriately inside the text. Throughout this Appendix, both figure 1 and 2 are of great relevance,

which are provided at the end of the appendix. Making use of three external power supplies and thus

not meeting the requirement of having a mobile device as this is dependent on power sockets. The

Arduino is powered by a 12V adapter connected to a power socket and the peltier element and heat

pad are both connected to a PSU of which the voltage and amperage can be regulated. This was done

to test and calibrate the device.

 Ideally the device would be made as is in the second drawing, figure 2. Making use of batteries

in series or a bigger battery. For this to work voltage regulators need to be implemented between the

power supply and the Arduino, the peltier element and the heating pad. Because each run on different

voltages. The total power draw of the circuit amount to about 100W from the various devices in the

circuit. The batteries used for this circuit needs to be able to deliver amount of power for the duration

of the testing and ideally be not too big or heavy to keep the device portable. Two examples of such

kind of batteries would be those used in electric bikes or the ones used by photographers to power

their flashes.

 Both circuits have in common the peltier element (PE), the heating pad (HP), the Arduino,

three different temperature sensors, one for the cold body temperature (CBT) one for hot body

temperature (WBT) and one for the environment temperature (ET) and a linear potentiometer(LP).

A fan is used in the system to cool the heatsink connected to the peltier element.

 In the drawings all positive wires are coloured red, all ground wires are coloured black. The

orange wires coming from the sensors are being read by the Arduino at the analog ports. The purple

wires going to the mosfets connected to the peltier element and heatpad are used for pulse width

modulation (PWM) control.

PWM control by digital pins 5 and 6 and the mosfets are connected to these pins to control the

peltier element and the heatpad. These pins were chosen because they are timed at 980Hz [15] and

have an 8 bit resolution meaning 256 steps, while the other pwm pins of the Arduino are timed at

490Hz and 8 bit resolution. Using pins 5 and 6 means that 1/980Hz = 0.001s = 1ms is divided in 256

parts, every part being equal to 1ms/256 = 0.004ms = 4μs. Which means that the PWM control can be

set from 0 to 255 where every step adds 4μs to the width of the signal. The signal gives the full voltage

for the amount of time the signal is width and 0 after that until this repeats again at the next ms.

 The sensors are connected to the digital pins on the Arduino to give them voltage. Each sensor

has a specific pin. Warm body heat sensor pin 2. Cold body heat sensor pin 3. Environment heat

sensor on pin 4. Potentiometer on pin 7. They are in the same order connected to the analog pins on

the Arduino to read the values. Warm body hear sensor pin A0. Cold body heat sensor pin A1.

Environment heat sensor pin A2. Potentiometer pin A3.

The analog pins on the Arduino read a voltage range from 0V to 5V with 10-bit resolution,

which is 1024 steps. Which means every step corresponds to a 0.005V increase. Creating an as large as

possible voltage difference between the maximum and the minimum of the sensor increases the

accuracy of the sensor. Due to the added resistance the voltage range over the sensor is always smaller

than 5 volt. For specific voltage ranges corresponding to the temperature or potentiometer respectively,

please consult Appendix 10: 'Thermistor Uncertainty' or Appendix 11: 'Linear Potentiometer

Uncertainty'. But the resistor can be chosen so that the difference is as large as possible for that specific

sensor. To ensure the biggest range of voltage that can be measured an ideal resistor needs to be

calculated and placed in the circuit. The general formula for the output voltage read by the Arduino

for each sensor is formula (1);

(1) 𝑉𝑜𝑢𝑡 =
𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟

𝑅+𝑅𝑠𝑒𝑛𝑠𝑜𝑟

31

Here Vout is what is measured by the Arduino, Rsensor is what the resistance is of the sensor, R is the

added resistance in the circuit and 𝑉𝑖𝑛 is the voltage the Arduino puts in the circuit. The minimum and

maximum resistance the sensor becomes is known via the datasheet of the sensor. The output voltage

between these two resistances needs to be as large as possible to get the best sensitivity in the

measurement.

(2) 𝛥𝑉 =
𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥

𝑅+𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥
−

𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛

𝑅+𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛

In formula (2) ΔV is the difference in voltage output between maximal sensor resistance and minimal

sensor resistance. In this formula 𝑉𝑖𝑛 is known, 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥 is known, 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛 is known. What is

needed is the optimal R for the largest ΔV.

 This is done by calculating the derivative of the formula and setting it to zero.

(3)
𝑑𝛥𝑉

𝑑𝑅
=

𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥2∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛−𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥∗𝑅2−𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛2+𝑉𝑖𝑛∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛∗𝑅2

(𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥∗𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛+𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥∗𝑅+𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛∗𝑟+𝑅2)
2 = 0

Which means that the denominator needs to be set to zero. Resulting in the following equation,

formula (4), and simplifying it. Rewriting gives formulas (5) and (6).

(4) 𝑉𝑖𝑛 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥2 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛 – 𝑉𝑖𝑛 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥 ∗ 𝑅2– 𝑉𝑖𝑛 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛2

+ 𝑉𝑖𝑛 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛 ∗ 𝑅2 = 0

=

(5) 𝑅 = √
𝑉𝑖𝑛 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛2 – 𝑉𝑖𝑛 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥2 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛

𝑉𝑖𝑛 ∗ (𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛 − 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥)

=

(6) 𝑅 = √𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑥 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑖𝑛

This formula (6) is put in a MATLAB script. In this MATLAB script the formula gets the minimum

and maximum resistance the sensor can become and the output of the MATLAB script is the

resistance that should be used to give the biggest voltage difference the Arduino can read. The

resistances giving the biggest voltage difference are:

Potentiometer = 438 Ω

Temperature sensor for the hot body = 6.324 kΩ

Temperature sensor for the cold body = 12.64 kΩ

Temperature sensor for environment = 1.9 kΩ

The resistances used for the MOSFET's are only there to prevent short circuiting for which a

resistance of 10kΩ is used in both cases. The fan is connected to the 5V pin of the Arduino and is

operational at constant speed.

32

Figure 1: Circuit drawing using external power supply for the Arduino, heat pad and peltier element.

In this drawing LP = Linear Potentiometer, ET = Environment Temperature, CBT = Cold Body

Temperature, WBT = Warm Body Temperature, PE = Peltier element, HP = Heat pad

Figure 2: Circuit drawing using batteries. . In this drawing LP = Linear Potentiometer, ET =

Environment Temperature, CBT = Cold Body Temperature, WBT = Warm Body Temperature, PE

= Peltier element, HP = Heat pad

%% A file created to calculate the resistors giving the largest dV%%
clc
clear all

33

clear
close all

Vi = 5; % V going in the system

%Tempresistors 5K Heatpad Peltier
Rvmaxt1 = 20000; % Ohms, maximum resistance given by sensor -10 Celsius
Rvmint1 = 2000; % Ohms, minimum resistance given by sensor 50 Celsius

RTemp1 = sqrt(Rvmaxt1*Rvmint1) %Ohm

%Tempresistors 10K Heatpad Peltier
Rvmaxt2 = 40000; % Ohms, maximum resistance given by sensor -10 Celsius
Rvmint2 = 4000; % Ohms, minimum resistance given by sensor 50 Celsius

RTemp2 = sqrt(Rvmaxt2*Rvmint2) %Ohm

%Tempsensor environment
Rvmaxt3 = 2417; %Ohm, maximum resistance given by sensor
Rvmint3 = 1495; %Ohm, minimum resistance given by sensor

RTemp3 = sqrt(Rvmaxt3*Rvmint3) %Ohm

%Potresistors
Rvmaxp = 10660; %Ohm, maximum resistance given by potmeter
Rvminp = 18; %Ohm, minimum resistance given by potmeter

Rpot = sqrt(Rvmaxp*Rvminp) %Ohm

34

Appendix 8: Arduino code

In the code for the Arduino first the pins are assigned, after which the variables are assigned and

constants calculated. Then the void setup starts where the pins are turned on and after that comes the

loop where everything else happens.

In these four parts of the code a constant order was maintained. This is done to keep a clear overview

of the document. The order is as follows:

1. Warm body temperature sensor

2. Cold body temperature sensor

3. Environment temperature sensor

4. Potentiometer

5. Heating pad

6. Peltier element

7. Calculating the thermal conductivity

8. Printing the values on the screen.

For the temperature sensors the value read by the analog pins is an integer from 0 to 1023. This integer is

converted in the voltage corresponding to that value, 0V corresponds with 0 and 5V corresponds with 1023.

From there the resistance of the sensor at that time is calculated. The sensors need to be calibrated. The warm

and cold body temperature sensors use the Steinhart-Hart equation [13]. The environment sensor uses an

equation found in its document sheet. The environment sensor only needed to be calibrated at one temperature

for the equation to work at different temperatures as well. This was done using a bucket of melting ice which is 0

degree Celsius. On basis of this calibrated sensor, the other temperature sensors are be calibrated as well. For

the Steinhart-Hart equation 3 output resistances need to be found for 3 different temperatures. The

temperatures used are a bucket of melting ice, 0 degrees Celsius, room temperature of 23.11 degrees Celsius

and a bucket of heated water at 41 degrees Celsius. With these values the Steinhart constants were determined,

which were implemented in the Arduino code. After the calibration the resistances of the sensors are

transformed to temperature values in both Celsius and Kelvin. As stated in Appendix 7: ‘Electrical circuit’, the

required ranges of the sensor outputs are spread out over the 1024 steps in order to maximize the sensitivity of

the sensors.

For the potentiometer the output voltage is linear in relation to the distance travelled. Reading

the value from the analog pin when the potentiometer is at the lowest position corresponds with 0 mm.

Also the value when the potentiometer is at the highest position the value is read. Measuring the

distance, with an (external) calibrated calliper, between the highest and lowest position a linear relation

was created to calculate the distance travelled by the pin on the potentiometer.

In section 5 and 6 the heating pad and the peltier element are controlled by a PID control.

The values are found experimentally until a stable system was achieved. For the heating pad the PID

control values are kp = 8, ki = 3 and kd = 0.01. For the peltier element these values come to kp = 30,

ki= 10 and kd = 5. For the heating pad the temperature difference between the warm body and the

environment was the value to be controlled. The difference between those should be 10 degrees

Celsius. The average of the last three values of the environment sensor where taken to calculate this to

negate a sudden jump in the environment temperature. These jumps happen at points when the actual

temperature is in between two values that can be read by the Arduino.

 For the peltier element the difference between the cold body and the environment is being

controlled. The desired difference between these two values should be 0 degrees Celsius. Here again

the average of the last three environment temperature values is used.

 After the PID value is determined, it is converted to a PWM (Pulse Width Modulation) signal

the Arduino can use. First the PID value is converted into a integer ranging from 0 to 255. After that

the PID value is checked against a hard cap value. If the PID value is higher than the hard cap value it

will be set back to the hard cap value, to make sure the circuit doesn’t overheat. The hard cap value is

set at 120 out of 255, which means at a maximum the circuit is at maximum voltage for a period of

35

480μs per 1000μs. See Appendix 7: ‘Electrical circuit’ explanation on PWM. The hard cap value is the

same for both the peltier element and the heat.

 In section 7 the thermal conductivity of the sample is calculated. To do this the PWM value of

the heating pad is used as from this value the power to keep the warm body 10 degrees warmer than

the cold body can be calculated. This is calculated by a linear fit model. This model was created by

notating both the voltage as the amperage for every PWM value.

 After the generated power by the heat pad is calculated the power loss through insulation is

being deducted. This gives the power going through the samples. Using formula (1) taken form Mills

[7]:

(1) 𝑄𝑐𝑙𝑜𝑡ℎ𝑒𝑠 =
∆𝑇

𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑘𝑠𝑎𝑚𝑝𝑙𝑒
∗𝐴𝑎𝑙𝑢−2∗

𝑙𝑎𝑙𝑢
𝑘𝑎𝑙𝑢

∗𝐴𝑎𝑙𝑢

Rearranging this formula gives formula (2) for the thermal conductivity k:

(2) 𝑘𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑙𝑠𝑎𝑚𝑝𝑙𝑒

∆𝑇∗𝐴𝑎𝑙𝑢/𝑄𝑐𝑙𝑜𝑡ℎ𝑒𝑠−2∗
𝑙𝑎𝑙𝑢
𝑘𝑎𝑙𝑢

Where 𝑘𝑠𝑎𝑚𝑝𝑙𝑒 is the thermal conductivity of the sample. 𝑙𝑠𝑎𝑚𝑝𝑙𝑒 is the thickness of the sample

measured by the potentiometer. ∆𝑇 is the temperature difference between the warm body and the cold

body measured by the appropriate sensors. 𝐴𝑎𝑙𝑢 is a the surface area of the aluminum bodies. 𝑄𝑐𝑙𝑜𝑡ℎ𝑒𝑠

is the power going through the samples. 𝐼𝑎𝑙𝑢 is the thickness of the aluminum bodies and 𝑘𝑎𝑙𝑢 is the

thermal conductivity of the aluminum bodies.

 After the 𝑘𝑠𝑎𝑚𝑝𝑙𝑒 is calculated and the steady state has been reached, the calculated values are

averaged. Steady state is reached after 435 seconds as calculated in Appendix 5: ‘Insulation’. After the

measurement has run this amount of time the k values get added to each other and then divided by the

amount of k values added, resulting in an average value. The longer the program runs after steady state

has been reached, the more certain the thermal conductivity value becomes.

 The last section of the code, section 8, is printing all values of interest on the monitor of the pc.

There is an interval added here at 5000ms, which means the values only get displayed every 5 second

to keep the screen readable.

Arduino Code

/* Troughout this document the following order has been used:

 * 1. Warm Body Temperature Sensor (WB)

 * 2. Cold Body Temperature Sensor (CB)

 * 3. Environment Temperature Sensor (E)

 * 4. Potentiometer (PM)

 * 5. Heating Pad (HP)

 * 6. Peltier Element (PE)

 * 7. Calculating Thermal Conductiviy

 * 8. Printing (To read the values on screen)

 * Everywhere. Which means this order is used when

 * 1. Defining variables

 * 2. Calculating constants

 * 3. Void Setup

 * 4. Void Loop

*/

// Defining Variables //

/* Pins */

int TempWarmBodyPinRead = A0;

int TempWarmBodyPinPower = 2;

int TempColdBodyPinRead = A1;

int TempColdBodyPinPower = 3;

int TempEnvironmentPin = A2;

int TempEnvironmentPower = 4;

int PotPin = A3;

36

int PotPower = 7;

int HeatPadPin = 6;

int PeltierElementPin = 5;

//'Calculating' Constants //

/*1. Warm Body Temperature Sensor(WB)*/

int WBRead; // Stores value read by the arduino for the sensor; 0-1023

float TWB, TcWB, VWB, VoWB, RTWB; // Used Variables to calculate the Temperature of the Warm Body temperature sensor

float VinWB = 5; // Voltage going in the sensor circuit

float CVoWB = VinWB/1023; // Voltage per step the arduino is able to read.

float RWB = 6800; // Ohm, resistance in series to the temperature sensor

//WB Steinhart Constant constants

float AWB = 1.212613474*pow(10, -3);

float BWB = 2.33064152*pow(10, -4);

float CWB = 2.715745132*pow(10, -7);

float LRTWB, TKSWB, TKWB; // Used Variables to calculate the Temperature of the Warm Body temperature sensor

/*2. Cold Body Temperature Sensor (WB)*/

int CBRead; // Stores value read by the arduino for the sensor; 0-1023

float TCB, TcCB, VCB, VoCB, RTCB; // Used Variables to calculate the Temperature of the Cold Body temperature sensor

float VinCB = 5; // Voltage going in the sensor circuit

float CVoCB = VinCB/1023; // Voltage per step the arduino is able to read

float RCB = 12000; // Ohm, resistance in series to the temperature sensor

//CB Steinhart Constant constants

float ACB = 1.179356240*pow(10, -3);

float BCB = 1.995722535*pow(10, -4);

float CCB = 4.351300849*pow(10, -7);

float LRTCB, TKSCB, TKCB; // Used Variables to calculate the Temperature of the Warm Body temperature sensor

/* 3. Environment Temperature Sensor (E)*/

int ERead; // Stores value read by the arduino for the sensor; 0-1023

float RE = 1800; // Ohm, resistance in series to the temperature sensor

float R25E = 2000; // resistance of thermistor at 25 Celsius

float ktE, TcE, RTE, VoE, TKE; // Used Variables to calculate the Temperature of the Environment temperature sensor

float VinE = 5; // Voltage going in the sensor circuit

float CVoE = VinE/1024; // Voltage per step the arduino is able to read

float TcEStart = 23.23; // Calibrated value added to formula according to datasheet

float aE = 7.88*pow(10, -3); // Value found in datasheet of sensor to calculate temperature

float BE = 1.937*pow(10, -5); // Value found in datasheet of sensor to calculate temperature

/* 4. Potentiometer (PM)*/

int PRead; // Stores value read by the arduino for the sensor; 0-1023

float mmmaxPM = 59.8; // mm, value the potmeter should give at highest point of device

float mmminPM = 0; // mm, value the potmeter should give at lowest point of device

float mmPM; // Used Variables to calculate the distance traveled by the potentiometer

float mmStart = 28.26; // mm, value used to zero the potentiometer when device is at lowest point

float PMmax = 892; // Value read by PotPin(A3) at heighest point of device

float PMmin = 291; // Value read by PotPin(A3) at lowest point of device

float StepsPM = PMmax - PMmin; // Total steps measured by PotMeter in the range of device

float DStepsPM = mmmaxPM / StepsPM; // mm per step measured by the arduino

/* 5. Heating Pad (HP)*/

float DTWEBHP = 10; // K, Desired Temperature Difference between Warm Body sensor and Environment sensor

float ADTWEBHP; // Actual Temperature Difference between Warm Body sensor and Environment sensor

int PWMValueHP; // PWM value output over HeatPadPin(11) used to control the heatpad (The PWMvalue*4microseconds is the width

 // of the pulse per millisecond and gets repeated every ms until the PWMvalue changes, PWMValue rangeg between 0 and 255)

float PWMValueHPi; // intermediate PWM value

int HardCapValue = 120; // Maximum value PWM value is allowed to be, this is the same for the peltier element

// PID Constants

float kpWEB = 8.0;

float kiWEB = 3.0;

float kdWEB = 0.01;

float PID_EWEB, PIDHP, dStepHP, ETimeHP, TKE1, TKE2, TKE3; // Variables used in the PID control for the Heatpad

unsigned long TimeHP; // s, Variable used to make timesteps for the PID control

unsigned long PreTimeHP = 0; // s, Variable used to make timesteps for the PID control

float PID_PEWEB = 0; // Setting start values for PID control on 0

float PID_pWEB = 0;

float PID_iWEB = 0;

float PID_dWEB = 0;

/* 6. Peltier Element (PE)*/

float DTCEBPE = 0; // Desired Temperature Difference between Cold Body sensor and Environment sensor

float ADTCEBPE; // Actual Temperature Difference between Cold Body sensor and Environment sensor

int PWMValuePE; // PWM value output over HeatPadPin(11) used to control the heatpad

float PWMValuePEi; // intermediate PWM value

// PID Constants

float kpCEB = 30.0;

float kiCEB = 10.0;

float kdCEB = 5.0;

float PID_ECEB, PIDPE, dStepPE, ETimePE; // Variables used in the PID control for the Peltier Element

unsigned long TimePE; // s, Variable used to make timesteps for the PID control

unsigned long PreTimePE = 0; // s, Variable used to make timesteps for the PID control

float PID_PECEB = 0; // Setting start values for PID control on 0

float PID_pCEB = 0;

float PID_iCEB = 0;

float PID_dCEB = 0;

/* 7. Calculating Thermal Conductivity */

// Power

float QB0 = -0.042823; // Power output by heatpad is calculated by Q[W] = QB0 + QB1*PWMvalueHP

float QB1 = 0.12766; // Values found by linear fit through data found by PSU

float Qinsul = 0.5; // W, Calculated powerloss through the insulation

37

float QHP, Qclothes, QdeltaT; // Variables used in calculating the thermal conductivity of clothes

//Thermal

float lalu = 0.01; // m, thickness alu

float kalu = 147; // W/mK, Thermal conducitivity alu

float Aalu = 0.06*0.06; // m2, Area aluminum

float Ralu = 2*(lalu/(kalu*Aalu)); // K/W, Resistance Alu for Warm and Cold body combined

float Rtotal, kclothes, lclothes, kclothesi, kclothessum; //Variables used in calculating the thermal conductivity of clothes

unsigned long n = 0; // Total values of k calculated for average, changes in loop

unsigned long Counterk = 60000; // ms, time it takes for the system to reach steady state

unsigned long kTimer; // ms, used to see if steady state is reached

/* 8. Printing (To read the values on screen)*/

unsigned long Counter = 0; // ms, keep track of when to show values on screen

const long interval = 5000; // ms, used to show value at intervals on screen

void setup() {

 Serial.begin(9600);

 // Power to Sensors

 pinMode(TempWarmBodyPinPower, OUTPUT);

 pinMode(TempColdBodyPinPower, OUTPUT);

 pinMode(TempEnvironmentPower, OUTPUT);

 pinMode(PotPower, OUTPUT);

 digitalWrite(TempWarmBodyPinPower, HIGH);

 digitalWrite(TempColdBodyPinPower, HIGH);

 digitalWrite(TempEnvironmentPower, HIGH);

 digitalWrite(PotPower, HIGH);

 //Heatpad output

 pinMode(HeatPadPin, OUTPUT);

 //Peltier output

 pinMode(PeltierElementPin, OUTPUT);

}

void loop() {

/* WarmBodyTemperatureSensor() */

 // Reading data from Warm Body Sensor and converting it //

 WBRead = analogRead(TempWarmBodyPinRead); // Read Pin A0, gives value between 0-1023, depending on voltage over sensor

 VoWB = CVoWB*WBRead; // Convert read value to voltage

 RTWB = (VoWB*RWB)/(VinWB -VoWB); // Calculate Resistance of Temp Sensor

 // Steinhart-hart equation broken down in easier blocks [1/T = A + B*ln(R) + C * (ln(R)^3)]

 LRTWB = log(RTWB); // Calculate ln(R)

 TKSWB = AWB + BWB*LRTWB + CWB*(pow(LRTWB, 3)); // 1/K, calculate 1/T

 TKWB = pow(TKSWB, -1); // K, calculate T in Kelvin

 TcWB = TKWB - 273; // C, calculate T in Celsius

/* ColdBodyTemperatureSensor() */

 // Reading data from Cold Body Sensor and converting it //

 CBRead = analogRead(TempColdBodyPinRead); // Read Pin A1, gives value between 0-1023, depending on voltage over sensor

 VoCB = CVoCB*CBRead; // Convert read value to voltage

 RTCB = (VoCB*RCB)/(VinCB -VoCB); // Calculate Resistance of Temp Sensor

 // Steinhart-hart equation broken down in easier blocks [1/T = A + B*ln(R) + C * (ln(R)^3)]

 LRTCB = log(RTCB); // Calculate ln(R)

 TKSCB = ACB + BCB*LRTCB + CCB*(pow(LRTCB, 3)); // 1/K, calculate 1/T

 TKCB = pow(TKSCB, -1); // K, calculate T in Kelvin

 TcCB = TKCB - 273; // C, calculate T in Celsius

/* EnvironmentTemperatureSensor() */

 //Reading data from Environment Sensor and converting it

 ERead = analogRead(TempEnvironmentPin); // Read Pin A2, gives value between 0-1023, depending on voltage over sensor

 VoE = CVoE * ERead; // Convert read value to voltage

 RTE = (VoE*RE)/(VinE -VoE); // Calculate Resistance of Temp Sensor

 ktE = RTE/R25E; // Calculate variable according to datasheet

 TcE = TcEStart + ((sqrt(pow(aE,2) - 4*BE + 4*BE*ktE)-aE)/(2*BE)); // C, Calculate T in C according to datasheet

 TKE = TcE + 273; // K, calculate T in Kelvin

/* PotentioMeter() */

 //Reading data from potentio meter and converting it

 PRead = analogRead(PotPin); // Read Pin A3, gives value between 0-1023, depending on voltage over sensor

 mmPM = DStepsPM * PRead - mmStart; // mm, convert read value to mm

/* HeatingPad() */

 // Controlling the HeatPad

 TKE3 = TKE2;

 TKE2 = TKE1;

 TKE1 = TKE;

 TKE = (TKE1 + TKE2 + TKE3)/3; // K, Average Environment Temperature reading attenuate outliner

 ADTWEBHP = TKWB - TKE; // Calculating actual temperature difference between Warm body en environment

 PID_PEWEB = PID_EWEB; // Storing previous PID error value

 PID_EWEB = DTWEBHP - ADTWEBHP; // Calculating current PID error

 // Calculating the p of PID

 PID_pWEB = kpWEB*PID_EWEB; // Calculating p

 // Calculating the i of PID

 PreTimeHP = TimeHP; // ms, Storing previous time

 TimeHP = millis(); // ms, Storing current time

 ETimeHP = (float)(TimeHP-PreTimeHP)/1000; // s, calculatin time difference and converting to s

38

 PID_iWEB = PID_iWEB + (kiWEB * PID_EWEB)*ETimeHP; // calculating i

 // Calculating the d of PID

 dStepHP = PID_EWEB - PID_PEWEB; // Calculating difference between previous error and current error

 PID_dWEB = kdWEB * ((dStepHP)/ETimeHP); // Calculating d

 // PID

 PIDHP = PID_pWEB + PID_iWEB + PID_dWEB; // Calculating PID = p+i+d

 // Changing the PID value to a PWM value

 PWMValueHPi = PIDHP;

 PWMValueHP = int(PWMValueHPi);

 if (PWMValueHP > HardCapValue){ // Creating a hard cap at 120 for PWM control to not melt the system

 PWMValueHP = HardCapValue;

 }

 if (PWMValueHP <=0){

 PWMValueHP = 0;

 }

 // Output

 analogWrite(HeatPadPin, PWMValueHP); // Controlling the HeatPadPin(6) with the calculated PWM value

/*PeltierElement() */

 // Controlling the Peltier

 ADTCEBPE = TKE - TKCB; // Calculating actual temperature difference between Cold body en environment

 PID_PECEB = PID_ECEB; // Storing previous PID error value

 PID_ECEB = DTCEBPE - ADTCEBPE; // Calculating current PID error

 // Calculating the p of PID

 PID_pCEB = kpCEB*PID_ECEB; // Calculating p

 // Calculating the i of PID

 PreTimePE = TimePE; // ms, Storing previous time

 TimePE = millis(); // ms, Storing current time

 ETimePE = (float)(TimePE-PreTimePE)/1000; // s, calculatin time difference and converting to s

 PID_iCEB = PID_iCEB + (kiCEB * PID_ECEB)*ETimePE; // calculating i

 // Calculating the d of PID

 dStepPE = PID_ECEB - PID_PECEB; // Calculating difference between previous error and current error

 PID_dCEB = kdCEB * ((dStepPE)/ETimePE); // Calculating d

 //PID

 PIDPE = PID_pCEB + PID_iCEB + PID_dCEB; // Calculating PID = p+i+d

 // Changing the PID value to a PWM value

 PWMValuePEi = PIDPE;

 PWMValuePE = int(PWMValuePEi); // Creating a hard cap at 120 for PWM control to not melt the system

 if (PWMValuePE > HardCapValue){

 PWMValuePE = HardCapValue;

 }

 if (PWMValuePE <=0){

 PWMValuePE = 0;

 }

 // Output

 analogWrite(PeltierElementPin, PWMValuePE); // Controlling the PeltierElementPin(5) with the calculated PWM value

/* Calculating Thermal Conductivity */

 // Calculating power

 QHP = QB0 + QB1*PWMValueHP; // W, Calculating the power the Heatpad uses to keep the warm body at the desired tempterature

 Qclothes = QHP - Qinsul; // W, Taking away the power lost through the insulation

 if (Qclothes < 0){ // Keeping it positive

 Qclothes = 0;

 }

 QdeltaT = TKWB - TKCB; // K, Temperature difference between Warm Body and Cold Body

 // Calculating Thermal values

 lclothes = mmPM/1000; // m, thickness of sample

 kclothesi = lclothes/((QdeltaT*Aalu/Qclothes)-(2*lalu/kalu)); // W/mK, thermal conductivity of clothes, intermediate value

 kTimer = millis(); // ms, steady state timer

 if (kTimer >= Counterk){ // This statement happens after steady state has been reached

 n = n + 1; // Counter how often this loop has been done

 kclothessum = kclothesi + kclothessum; // Add intermediate values together

 kclothes = (kclothessum)/n; // W/mK, average, divide sum of intermediate values after steady state by amount of calculated intermediate values after steady state

has been reached

 }

/* Print */

 // Print values on screen after a set interval

 unsigned long PrintTime = millis();

 if (PrintTime - Counter >= interval){

 Counter = PrintTime;

 // Print Warm body

 Serial.print("Warm Body: ");

// Serial.print(WBRead);

// Serial.print(" Read ");

// Serial.print(VoWB);

// Serial.print(" Volt ");

 Serial.print(TcWB);

 Serial.println(" C ");

 // Print Cold body

 Serial.print("Cold Body: ");

// Serial.print(CBRead);

// Serial.print(" Read ");

// Serial.print(VoCB);

// Serial.print(" Volt ");

39

// Serial.print(RTCB);

// Serial.print(" Ohm ");

 Serial.print(TcCB);

 Serial.println(" C ");

 // Print Environment

 Serial.print("Environment: ");

// Serial.print(ERead);

// Serial.print(" Read ");

// Serial.print(VoE);

// Serial.print(" Volt ");

 Serial.print(TcE);

 Serial.println(" C ");

 //Print Potmeter

 Serial.print("Potmeter: ");

 Serial.print(mmPM);

 Serial.println(" mm");

 //Print HeatPad

 Serial.print("Heatpad: ");

 Serial.print(PWMValueHP);

 Serial.println(" PWMHP ");

 //Print Peltier

 Serial.print("Peltier: ");

 Serial.print(PWMValuePE);

 Serial.println(" PWMPE ");

 Serial.print("Thermal conductivity: ");

 Serial.print(kclothesi);

 Serial.print(" Intermediate ");

 Serial.print(kclothes, 6);

 Serial.println(" Steady State ");

 Serial.print(kclothessum);

 Serial.print(" k Sum ");

 Serial.print(kTimer);

 Serial.println(" Time ");

 Serial.print(PID_dWEB);

 Serial.print(" d ");

 Serial.print(PID_iWEB);

 Serial.print(" i ");

 Serial.print(PID_pWEB);

 Serial.println(" p ");

 Serial.println("");

 }

}

40

Appendix 9: Thermal conductivity measurement uncertainty

Defining Aspired Precision

As stated in the report, a measurement accuracy within 8% of the real thermal conductivity, is desired.

This appendix grants insight in the aspects contributing to the accuracy of the Therminus device.

Formula (1), which efficaciously describes the thermal conductivity, is derived for the Therminus

device specifically.

(1) 𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 = 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒(
𝐴∗𝛥𝑇

𝑄
 − 2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
)(−1)

Where 𝐴 is the surface area (in m
2

) on which the measurement takes place. 𝛥𝑇 is the temperature

difference (in K) between the warm and cold body. 𝛥𝑇 is a value for which engineers ought to choose

an appropriate value. 𝑄 is the heat flow (in Watt) needed to sustain the aforementioned temperature

difference 𝛥𝑇.

Parameter Remarks

Some parameters either have no, or do not have known, uncertainties. The parameter with unknown

uncertainty is: 𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡. Geometric uncertainties can be accounted for by measuring the real value after

the manufacturing process has been completed. Examples of such values are: 𝐴 and 𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡. The

uncertainty of 𝑄 is caused two factors 𝑄 = 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛. First factor (𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑) being the

uncertainty of the voltage drop, and the resistance the heat pad has, in practice. In other words, the

first factor is caused by the uncertainty associated with the electrical circuit design. The second factor

(𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛) is caused by the error that is made by estimating the heat loss to the insulation. The

prototype Therminus device does not suffer from the latter, it rather suffers from an error made by the

former instead.

Consequently, three uncertainties remain. Both 𝛥𝑇 and 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒 are caused in part by sensor inaccuracy

and the magnifying effect caused by the discrete voltage mapping as carried out by Arduino. To

establish the maximum uncertainty corresponding to both 𝛥𝑇 and 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒, MATLAB files have been

created to simulate the Arduino and, consequently, the error caused by the setups. Appendix 10:

‘Thermistor uncertainty’ (for 𝜎𝛥𝑇) and Appendix 11: ‘Linear potentiometer uncertainty’ (for 𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
)

contain more information about the origin of the uncertainties alongside the aforementioned

MATLAB files.

The uncertainty of 𝑄 remains, which could be regarded as the most complex one to analyze. In part

because the formulae used to derive 𝑄 are quite nasty. Never mind the fact that the formulae used are

an attempt to describe reality, placing emphasis on the word attempt. In other words, the exact

uncertainty for Q, along with its origins, remain unsure. Although no conclusive answer can be given as

to what value 𝜎𝑄 will turn out to be in reality, an estimate for its maximum acceptable value will be

established.

General Formula Error Propagation

The uncertainty of the thermal conductivity measurement is caused by the propagation of two errors.

The first error is caused by the inaccurate measurement of 𝛥𝑇. The second error is caused by the

inaccuracy of the thickness measurement. Formula (2) defines how error propagation takes place.

(2) 𝜎𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒
= √(

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇
)

2
 (𝜎𝛥𝑇)2 + (

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
)

2
 (𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒

)2 + (
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄
)

2
 (𝜎𝑄)2

41

To determine all components in formula (2), the members (
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇
 and

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
) are derived

independently. Note that both 𝜎𝛥𝑇 and 𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 are results attained from theoretical analysis which are

analyzed in their respective appendices.

Formulae 𝜟𝑻 Error Propagation

From formulae (3), (4) and (5), formula (6) can be derived. Note that formula (6) merely formulates a

result attained by applying u-substitution as defined by formulae (3) through (5).

(3) 𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 =
𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝑢

(4) 𝑢 =
𝐴

𝑄
𝛥𝑇 − 2

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡

(5)
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇
=

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑢

𝜕𝑢

𝜕𝛥𝑇

(6)
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇
= −

𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒∗𝐴∗𝛥𝑇

𝑄
(

𝐴∗𝛥𝑇

𝑄
 − 2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
)(−2)

Now that formula (6) has been defined, it can be substituted back into formula (2).

Formulae 𝒅𝒕𝒆𝒙𝒕𝒊𝒍𝒆 Error Propagation

The derivation
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 of is much more straightforward than the derivation examined in the former

paragraph. Formula (7) depicts the relationship of 𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 derived with respect to 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒.

(7)
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
= (

𝐴∗𝛥𝑇

𝑄
 − 2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
)(−1)

Formulae 𝑸 Error Propagation

Before discussing the derivation of 𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 with respect to 𝑄, an important remark has to be made. The

assertion that equation (8) can be used, infers that the formula used to describe 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is exactly

right and introduces no additional error. During the analysis, the assumption that 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is indeed

exactly right, is made. A more in depth analysis into the derivation of 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is given in Appendix

5: ‘Insulation’.

(8) 𝑄 = 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

(9)
𝜕𝑄

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛
= −1

(10)
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛
=

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄

𝜕𝑄

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

(11)
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄
= 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒 ∗ 𝐴 ∗ 𝛥𝑇 ∗ (𝑄 ∗ (

𝐴∗𝛥𝑇

𝑄
 − 2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
))(−2)

42

(12)
𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

= 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒 ∗ 𝐴 ∗ 𝛥𝑇 ∗ ((𝑄
𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑

− 𝑄
𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

) ∗ (
𝐴∗𝛥𝑇

𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑− 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 − 2 ∗
𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡

))

(−2)

Resulting Uncertainty Formula

A MATLAB script has been used to solve equation (2). Equation (13) can be constructed from the set

of derived formulae (6), (7) and (12).

(13) 𝜎𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

2 = (
𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒∗𝐴∗𝛥𝑇

𝑄
(

𝐴∗𝛥𝑇

𝑄
 − 2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
)(−2))2 (𝜎𝛥𝑇)2 + ((

𝐴∗𝛥𝑇

𝑄
 − 2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
)(−1))2 (𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒

)2 − 𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒 ∗ 𝐴 ∗

𝛥𝑇 ∗ ((𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛) ∗ (
𝐴∗𝛥𝑇

𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑− 𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 − 2 ∗

𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘𝑒𝑙𝑒𝑚𝑒𝑛𝑡
))(−2)(𝜎𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

)2

The error 𝜎𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 ought not to exceed 8% of the actual thermal conductivity, see Appendix 2: ‘Phoebe

experiment’. One can obviously deduct that the narrowest bounds are applicable when 𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 is as

small as possible.

As previously stated in the smallest thermal conductivity which is expected to be the worst case

𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒 = 0.057
𝑊

𝑚𝐾
 . Thus logically leading to an allowable error of ± 4.56 ∗ 10

(−3)
. Two cases are

evaluated in order to establish the prototype performance.

Two Evaluated Cases

First case being the most extreme case being a well insulating thick coat in an environment temperature

that does not exceed 30 C°. The Arduino Uno is deemed inappropriate due to several reasons. The

first case for which the maximum uncertainty, with its respective conditions, assumes an Arduino Uno

is implemented. The second case which is analyzed, assumes an SAM3X controller precision is

implemented to read sensor values for equivalent circuitry.

For both cases the error is evaluated for the most critical case. The most critical case assumes a

thermal resistivity of Rth = 2.0826 where Rth =
𝑘

𝑑
 = 0.057/0.02737. As mentioned in Appendix 6: ‘Heat

pad’, 95.45% of coats is expected to be thinner than 27.37mm.

Uncertainty Values

Tables 1 and 2 list the worst case uncertainties that are expected for the Arduino Uno and Due

respectively. Note that the uncertainties are calculated from several MATLAB files.

Table 1: Highest expected uncertainty for respective quantity using the Arduino Uno

Case 1 Arduino Uno

Quantity Value unit At condition

𝜎𝛥𝑇 6.3896e-02 C° At Tenvironment = 39.34 C°

𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 4.869e03 mm At dtextile = 0.4 mm

𝜎𝑄 1.7694e-05 W At Tenvironment = 11.48 C°

Table 2: Highest expected uncertainty for respective quantity using the Arduino Due

Case 2 Arduino Due

Quantity Value unit At condition

𝜎𝛥𝑇 2*1.6417e-02 C° At Tenvironment = 38.85 C°

𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 1.221e-03mm At dtextile = 23.56 mm

𝜎𝑄 1.7694e-05 W At Tenvironment = 11.48 C°

Note that for both Arduino Uno and Arduino Due the value for 𝜎𝑄 are equal since the same

interpolation method is used in order to calculate the heat loss through the insulation.

43

Resulting Error Estimate

Tables 3 and 4 list the results that are attained from MATLAB script Therminus_Error_Propagation

which is provided at the end of this Appendix. Table 3 provides the expected values as attained from

the aforementioned MATLAB script when an Arduino Uno is used.

Table 3: highest expected uncertainty for respective quantity using the Arduino Uno

Case 3 Arduino Uno

Quantity Value unit Relative Uncertainty

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇

-0.05702

0.639%

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒

2.036

0.0178%

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

-0.7782 0.0227%

𝜎𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 0.0123 W/mK 21.58%

Table 4: highest expected uncertainty for respective quantity using the Arduino Uno

Case 4 Arduino Due

Quantity Value unit Relative Uncertainty

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝛥𝑇

-0.05702

0.1642%

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒

2.036

0.0045%

𝜕𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒

𝜕𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

-0.7782

0.0227%

𝜎𝑘𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 0.0028 W/mK 4.9528%

Lineair Interpolation Heat Loss Model Justification

If the heat flow through the insulation would be determined accurately instead of using lineair

interpolation, both resulting errors for case 3 and 4, will become smaller.

For the Arduino Uno the reduced error is of no important matter since the error associated with the

still exceeds the desired 8%. When perfectly implementing the insulation heat loss model, the

expected error for the Arduino Uno is 20.29%, this is an improvement. While theoretically possible to

implement such model, it will be extremely cumbersome in practice and therefore not recommended.

For the Arduino Due the reduction in the total error made is less significant, namely 4.9527%. A more

interesting matter is the maximum error that can be made for the insulation heat loss estimate. For the

Arduino Due, the aforementioned maximum error is 7.688%, or in an absolute sense, 5.993e-03. The

error made using the proposed linear interpolation is approximately 340 times smaller than the

maximum allowable error thus justifying the usage of linear interpolation.

% Therminus Error Propagation
% TU Delft, 05/31/2019
% Author: Sebastiaan Thomas Njio

clc
close all
clear variables

%Important values
dtextile = 28*10^(-3);
k_accuracy = 1 - 0.08; % 1 - Accuracy
Qmeasurement = [0.0732654, 0.0732654]; % [Case 1; Case 2] (Both the same value)

44

Qinsulationreal = [0.0783692, 0.0774926]; % [Case 1; Case 2], This one is case specific

%Qinsulation
Qinsulation = [0.077961, 0.0774926]; %[Lin Interpolation max Error @ 11.48C]

% Values attained for 12 Bit arduino measurement with Calibrated Sensors
sdT = [2*1.6417e-02, 2*1.2970e-02]; %[@T = 38.85, @T = -9.138]
sdtextile = [1.038e-03, 1.038e-03]; %[@d = 27.98mm, @d = 27.98mm]

% Values for 10 Bit arduino measurement with Calibrated Sensors
%sdT = [2*6.3896e-02, 2*5.1713e-02]; %[@T = 39.34, @T = -9.879]
%sdtextile = [4.869e-03, 0.004886]; %[@d = 0.4, @d = 71.52mm]
%sdtextile = [4.869e03 , 4.767e-03]; %[@d = 0.4mm, @d = 28.02mm]

sQ = [1.7694e-05, 1.7694e-05]; %[@T = -10, @T= -10]

%Constants
delement = 10*10^(-3);
kelement = 147;
b = 60*10^(-3);
l = 60*10^(-3);
dT = 10;
Q = zeros(1,length(Qinsulation));

%Values which need to be calculated
sktextile = zeros(2,length(Qinsulation));
skmax = zeros(1,length(Qinsulation));
ddT = zeros(1,length(Qinsulation));
ddtextile = zeros(1,length(Qinsulation));
ktextile = zeros(1,length(Qinsulation));
dQ = zeros(1,length(Qinsulation));

A = b*l;
for i = 1:length(Qinsulation)
Q(1,i) = Qinsulation(1,i)+Qmeasurement(1,i);
 ddT(1,i) = - dtextile*A*dT/Qmeasurement(1,i) * (A*dT/Qmeasurement(1,i) -2*delement/kelement)^(-2);
 ddtextile(1,i) = 1/(A*dT/Qmeasurement(1,i) - 2*delement/kelement);
 dQ(1,i) = -dtextile*A*dT*((Qmeasurement(1,i)*(A*dT/Qmeasurement(1,i) - 2*delement/kelement))^(-2));

 sktextile(1,i) = sqrt((ddT(1,i)*sdT(1,i))^2 + (ddtextile(1,i)*sdtextile(1,i))^2);
 sktextile(2,i) = sqrt((ddT(1,i)*sdT(1,i))^2 + (ddtextile(1,i)*sdtextile(1,i))^2 + (dQ(1,i)*sQ(1,i))^2);

 ktextile(1,i) = dtextile/(A*dT/Qmeasurement(1,i) - 2*delement/kelement);

 % Determine max allowed sQ in order to remain at k_accuracy
 skmax(1,i) = (1-k_accuracy)*ktextile(1,i);
 sQ(1,i) = sqrt(((skmax(1,i))^2 - (ddT(1,i)*sdT(1,i))^2 + (ddtextile(1,i)*sdtextile(1,i))^2)*(dQ(1,i))^(-2));

end

%OUTPUTS to user
disp(['dktextile/ddT = ', num2str(ddT(1,1),4)]);
 disp(['dktextile/ddtextile = ', num2str(ddtextile(1,1),4)]);
 disp(['dktextile/dQ = ', num2str(dQ(1,1),4)]);
 disp(['Error without Qerror: ', num2str(sktextile(1,1)/ktextile(1,1)*100, 8), '% with k = ', num2str(ktextile(1,1),4)])
 disp(['Allowable Qmeasurement Error [Absolute, Relative]: [', num2str(sQ(1,1), 4), ', ',

45

num2str(sQ(1,1)/Qinsulation(1,1)*100,4),'%]'])
 fprintf('\n'); disp(['Relative error [No Q error]: ',num2str(100*sktextile(1,1)/ktextile(1,1)),'%'])
 disp(['Relative error [Error, @Qerror %]: [',num2str(100*sktextile(2,1)/ktextile(1,1)),'%, ',num2str((Qinsulation(1,1)-

Qinsulationreal(1,1))/Qinsulationreal(1,1)*100),'%]']);fprintf('\n')

46

Appendix 10: Thermistor uncertainty

This Appendix aims to provide insight into uncertainty that is caused by the sensor setup.

Thermistor Sensor Setup

The setup and its resistor values (in order to maximize the voltage range) is described in Appendix 7:

‘Electrical Circuit’. The values that are given in this Appendix are calculated on the basis of a 12bit

logic board. Note that the Arduino used in the current Therminus device might not have 12bit read

capability on analog read ports. Hence an Arduino with 12bit read capabilities is recommended.

Figure 1: Calibrated thermistor resistance as

function of temperature

Figure 2: Measured voltage at temperature

Figure 3: The absolute error resulting from

the rounding error caused by discrete

Arduino values

Figure 4: Fractional power loss for range of

expected T∞ values

47

Figure 5: Absolute voltage error expected to

occur at certain temperature

Figure 6: Absolute temperature error at

measured voltage

Important values from the script are extracted and displayed to the user. The parameters are given at

the end of the Appendix.

Parameters as Used in Error Propagation Appendix

To determine the maximum temperature delta error 𝜎𝛥𝑇. The temperature difference is measured

between two sensors, both sensors are assumed to cause the same (maximum) error 1.6417e-02. The

maximum absolute error is caused by the combination of the discrete voltage measurement (by

Arduino) the required voltage read to resistance mapping, and the resistance to temperature mapping.

Please note that errors caused by floating point approximation is not considered.

As previously mentioned, two sensors are used thus resulting in a maximum error 𝜎𝛥𝑇 = 2 ∗
(1.6417e − 02).

MATLAB Script Outputs

Steinhart-Hart Equation constants

AR: 1.0157e-03 | BR: 2.7418e-04 | CR: 4.5791e-08

Temperature Delta Body: 10 C°

Measured Voltage [max, min]: [3.8106, 1.3811]

Uncertainty Voltage Measurement Arduino: 1.2210e-03 Volt

Expected Measured Arduino Step Range [max, min]: [3121, 1131]

Usefull occupancy of arduino voltage range: 48.6%

Max Temperature Uncertainty Sensor [error, @T]: [1.6417e-02 C°, 38.85 C°]

Maximum Relative Uncertainty: 0.1642%

Max Temperature Error for T < 8 C°, [Error, @T] : [1.2970e-02 C°, -9.138 C°]

Maximum Relative Uncertainty: 0.1297%

% Temperature Sensor Calibrated
% TU Delft, 05/31/2019
% Author: Sebastiaan Thomas Njio

clc
clear all
close all

Resolution = 2^12-1; % Resolution of Arduino Volt measurement
T = 263.15:0.02:313.15; % Temperature range which is expected
Rchosen = 6.8*10^3;
Tplot = T -273.15;

%Measured Steinhart-Hart Equation Values (1/T = A + B*ln(R) + C(ln(R)^3)
AR = 1.015659556e-3; BR = 2.741829352e-4; CR = 0.4579094890e-7;

%Allocate RAM for variables
Rthermistor = zeros(1,length(T));
Utheoretical = zeros(1,length(Rthermistor));
Umeasured = zeros(1,length(Rthermistor));

48

reg = zeros(4,length(T));

for i = 1:length(T)
x = 1/(2*CR)*(AR -1/T(i)); y = sqrt((BR/(3*CR))^3 + x^2);

Rthermistor(1,i) = exp((y-x)^(1/3)-(y+x)^(1/3));
Utheoretical(1,i) = 5 * Rthermistor(1,i) / (Rchosen + Rthermistor(1,i));
Umeasured(1,i) = 5/Resolution*round(Utheoretical(1,i)*Resolution/5);

end

%Important Vectors and Variables
Rthmax = max(Rthermistor); Rthmin = min(Rthermistor);
Umax = max(Utheoretical(1,:)); Umin = min(Utheoretical(1,:));

Ux = linspace(0, 5, Resolution +1);
Uxp = Umin:0.002:Umax;
Ux = 5/Resolution*round(Uxp*Resolution/5);

Rmeasured = zeros(1,length(Ux));
Ttheoretical = zeros(1,length(Uxp));
Tmeasured = zeros(1,length(Ux));
reg2 = zeros(2,length(Ux));
for i = 1:length(Uxp)
 Ttheoretical(1,i) = 1/(AR + BR*log(Rchosen*Uxp(1,i)/(5-Uxp(1,i))) + CR*(log(Rchosen*Uxp(1,i)/(5-Uxp(1,i))))^3) -

273.15;
 Tmeasured(1,i) = 1/(AR + BR*log(Rchosen*Ux(1,i)/(5-Ux(1,i))) + CR*(log(Rchosen*Ux(1,i)/(5-Ux(1,i))))^3) - 273.15;
 if i<length(Uxp)
 reg2(1,i) = Ux(1,i+1) - Ux(1,i); %Log the Voltage difference made between steps
 reg2(2,i) = Uxp(1,i);
 end
end

%Important Paramaters
smin = floor(Umin*Resolution/5); smax = ceil(Umax*Resolution/5);
Terror = abs(Tmeasured-Ttheoretical);
Uerror = abs(Umeasured - Utheoretical);

[Terrmax, Terrmax_i] = max(Terror);

%% Plotting Figures
disp(['*Note that values will be reported in rounded form.']);
disp(['For accurate representation consult the script.']); fprintf('\n')
disp(['Steinhart-Hart Equation constants'])
disp(['AR: ',num2str(AR,'%.4e'),' | ', 'BR: ',num2str(BR,'%.4e'),' | ', 'CR: ',num2str(CR,'%.4e'),]); fprintf('\n')
disp(['Temperature Delta Body: 10 C',char(176)])
disp(['Measured Voltage [max, min]: [',num2str(Umax),', ', num2str(Umin),']'])
disp(['Uncertainty Voltage Measurement Arduino: ',num2str(5/Resolution,'%.4e'),' Volt']); fprintf('\n')
disp(['Expected Measured Arduino Step Range [max, min]: ','[',num2str(smax),', ', num2str(smin),']'])
disp(['Usefull occupancy of arduino voltage range: ',num2str((smax-smin)/Resolution*100,4),'%'])
disp(['Max Temperature Uncertainty Sensor [error, @T]: [', num2str(Terrmax,'%.4e'),' CÔøΩ,

',num2str(Ttheoretical(1,Terrmax_i),4),' C',char(176),']']);
disp(['Maximum Relative Uncertainty: ',num2str(Terrmax*10,4),'%']);fprintf('\n')

%Establishing max Error made untill 8C
i = max(find(fliplr(Ttheoretical) <= 8));
[Terror8, index] = max(Terror(1,i:end));
index = i-1+index;

49

disp(['Max Temperature Error for T < 8 CÔøΩ, [Error, @T] : [', num2str(Terror8,'%.4e'),' CÔøΩ,

',num2str(Ttheoretical(1,index),4),' CÔøΩ]'])
disp(['Maximum Relative Uncertainty: ',num2str(Terror8*10,4),'%']);fprintf('\n')

%% Figure Drawing
% /// FIRST FIGURES \\\
figure() % PLOT HIGH FIDELITY VOLTAGE VS TEMPERATURE
hold on, grid minor;
x0 = 100; y0 = 600; height = 300; width = 400;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Resistance Thermistor');xlabel(['Temperature: [T] = [C',char(176),']']); ylabel('Resistance: [R] = [\Omega]');
plot(Tplot, Rthermistor,'-b')
legend('Resistance Thermistor','Location','northeast')

figure() % Error
hold on, grid minor;
x0 = 100; y0 = 600 - (80+height);
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Error For Range Of Temperatures');xlabel(['Temperature: [T] = [C',char(176),']']); ylabel(['Absolute Error [\DeltaT] =

[C',char(176),']']);
plot(Ttheoretical, Terror,'-b')
legend('Absolute Error','Location','northeast')

% /// SECOND FIGURES \\\

figure() % PLOT REAL TEMP, MEASURED TEMP FOR MEASURED VOLTAGE
hold on, grid minor;
x0 = 100 + (20+width); y0 = 600;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Voltage vs Temperature'); xlabel(['Temperature: [T] = [C',char(176),']']); ylabel([' Voltage [U] = [V]']);
plot(Tplot, Utheoretical,'-b', Tplot, Umeasured, '-r')
legend('Theoretical Voltage','Measured Voltage','Location','northeast')

figure() % PLOT ERROR VOLTAGE VS TEMPERATURE
hold on, grid minor;
x0 = 100 + 1*(20+width); y0 = 600 - 1*(80+ height);
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Voltage Measurement Error vs Real Temperature');xlabel(['Temperature: [T] = [C',char(176),']']); ylabel(' Absolute

Error Voltage Measurement [U] = [V]');
plot(Tplot,Uerror,'-b')
legend('Error Voltage Measurement','Location','northeast')

% /// TERTIARY FIGURES \\\

figure() % PLOT REAL TEMP, MEASURED TEMP FOR MEASURED VOLTAGE
hold on, grid minor;
x0 = 100 + 2*(20+width); y0 = 600;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Temperature Vs Voltage'); xlabel([' Voltage [U] = [V]']); ylabel(['Temperature: [T] = [C',char(176),']']);
plot(Ux,Ttheoretical,'-b',Ux,Tmeasured,'-r') %Ux,Tmeasured,'.b', 'Theoretical Voltage',
legend('Tmeasured','Theoretical Temperature','Location','northeast')

figure() % PLOT ERROR VOLTAGE VS TEMPERATURE
hold on, grid minor;
x0 = 100 + 2*(20+width); y0 = 600 - 1*(80+ height);
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Absolute Error Temperature Measurement'); xlabel('Voltage [U] = [V]'); ylabel(['Temperature: [T] = [C',char(176),']']);
plot(Ux,Terror,'-b')

50

legend('Absolute Error','Location','northeast')

51

Appendix 11: Linear potentiometer uncertainty

This appendix aims to provide insight into uncertainty that is caused by the specific sensor and

measurement setup as implemented in the proposed Therminus device.

Lineair Potentiometer Uncertainty

The linear potentiometer (LP sensor) setup and its resistor values (in order to maximize the voltage

range) is described in the Electrical Circuit Appendix. The values that are given in this specific

Appendix are calculated on the basis of a 12bit logic board. Note that the Arduino used in the current

Therminus device might not have 12bit read capability on analog read ports. Hence an Arduino with

12bit read capabilities is recommended.

Figure (1): Calibrated lineair potentiometer

upper bound voltage at real distance

Figure (2): Calibrated lineair potentiometer

lower bound voltage at real distance

Figure (3): The absolute error resulting from

the rounding error caused by discrete

Arduino values at specific thickness

Figure (4): Thickness uncertainty as caused by

Arduino rounding error for thickness range

Important values from the script are extracted and displayed to the user. The MATLAB output is

given at the end of the appendix alongside the actual MATLAB script.

Parameters as Used in Error Propagation Appendix

To determine the maximum thickness error 𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
. The linear potentiometer, by default, is not

calibrated which causes it to have a certain precision. To attain the highest possible accuracy, the LP

sensor is calibrated. The maximum absolute error is caused by the combination of the discrete voltage

measurement (by Arduino) the voltage read to resistance mapping, and the resistance to thickness

mapping. Please note that errors caused by floating point approximation are not considered.

52

Since the error is the result of a number of different factors, the maximum error will be of only

concern. The absolute value for maximum error is 𝜎𝑑𝑡𝑒𝑥𝑡𝑖𝑙𝑒
 = 1.221𝑒 − 03 mm.

MATLAB Script Outputs

Measured Voltage [Umax, Umin]: [4.7889, 0.18443]

Theoretical arduino step range [max, min]: [3922, 151]

Useful occupancy of arduino step range: 92.09%

Display maximum uncertainties @ thicknesses [mm]:

Uncertainty [mm] @ Thickness [mm]: 0.001221 23.56

% Lineair Potentiometer Sensor Error Estimation
% TU Delft, 05/31/2019
% Author: Sebastiaan Thomas Njio

clc
clear variables
close all

Resolution = 2^12-1;

d = 0:2*10^(-5):100*10^(-3); %range of thicknesses

%Declare Constants
Rmax = 10.66*10^(3); Rmin = 18;
Rchosen = 470; %Ohm
Umax = 5*Rmax/(Rchosen +Rmax); Umin = 5*Rmin/(Rchosen +Rmin);

Utheoretical = linspace(Umin, Umax, length(d));
Umeasured = zeros(2,length(Utheoretical));

Steps = (Resolution/5*Utheoretical);
smax = round(Steps(end)); smin = round(Steps(1,1));

%Same mutation that will be performed by arduino
Umeasured(1,:) = 5/Resolution*round(Steps);
Umeasured(2,:) = 5/Resolution*round(Steps);

% Voltage to Thickness Calculation made by Arduino
A1 = d(end) / (smax - smin); B1 = -A1*smin;
% Thickness of the measured material
dmeasurement([1, 2],:) = 1000*[A1*round(Steps) + B1; A1*round(Steps) + B1];

%Errors
C=1:length(d); Error = zeros(2,length(d));
Error(1,:) = (Umeasured(1,:) - Utheoretical(1,:));
Error(2,:) = (Utheoretical(1,:) - Umeasured(2,:));
Error(3,:) = abs(Error(1,:)) + abs(Error(2,:)); %Uncertainty,
% Range of values measured when in reality, d(1,:) should be measured
dikte = 28*10^(-3);
Index2_1 = max(find(d(1,:)<=dikte -0.3*10^(-3))); Index2_2 = max(find(d(1,:)<=dikte-0.3*10^(-3)));
[StepUncertainty(1,1), Index1] = max(Error(3,:));
[StepUncertainty(2,1), Index2] = max(Error(3,1:Index2_2));
%Find max error for 0.45 < d < 28 mm

53

StepUncertainty(1,2) = d(1,Index1)*1000;
StepUncertainty(2,2) = d(1,Index2)*1000;
Text = zeros(2,1); Text = char(Text);
Text = ['Uncertainty [mm]: '; '@ Thickness [mm]: '];

clear Index1 Index2 Index2_1 Index2_2
dplot = d*1000;
%% Output values
disp(['Measured Voltage [Umax, Umin]: [',num2str(Umax),', ', num2str(Umin),']'])
disp(['Theoretical arduino step range [max, min]: [',num2str(smax),', ', num2str(smin),']'])
disp(['Useful occupancy of arduino step range: ',num2str((smax-smin)/Resolution*100,4),'%']); fprintf('\n')
disp(['*Note that the provided range depends on the orientation of the device.'])
disp(['Display maximum uncertainties @ thicknesses [mm]: '])
disp([Text, num2str(StepUncertainty,4)])

%% Figures

% /// FIRST FIGURES \\\
figure()
hold on, grid minor;
x0 = 100; y0 = 600; height = 300; width = 400;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Measured Voltage vs Distance'); xlabel('Distance [d] = [mm]'); ylabel('Voltage [U] = [V]');
plot(dplot, Umeasured(1,:), '--r', dplot, Utheoretical,'-g')
legend('Upper Bound','Theoretical','Location','northwest')

figure()
hold on, grid minor;
x0 = 100; y0 = 600 - (80+height);
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Error Measured Voltage'); xlabel('Distance [d] = [mm]'); ylabel('Measured Voltage: [U] = [V]');
plot(dplot, Error(1,:), '-r', dplot, (Error(2,:)), '-b')
legend('Upper Bound Error','Lower Bound Error','Location','northwest')

% /// SECOND FIGURES \\\

figure()
hold on, grid minor;
x0 = 100 + (20+width); y0 = 600;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Temperature Vs Voltage'); xlabel('Distance [d] = [mm]'); ylabel([' Voltage [U] = [V]']);
plot(dplot, Umeasured(2,:), '--b', dplot, Utheoretical,'-g')
legend('Lower Bound','Theoretical','Location','northwest')

figure()
hold on, grid minor;
x0 = 100 + 1*(20+width); y0 = 600 - 1*(80+ height);
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Uncertainty Thickness as Function of Thickness');xlabel('Distance [d] = [mm]'); ylabel('Uncertainty Distance [d] =

[mm]');
plot(dplot, Error(3,:) , '-b')
legend('Error','Location','northwest')

% /// TERTIARY FIGURES \\\

54

figure()
hold on, grid minor;
x0 = 100 + 2*(20+width); y0 = 600;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Uncertainty As Function Of Thickness'); xlabel('Distance [d] = [mm]'); ylabel('Uncertainty Distance [d] = [mm]');
plot(dplot, Umeasured(1,:), '--r', dplot, Utheoretical,'-g', dplot, Umeasured(2,:), '--b')
legend('Upper Bound','Theoretical','Lower Bound','Location','southeast')

55

Appendix 12: Heat loss insulation uncertainty

This Appendix describes the proposed linear interpolation to estimate the real heat loss to the

environment through the insulation as function of measured environment temperature.

Heat Loss Interpolation

Appendix 5: ‘Insulation’ proposes a model for estimating important parameters inherent to the

insulation design. The energy balance is too complicated in order to be solved analytically. As

mentioned in Appendix Insulation, the energy balance is solved by means of a numerical solver. To

reduce the required floating point operations necessary for estimating the heat flow through the

insulation, the linear interpolation model is proposed. From Appendix 9: ‘Thermal conductivity

measurement uncertainty’ a maximum error is attained in order not to exceed the 8% measurement

accuracy requirement as stated in Appendix 2: ‘Phoebe experiment’.

Figure 1: Graph of the absolute temperature error versus the temperature

Important values from the script are extracted and displayed to the user. The MATLAB output, which

outputs the linear interpolation values, is given at the end of the appendix alongside the actual

MATLAB script.

Parameters as Used in Error Propagation Appendix

The maximum heat flow error will in theory 𝜎𝑄 be caused by the linear interpolation model. The

values for linear interpolation are calculated from the real values from the MATLAB script as

provided in Appendix 5: ‘Insulation’. The final interpolation values are calculated by the MATLAB

script that is provided at the end of this specific Appendix. Note that the provided script loads certain

variables from the insulation heat loss script. Thus requiring a line of code to save said variables to a

separate file. The resulting value for 𝜎𝑄 = 1.7694𝑒 − 05 which is represented by the maximum

absolute error (error = |proposed value - real value|). Note that this error occurs at an environment

temperature of 11.48 C°.

The aforementioned line of code that is required to be run:
save('Qis_0.057_28.mat', 'reg','Qmeeting','Qisgok','Tinf_vec')

56

Outputs by MATLAB script

Max Heat Flow Insulation [Qismax, @T]: [0.0783686 30]

Min Heat Flow Insulation [Qismin, @T]: [0.077489 -10]

Proposed Lineair Fit for Isolation Heat Flow (Q = A*T + B): (Q = 2.199e-05*T + 0.077709)

Maximum Error Caused by Approximation [Error, @T]: [1.7694e-05, 11.48]

Heat flow @max Error [Qis_linfit, @T]: [0.077961, 11.48]

MATLAB Code

% Insulation Heat Flow Linear Interpolation for Arduino Application
% TU Delft, 05/31/2019
% Author: Sebastiaan Thomas Njio

clc
close all
clear variables

%% Read data
load('Qis_0.057_28.mat', 'reg','Qmeeting','Qisgok','Tinf_vec')
Qis = reg(4,:);
Qis_simple = Qisgok;
Tinf_vec=Tinf_vec-273.15;

clear reg Qisgok %Clear unnescessary variables in order to prevent workspace clutter

%% Calculations
[Qismax, indexmax]=max(Qis);
[Qismin, indexmin]=min(Qis);
Tinf_vec(1,indexmax);

A = (Qismax - Qismin)/(Tinf_vec(1,indexmax)-Tinf_vec(1,indexmin));
B = Qismax - A*Tinf_vec(1,indexmax);

Qis_linfit = A.*Tinf_vec + B;
Qis_error = Qis - Qis_linfit;
[Qis_errormax, indexerrormax] = max(Qis_error);

% Display values to user
disp(['Max Heat Flow Insulation [Qismax, @T]: [',num2str([Qismax, Tinf_vec(1,indexmax)]),']']);
disp(['Min Heat Flow Insulation [Qismin, @T]: [',num2str([Qismin, Tinf_vec(1,indexmin)]),']']); fprintf('\n');
disp(['Proposed Lineair Fit for Isolation Heat Flow (Q = A*T + B): (Q = ',num2str(A),'*T + ',num2str(B),')'])
disp(['Maximum Error Caused by Approximation [Error, @T]: [',num2str(Qis_errormax),',

',num2str(Tinf_vec(indexerrormax)),']'])
disp(['Heat flow @max Error [Qis_linfit, @T]: [',num2str(Qis_linfit(indexerrormax)),',

',num2str(Tinf_vec(indexerrormax)),']'])

% /// FIRST FIGURES \\\
figure() % PLOT HIGH FIDELITY VOLTAGE VS TEMPERATURE
hold on, grid minor;
x0 = 100; y0 = 600; height = 300; width = 400;
set(gcf,'units','points','position',[x0,y0,width,height]);
title('title'); xlabel('xlabel'); ylabel('ylabel')
plot(Tinf_vec, Qis,'-b',Tinf_vec,Qis_simple*ones(length(Tinf_vec)),'-g',Tinf_vec,Qis_linfit,'r')
legend('Real Qis','Simple Qis','Interpolation Qis','Location','northeast')

57

figure() % Error
hold on, grid minor;
x0 = 100; y0 = 600 - (80+height);
set(gcf,'units','points','position',[x0,y0,width,height]);
title('Error For Range Of Temperatures');xlabel(['Temperature: [T] = [C',char(176),']']); ylabel(['Absolute Error [\DeltaT] =

[C',char(176),']']);
plot(Tinf_vec, Qis_error,'-b')
legend('Absolute Error','Location','northeast')

58

Appendix 13: General project planning

A general outline of the project planning was made at the beginning of the project, with a generic

description of the different milestones within the project. The planning consists of 9 tasks. A more

detailed description of the planning is displayed in table 1.

1. Final concept choice (2 days): e.g. evaluation criteria

2. Design (e.g. parts) (1 week)

3. Design Freeze

4. Research / test samples in the lab (phoebe) (3 days)

5. Detailed design (frame etc.) (1 week)

6. Make prototype (3 days)

7. Test / validate / calibrate (1 week)

8. Report

9. Presentation

Table 1: A detailed overview of the project planning

Week Moment Events (day) Activities

1 March 25-29

Final Concept Selection

2 April 1-5

Study PHOEBE+contact lab

3 April 8-12 Exams

4 April 15-19 Exams Selection of parts (Wednesday 17)

5 April 22- 26

Design, Design freeze, part selection

6 April/May 29-3

Lab tests

7 May 6-10

First prototype and Tests

8 May 13-17 Interim Report II (16) Tests and Validation

9 May 20-24

Final Report

10 May 27-31

Allocated for delays

11 June 3-7 Final Paper Deadline (7) Allocated for additional delays

12 June 11-14 Oral Exam (12)

13 June 17-21 Final presentation (20)

59

Appendix 14: Clothing thickness dataset

A dataset is created of thicknesses of clothing pieces, by measuring the thickness of 25 winter coats, 25

summer coats, 25 sweaters and 25 T-shirts with a caliper. Based on this dataset, a good estimation is

made on the average thickness of clothing pieces as well as the variance and minimum and maximum

thickness. This information is used for calculations and experiments. The gathered information is

shown in table 1.

Table 1: Dataset of thicknesses of clothing pieces.

Piece of clothing Winter coat Summer coat Sweater T-shirt

Set 1 (Average) 3.34 1.096 1.77 0.76

1 3.45 0.69 2.35 0.6

2 3.05 2.5 1.3 0.95

3 2 0.78 1.2 0.85

4 2.8 0.765 1.95 0.8

5 5.4 0.745 2.05 0.6

Set 2 (Average) 10.102 1.08 2.02 1.042

1 8.16 1.3 0.75 1.03

2 12.7 1.1 1.25 1.27

3 8.55 0.8 3.8 0.91

4 6.8 1.2 3.1 1.11

5 14.3 1 1.2 0.89

Set 3 (Average) 8.448 2.8512 4.898 0.93

1 11.42 3.5 4.29 1.12

2 5.89 1.7 6.33 1.59

3 7.48 4.7 7.7 0.47

4 10.41 1.98 2.59 0.25

5 7.04 2.376 3.58 1.22

Set 4 (Average) 7.2 0.6 1.76 0.58

1 6 0.4 1.5 0.4

2 10 0.4 1.7 0.7

3 7 0.7 2.5 0.4

4 7 1.1 1.7 0.5

5 6 0.4 1.4 0.9

Set 5 (Average) 14.308 0.61 2.64 0.67

1 5.24 0.5 3 0.5

2 12 0.6 4.3 0.6

3 14.3 0.3 2.7 1.3

4 4.6 0.2 2 0.6

60

5 35.4 1.45 1.2 0.35

Average of all sets 8.6796 1.24744 2.6176 0.7964

Max 35.4 4.7 7.7 1.59

Min 2 0.2 0.75 0.25

Variance 42.91 1.14 2.78 0.12

