
Searching for the correlation between the pupil size, the

accommodation and the vergence of the eyes using mental

tasks and 2D stimuli

Stefan Jansen 4293290
Julia Russell 4451538

Tamir Themans 4471687

June 2019

1 Abstract

Background. The pupil size is an important index of the mental workload or excitement. In
pupillometry, confounding factors, such as accommodation or vergence, are usually not taken into
account. This study focuses on whether there is a correlation between pupil diameter, accommo-
dation and vergence when performing mental effort or viewing 2D stimuli.
Methods. The pupil diameter and refraction were measured simultaneously while participants had5

to solve multiplications. The multiplications were divided into three levels of difficulty. In addition
to solving multiplications, the participants looked at static and dynamic stimuli. Here, the gaze
shift was measured as well. The static and dynamic stimuli were shown in four different images,
on a scale from abstract to realistic. The more realistic an image was, the more depth cues were
available in that image.10

Results. The pupil dilated when performing cognitive tasks. However, the magnitude of accom-
modation was unaffected by the cognitive tasks. Furthermore, results showed that it does not make
a difference for the amount of change in pupil diameter, accommodation or gaze(Y) if a stimulus is
static or dynamic. Also, the level of realism of a stimulus did not change the amount of change in
pupil size, accommodation or gaze.15

Conclusion. Non of the findings indicated a correlation between the pupil size, the accommodation
and the gaze shift when viewing 2D stimuli, or without gaze shift when performing mental effort.
Prior studies that made use of pupillometry on a 2D screen will not be judged on the fact that they
did not take accommodation and vergence into account while measuring the pupil size.

1

2

2 Introduction

Pupillometry, the measurement of the eye pupil20

response to stimuli, is an important research
tool in psychological studies. For example,
early studies have indicated that the pupil size
provides information about mental workload
[14], [15] and interest [8], [7], [14]. This given,25

researchers use pupil size as an indication for
the amount of work load or excitement partici-
pants in their studies encounter.
Researchers focus on measuring pupil size, but
do not take confounding physiological factors30

into account. From just determining the pupil
size, without taking other variables of the eye
in consideration, wrong conclusions could be
drawn. The pupil regulates the amount of light
that reaches the retina. The pupil size is mea-35

sured in millimeters (mm) [3] [17].

A possible confounding physiological factor
that is not often considered in pupillometrics
research is accommodation, that is, the chang-40

ing of the thickness of the eye lens. Its function
is to create a sharp picture on the retina [10],
[17]. It is measured in Dioptres (1/m).

The pupil size could be correlated to the ac-45

commodation of the lens, but it could also be
correlated to the vergence of the eye. Vergence
occurs when eyes make rotational movements
so that an object is projected in the centre of
the retina in both eyes. When looking at an50

object close by, the eyes rotate towards each
other (convergence). When looking at an ob-
ject further away, the eyes rotate away from
each other (divergence) [16]. Vergence occurs
when there is shift gaze from targets at a differ-55

ent distance. The vergence can be measured as
a combination of the gaze(X) from both eyes.
Gaze(X) is the angle of vision over the x-axis
(looking left and right) and gaze(Y) is the angle
of vision over the y-axis (looking up and down)60

[10], [3].

Together, the pupil size, the vergence and the

accommodation form a triad. To learn more
about this triad and the interaction between65

these three, research needs to be done.

2.1 Prior research

The main purpose of the pupil is to regulate
the light that enters the eye: the pupil con-
stricts as a result of brightness and dilates in
darkness, what is called the pupillary light re-70

sponse. The pupil also constricts when the eye
is fixated on stimuli nearby. This is called the
near response or accommodation reflex. An-
other well-established trigger of pupil response
is its dilation during mentally demanding tasks75

[15]. One of the first studies that showed that
the pupil dilates during mental activity was
conducted in 1964 by Hess and Polt [9], which
was confirmed by several other studies [14],
[11], [13].80

Enright (1987) investigated the interaction be-
tween pupil size and vergence. He used dif-
ferent stimuli at a fixed distance. Perspective
drawings containing depth cues were looked at85

with monocular vision and real objects were
looked at with monocular and binocular vision.
Changing the monocular focus of the eye from
the ’front’ to the ’back’ of perspective draw-
ings several times resulted in convergence and90

divergence of the eye, even though the object
was in a single plane. The magnitude of the
reaction depended on the object shown. The
pupil did not act as Enright expected. He ex-
pected constriction of the pupil when focusing95

on the the ’front’ of the perspective drawing a
result of the pupillary near response. However,
the pupil dilated when the eyes converged [3].

Other studies conducted research on the pupil100

size and accommodation of the eye. Observed
was that by doing simple mathematical tasks,
which involves adding, multiplication or read-
ing, a correlation between pupil size and mental

3

workload was found. Cognitive demand and105

Dioptres of the lens did not correlate [14], [11].
Jainta (2008) researched this as well. The aim
of the study was to ensure if closed-loop accom-
modation indicates cognitive induced changes
in autonomic balance. Next to this, gaze shift110

and performance measures were taken into ac-
count. Just like the other studies, a correlation
between cognitive demand and accommodation
could not be measured. Recommendations were
done to work more with closed-loop accommo-115

dation in further studies [12].
What is meant by open-loop in this paper, is
that the test subject does not have to focus at
an object. By doing so, the test subject will
go into a ‘stand-by modus’. The focus posi-120

tion will not become zero dioptric or infinity,
but the eyes will converge to a specific point
in the distance [10] [18]. This means that with
a closed-loop experiment, the movement of the
eye can be measured best.125

Feil, Moser and Abegg (2017) did not focus
on cognitive demand but on gaze shifts from a
far to a near object. They stated that if eyes
need to focus from an object in the distance130

to something nearby, it leads to retinal image
disparity and blur. A vergence response is trig-
gered by this disparity and accommodation is
triggered by the blur. The accommodation and
vergence reaction are dependent. They sug-135

gested that the reaction of the pupil depended
mostly on convergence and not on accommoda-
tion. The near triad depends on the vergence
system [4].
Still, there is much unknown about how the the140

pupil size, the accommodation of the lens and
the vergence influence each other.

2.2 Goal of current research

The purpose of this study is to learn how the
accommodation, the vergence and the pupil di-
ameter are connected to one another.145

The following research question has been for-
mulated:

Is there any direct correlation between the pupil
size, the accommodation and the vergence of
the eyes when looking at 2D stimuli and per-150

forming mental effort?

In order to examine this question, three sub-
questions are composed:
1. Does mental effort (performing multiplica-155

tions) result in a change in accommodation or
an increase in pupil diameter?
2. Does it make a significant difference to the
amount of accommodation, gaze shift or change
in pupil size if the movement on a 2D screen is160

static instead of dynamic?
3. Does the number of depth cues that a static
or dynamic 2D-stimuli contains, makes a differ-
ence in the way accommodation, the gaze shift
and pupil size change?165

Depth cues are visual means to perceive an
image in 3D when it is actually in 2D, so they
create perception of depth. The more depth
cues are added to a stimuli, the more depth170

the mind perceives. One example of a depth
perception is occlusion: When an object in the
front overlaps an object that is more in the
distance, this creates depth [6], [5]. A complete
overview of all depth perceptions is shown in175

Appendix A.

2.3 Hypotheses

Based on the prior research, hypotheses could
be formed for the three sub-questions.
1. There will not be a change in accommo-
dation caused by performing cognitive tasks.180

The pupil will dilate during mental effort and
constrict again after the effort is done.
2. No prior research conducted the difference
between static and dynamic stimuli, so no hy-
potheses can be formed for this question.185

3. The more depth cues present, the more
depth is perceived, so the stimuli seems more
realistic to the mind. Therefore, more accom-
modation will occur, when more depth cues are
present.190

4

The magnitude of the gaze shift does not de-
pend on the amount of depth cues in a stimuli.
The pupil diameter does not depend on the
amount of depth cues in a stimuli.

195

From prior research it is hard to form a hy-
pothesis for the research question. It is known
that in the pupillary near response there is a
connection between the pupil size, the accom-
modation and the vergence. When a object200

moves towards the eyes, the vergence increases,

the refraction of the lens increases and the pupil
constricts [15], [17].
When performing cognitive tasks, the expecta-
tion is that the pupil dilates but the accommo-205

dation will not change. So there is no corre-
lation between the accommodation and pupil
size when doing mental effort.
Expected is that there is no correlation be-
tween the pupil size, the accommodation and210

the vergence when looking at 2D stimuli.

5

3 Methods

3.1 Participants

In total, 35 participants took part in this re-
search (20 males, mean age = 22.0 years; stan-
dard deviation (SD) = 1.59). Every participant
signed a written consent form [Appendix B.1].215

3.2 Measuring device

The tests were done with the PowerRef III (Plu-
soptix) [figure 1]. This device made it possible
to measure the accommodation, the pupil size
and the Gaze(X and Y) at the same time with
binocular vision. As explained earlier the most220

studies in the past used monocular vision [3],
[12]. Measuring both eyes at the same time
made it interesting to take closed-loop into ac-
count, as opposed to open-loop.
The experimental set-up was used in the fol-225

lowing manner: The participants rested with
their chin on a mount, so that their eyes were
stable and kept at the same place. The par-
ticipants could see the computer screen (BenQ,
XL2420Z) through a hot mirror (transparent)230

[2]. The camera from the PowerRef III mea-
sured the eyes of the participants through the
reflected light from the hot mirror and the
tiled mirror. The participants could see the
whole screen without the limitations of hav-235

ing the PowerRef III between the eyes and the
screen. The PowerRef III was running inde-
pendent of the presentation computer (see ta-
ble 1 for specifications) running the MATLAB
code [Appendix C.1 and Appendix C.2] that240

displayed the stimuli on the BenQ computer
screen. To synchronize the measurements of the
PowerRef III to the visuals send from the com-
puter with the MATLAB-code, pulses were sent
from the presentation computer via an NMC245

cable to the PowerRef III. These pulses were
encoded in the data of the measurements. On
top of that, multiple clock times were saved dur-
ing the execution of the Matlab code. This was
done to check timing of the pulses and to deter-250

mine how long the computer needed to execute

the whole code. The PowerRef III measures
with 50 Hz and therefore it is essential to make
sure the pulses sent to the PowerRef III are not
a few samples off. The data collected by the255

PowerRef III was put in a CSV-file automati-
cally, which was used for off-line data analysis.

Table 1: Specifications devices

Device Specification

Presentation com-
puter

CPU: Intel(R) CoreTM i7-6700 CPU

@3.4 GHz

RAM: 16 GB Single Channel @ 1064

MHz

MOBO: MSI H110M Pro-D (MS-7996)

GPU: NVIDIA GeForce GTX 1070

4GB

Storage: 500 GB Samsung SSD 850

EVO (SATA SSD)

1 TB Toshiba DT01ACA100 (SATA)

Computer screen BenQ XL2420Z

260

Figure 1: Set-up of the experiment with the Power-
Ref III

3.3 Stimuli

The experiment consisted of three different
tasks. Throughout the whole experiment the
background was grey. This grey contained the

6

RGB values [127 127 127]. During all exper-
iments, colours were eliminated because their265

presence will influence the three parameters in
the triad.

Task 1: During the first task, the participants
listened to two different tones while performing270

an eye movement task. The high pitched tone
was 1000 Hz. The low pitched tone was 100
Hz. A wooden object -a plate with two sticks
attached on top of it- was placed between the
PowerRef III and the screen. The screen showed275

the same stimuli through task 1 [Appendix E.1].
The eyes had to change their focus to the right
stick, which was 40.608 centimetres away from
the eye when hearing a high tone and to the left
stick, which was 80.306 centimetres away from280

the eye, when hearing a low tone [see Appendix
D.1 for the setup]. These dimensions are not
completely rounded up. This is due to the fact
that the sticks are not placed in line with the
bridge of the eyes, but a little bit to the right285

and to the left of the centre line. The reason
for this placement is to make it absolutely clear
to the participants which stick to look at.

Task 2: During the second task the partic-290

ipants had to solve nine multiplications [Ap-
pendix F]. The nine multiplications were di-
vided into three parts: easy, average and dif-
ficult multiplications (table 2). The mean of
three multiplications in one part were consid-295

ered as a result. Before every multiplication a
control slide was shown [Appendix E.2].

Table 2: Nine multiplications of task 2. Divided in
three subgroups, making a distinction between the
difficulties; easy, average and difficult.

Easy Average Difficult

6x12 8x16 16x18
7x14 9x14 15x16
8x13 11x13 14x17

Task 3: During the third part, four tests were300

done, all four containing a static and a dynamic
part. So the participants got to see eight differ-

ent kind of videos. The four test were on a scale
from very abstract to more realistic. The more
realistic the stimuli was supposed to be, the305

more depth cues were added. This was done to
make the illusion of depth more realistic. Dur-
ing all four tests a ball travelled over a road into
the distance and back. To not be reliant on one
version of this loop, this sequence was repeated310

three times. This results in a total amount of
24 videos.

• Level 1: no road
This level showed a ball moving with-
out any background [Appendix G.1]. One315

depth cue, depth from motion, created
depth in this image.

• Level 2: simple road
The simple road creates depth by making
use of depth from motion and linear per-320

spective. A simple road with no scenery
(objects beside the road) was shown [Ap-
pendix G.2].

• Level 3: average road
The average road has trees alongside the325

same road [Appendix G.3]. The trees be-
come smaller and are placed higher as
they are more in the distance. This added
the the depth cues: relative size and rela-
tive height. Lines were added on the road,330

this added the depth cue texture gradient.

• Level 4: realistic road
The most realistic road has trees and
buildings placed next to the same road
[Appendix G.4]. The buildings and trees335

are placed in front of each other and the
more in the distance the tree or build-
ing is, the less details they have. This
added two depth cues: occlusion and at-
mospheric perspective.340

Before every one of the 24 videos, a control
slide was shown [Appendix E.3]. This slide
contained the start position of the ball on level
1. After 10 seconds, the videos started to play
wit a duration of six seconds. After the 24345

videos the whole experiment was finished.

7

A. Static stimuli
An image of the road with a ball in the begin-
ning of the road was shown. After one second
a new image showed up, now the ball is in the350

middle of the road. Again after one second the
ball is shown in the back of the road. Two sec-
onds later the ball moved back to the middle
and then again after one second to the begin-
ning of the road. This was repeated for all four355

levels of roads.

B. Dynamic stimuli
The ball moved smoothly from the beginning
to the back and back to the beginning of the360

road again. This was repeated for all four levels
of roads.

3.4 Experimental design

After an inform consent form [Appendix B.1]
was signed and a questionnaire [Appendix B.2]
was filled in, the participants seated themselves365

in front of the PowerRef III. The BenQ com-
puter screen was placed at one meter distance
from the eye, so the resting accommodation
should be 1 D. Participants were given a set
of noise cancelling headphones (DT 770 Pro,370

Beyerdynamic) to wear during the entire exper-
iment.

3.4.1 Task 1

A wooden object is placed between the Power-
Ref III and the screen. Two sticks, marked with
a black dot, are visible for the participant [Ap-375

pendix D.1]. Prior to starting the task, instruc-
tions were shown on the upper half of the screen
[Appendix H.1]. Participants were instructed
to look at the left stick and keep their focus
on it once a low tone was presented to them,380

and to look at the right stick and keep their
focus on it once a high town was presented to
them. Once the participants understood every-
thing that was stated on the instruction slide,
they pressed space bar on the keyboard that385

was located to the left of them. This automati-
cally started the task. Between the presentation

of each tone, there was a pause of ten seconds.
In total three low and three high pitched tones
were presented to the participants as can be390

seen in Figure 2. A more detailed overview of
task 1 can be found in Appendix D.2. Overall
task 1 lasted 60 seconds.

Figure 2: Overview task 1

3.4.2 Task 2

At the start of this task an instruction slide
was shown to the participants [Appendix H.2].395

Participants were instructed to mentally solve
multiplications. Once the participant read and
understood what was detailed on the instruc-
tion slide, they pressed the space bar and initi-
ated the second task. Before every multiplica-400

tion, a control slide was shown [Appendix E.2].
The control slide remained on the screen for ten
seconds, after which a multiplication appeared.
Participants had 15 seconds to solve the multi-
plications. Once they solved the multiplication,405

they had to press space bar and then audibly
state the answer. The multiplication remained
visible for the remaining time the participant
had left of the 15 seconds before the control
slide would appear again and the loop started410

over as can be seen in Figure 3. A more de-
tailed overview of task 2 can be found in Ap-
pendix D.3. During this task a total of nine
multiplications were shown in a randomized or-
der, which resulted in a duration of 225 seconds415

for task 2.

8

Figure 3: Overview task 2

3.4.3 Task 3

Prior to the task, an instruction slide was shown
to the participants [Appendix H.3]. Partici-
pants were instructed to follow a moving ball
that appeared before them on the screen. Once420

the participant read and understood what was
detailed on the instruction slide, he/she pressed
the space bar and initiated the third task [see
Figure 4]. Before every moving ball a control
slide was shown for 10 seconds [Appendix E.3].425

The duration of a single ball movement was 6
seconds. In total 24 different videos were shown
which resulted in a duration of 384 seconds for
task 3. A more detailed overview of task 3 can
be found in Appendix D.4.430

Figure 4: Overview task 3

3.5 Main MATLAB-script

Previous named tasks were implemented in the
MATLAB-script ExperimentBEP [Appendix
C.1]. In this script, all the controlslides, in-
structionslides, tones for task 1, multiplica-
tion slides and videos were loaded into MAT-435

LAB. Also the randomization of the multiplica-
tions and videos was programmed in this script.
When everything was loaded in by Experiment-
BEP, the script ExperimentBEPMainScript ran

during the experiment [Appendix C.2]. This440

script used the loaded information from Exper-
imentBEP to run the experiment by sending the
right frames to the monitor and the right pulses
to the PowerRef III.

3.6 Data analysis

Both pulses send from the computer to the Pow-445

erRef III and the clock times of the computer
were saved in MATLAB data-files. Further-
more, all data measured by the PowerRef III
was automatically saved in CVS-files per partic-
ipant. The PowerRef III measured the eyes 50450

times per second, every row in this CSV-files
represented one measurement. The columns
showed the different variables the PowerRef
III measured, see Appendix I for the list of
the variables. A MATLAB-function readRaw455

[Appendix C.3] read 16 columns for further
analysis, since not every variable was relevant.
Out of this data, the useful variables were de-
ducted for upcoming plots and answering the
hypothesis.460

The first time a stimuli was shown, it could
cause a startle response, the third time the
participant might be familiar with a certain
objective. To filter these effects, all the tests465

were randomised. The right multiplications
and videos were deducted from the data with
the use of the pulses. By cutting the data
off at the right pulses, the multiplications and
videos were placed together easily. The script470

that makes these cuts and creates new data-
matrices is called processRawData [Appendix
C.4]. From these data sets, plots were gener-
ated and connections were made clear with the
use of the MATLAB-script StatisticsFiltData-475

Paper [Appendix C.5].

With a paired-sample Student’s t-test, any sig-
nificant difference between two data sets can be
proven. This was done by using the MATLAB-480

function ttest. Valuable output from this func-
tion gives the p-value, confidence interval (CI)

9

and the degrees of freedom (df). The degrees
of freedom in this case means the number of
participants minus one. For this research, the485

p-value is set on 0.05. For any value below 0.05
there is a significant difference between the two
data sets.
For the data-sets as input for the paired-sample
Student’s t-test, the following formula was used:490

The mean of the measurements during the con-
trol slide is taken and the maximum of the
whole video. The difference between these two
values was divided by the mean, this gives a
fraction of the change between the baseline and495

the maximum value. This value times 100 gives
a percentage.

10

4 Results

The 35 participants (20 males, mean age = 22.0
years; SD = 1.59) had an average refraction er-
ror of the right eye of -0.100 D and of the left500

eye of -0.071 D. Most participants had brown
or blue eyes. 37.14% had brown eyes and 40.0%
had blue eyes. 14.29% of the participants had
green eyes. 5.72% had a mixture of brown and
green coloured eyes and just one participant,505

2.86%, had grey eyes.

The PowerRef III measured both eyes sepa-
rately. For the data-analysis, the average of the
left and right eye has been taken. This gave510

more clarity for the conclusions coming out the
data-analysis, the number of graphs was halved
because of this method.
As evidence that this could be done, the cross-
correlation between the left and right eye was515

plotted for all tasks [Appendix J]. All cross-
correlation graphs between the right and left
eye showed a maximum at zero on the x-axis.
This means that the graphs of the left and right
eye are identical but translated over the y-axis.520

Just percentage differences were considered, so
it is possible to conclude that this is a rightful
way to take the average between the left and
right eye.
The cross-correlation should not be confused525

with the auto-correlation, although the out-
come would look alike. It was unknown if the
two data-sets would be identical. When the
identically of the data-sets would be known,

then it would be an auto-correlation.530

4.1 Task 1

Figure 5 shows two graphs. The light blue line
represents the low tones, the dark blue line
represents the high tones. The graph on top
shows the refraction, measured in dioptre (D),
plotted against the time (s). The bottom graph
represents the gaze(X), shown in degrees (deg),
measured over time (s).

A paired-sample Student’s t-test -function t-
test in MATLAB- was conducted for the re-
fraction and the gaze in X direction for task 1,
see table 3 and table 4. Both vectors used in
the t-test are done at the level of participants
and thus have the same length. This is the
number of participants minus the participants
who score outside the hard limits. In this test
a difference has been made between the high
and low tones.

To check the vergence, the gaze in x direc-
tion is plotted separate for both eyes with the
high and low tones. The vergence is calculated
as follows:

V ergence = |(Gaze(X)righteye)−(Gaze(X)lefteye)|

This is plotted for the left and right eye in Ap-
pendix L.1.

11

Figure 5: Refraction and gaze(X) as a function of time for low and high tones. The low tones assisted the
eyes to the far dot on the left. The high tones assisted the eyes to the dot nearby on the right.

Table 3: Paired-sample Student’s t-test over two tones for Gaze(X); low and high. Direction left is positive
and direction right is negative. The values for the mean and standard deviation (SD) are percentages if the
difference between the high and low tones. 1 refers to low tones and 2 refers to high tones. Other values
displayed are the p-value, Confidence Interval (CI), and the degrees of freedom (df).

Frequency tone Mean 1 SD 1 Mean 2 SD 2 p-value CI (1) CI (2) df

Low - High 3.70 1.07 -8.17 1.74 4.880e-28 11.17 12.56 34

Table 4: Paired-sample Student’s t-test over two tones for the refraction; low and high. The values for the
mean and standard deviation (SD) are percentages if the difference between the high and low tones. 1 refers
to low tones and 2 refers to high tones. Other values displayed are the p-value, Confidence Interval (CI),
and the degrees of freedom (df).535

Frequency tone Mean 1 SD 1 Mean 2 SD 2 p-value CI (1) CI (2) df

Low - High -0.59 0.44 -1.14 0.58 1.698e-12 0.45 0.66 34

4.2 Task 2

In task 2 three multiplications with three levels
of difficulty were compared to each other. The
easy multiplications are shown in green, the
average multiplication are shown in blue and
the difficult multiplications are shown in red.
In Figure 6 the x-axis represents the time. The
top figure shows the pupil diameter, in [mm],
on the y-axis. The figure on the bottoms shows

the refraction on the y-axis.

Scatter plots were made by taking the mean of
a variable during the control slide and taking
the maximum value during the shown stimuli
(multiplications or videos). The percentage
change was calculated by the formula:

((max−mean)/mean) ∗ 100%

12

This gave one percentage difference per partic-
ipant during one task. When this was done for
two variables that should be compared to each
other, 35 X and Y values were composed in a540

figure and the scatter plots were made.

The pupil diameter and refraction are plot-
ted against each other. For the easy, average
and difficult multiplications scatter plots were545

made [Appendix K.1].

The three difficulties of the multiplications were
tested with a paired-sample Student’s t-test us-
ing the function ttest in MATLAB (table 5 and550

table 6). Both vectors used in the t-test are
done at the level of participants and thus have
the same length. This is the number of partici-
pants minus the participants who score outside
the hard limits. Difference was made between555

the data-sets as easy, average and difficult mul-
tiplications.

Figure 6: Three levels of difficulty plotted alongside each other. Refraction and pupil diameter as a function
of time. During the first ten seconds the control slide is shown. After these ten seconds the multiplications
were shown.

Table 5: Paired-sample Student’s t-test over three difficulties for the pupil diameter change; easy, average
and difficult. The values for the mean are percentages of the average value of the control slide and the
standard deviation (SD) is the difference of the mean with the maximum value of the whole multiplication
set. 1 refers to the left column of ’difficulty multiplications’ and 2 refers to the second column of ’difficulty
multiplications’. Other values displayed are the p-value, Confidence Interval (CI), and the degrees of freedom
(df).

Difficulty multiplications Mean 1 SD 1 Mean 2 SD 2 p-value CI(1) CI(2) df

Easy - Average -28.19 21.32 -30.91 21.48 0.516 -5.76 11.20 26
Easy - Difficult -26.25 23.32 -17.57 40.67 0.162 -21.06 3.71 27

Average - Difficult -36.57 27.61 -31.28 38.68 0.252 -14.55 3.96 29

13

Table 6: Paired-sample Student’s t-test over three difficulties for the refraction change; easy, average and
difficult. The values for the mean and standard deviation (SD) are percentages of the average value of the
control slide, and the difference with the maximum value of the whole multiplication set. 1 refers to the left
column of ’difficulty multiplications’ and 2 refers to the second column of ’difficulty multiplications’. Other
values displayed are the p-value, Confidence Interval (CI), and the degrees of freedom (df).560

Difficulty multiplications Mean 1 SD 1 Mean 2 SD 2 p-value CI(1) CI(2) df

Easy - Average 5.49 1.47 6.77 2.06 0.003 -2.08 -0.48 22
Easy - Difficult 5.46 1.52 6.50 2.14 0.040 -2.03 -0.05 24

Average - Difficult 6.66 2.08 6.46 2.27 0.718 -0.95 1.36 23

4.3 Task 3

Task 3 distinguishes static and dynamic mo-
tion for the four different levels of realism of
the roads. In Figure 7 the light blue line repre-
sents the static stimuli, the dark blue line shows565

the dynamic stimuli. The static and dynamic
measurements are compared to each other in
three separate graphs in Figure 7. Refraction,
the pupil diameter and gaze(Y) were plotted
against the time.570

All Variables of the triad were plotted against
each other for all static and dynamic stimuli in
scatter plots: Pupil diameter against gaze(Y),
pupil diameter against refraction and gaze(Y)575

against refraction. This was done for both
static and dynamic stimuli. This results in six
scatter plots [Appendix K.2.].

In Figure 8 the four levels are represented by580

different coloured lines. The refraction, pupil
diameter and gaze(Y) are plotted against time.
The green line stands for level 1, the blue line
for level 2, the red line for level 3 and the pink
line for level 4.585

All variables of the triad were plotted against
each other for all four levels in scatter plots:
Pupil diameter against gaze(Y), pupil diameter
against refraction and gaze(Y) against refrac-590

tion on all four levels. This results in twelve
scatter plots [Appendix K.2.].

The static and dynamic videos were tested
with a paired-sample Student’s t-test using the595

function ttest in MATLAB (table 7). Difference
was made between the data-sets of static and
dynamic videos. Both vectors used in the t-test
are done at the level of participants and thus
have the same length. This is the number of600

participants minus the participants who score
outside the hard limits. The test was done for
the variables of change in pupil diameter, re-
fraction and gaze(Y).
Also for the different levels of realism, a paired-605

sample Student’s t-test was done [see table 8,
table 9 and table 10]. A difference between
the four levels was made; no road, simple road,
average road and realistic road. The variables
were again the change in pupil diameter, re-610

fraction and gaze in y direction.

14

Figure 7: Static stimuli plotted alongside dynamic stimuli. Pupil diameter, refraction and gaze(Y) were
plotted against time. During the first ten seconds the control slide was shown. After these ten seconds the
stimuli were shown.

Figure 8: The four levels of realism plotted alongside each other. Pupil diameter, refraction and gaze(Y)
were plotted against time. During the first ten seconds the control slide was shown. After these ten seconds
the stimuli were shown.

15

Table 7: Paired-sample Student’s t-test over all static and dynamic videos, for the pupil diameter, gaze(Y)
and refraction change. The values for the mean are percentages of the average value of the control slide
and the standard deviation (SD) is the difference of the mean with the maximum value of the whole set of
video’s. 1 refers to the left column of ’type of video’ (static) and 2 is refers to the second column of ’type
of video’ (Dynamic). Other values displayed are the p-value, Confidence Interval (CI), and the degrees of
freedom (df).

Type of video Mean 1 SD 1 Mean 2 SD 2 p-value CI(1) CI(2) df

Static - Dynamic (Pupil diameter) 2.36 1.44 2.90 1.20 0.097 -1.17 0.11 23
Static - Dynamic (Refraction) -1.72 12.66 -2.04 22.18 0.931 -7.15 7.79 30
Static - Dynamic (Gaze(Y)) -129.38 61.97 -126.60 59.72 0.324 -8.46 2.89 30

Table 8: Paired-sample Student’s t-test over the different levels of realism for the pupil diameter change; no
road, simple road, average road and realistic road. The values for the mean are percentages of the average
value of the control slide and the standard deviation (SD) is the difference of the mean with the maximum
value of the whole set of video’s. 1 refers to the left column of ’levels of realism’ and 2 refers to the second
column of ’levels of realism’. Other values displayed are the p-value, Confidence Interval (CI), and the
degrees of freedom (df).615

Levels of realism Mean 1 SD 1 Mean 2 SD 2 p-value CI(1) CI(2) df

No road - Simple road 2.51 2.06 2.31 1.27 0.666 -0.72 1.10 24
No road - Average road 2.57 1.95 2.40 1.09 0.671 -0.62 0.94 22
No road - Realistic road 2.57 2.09 1.93 1.08 0.205 -0.38 1.67 21

Simple road - Average road 2.13 1.28 2.41 1.10 0.362 -0.92 0.35 18
Simple road - Realistic road 2.24 1.23 1.62 1.00 0.098 -0.13 1.37 16

Average road - Realistic road 2.12 0.93 2.06 1.01 0.842 -0.59 0.71 16

Table 9: Paired-sample Student’s t-test over the different levels of realism for the refraction change; no road,
simple road, average road and realistic road. The values for the mean are percentages of the average value
of the control slide and the standard deviation (SD) is the difference of the mean with the maximum value
of the whole set of video’s. 1 refers to the left column of ’levels of realism’ and 2 refers to the second column
of ’levels of realism’. Other values displayed are the p-value, Confidence Interval (CI), and the degrees of
freedom (df).

Levels of realism Mean 1 SD 1 Mean 2 SD 2 p-value CI(1) CI(2) df

No road - Simple road -3.54 11.24 -4.72 15.70 0.655 -4.18 6.54 28
No road - Average road -3.54 11.24 -2.03 14.02 0.589 -7.14 4.13 28
No road - Realistic road -3.54 11.24 1.36 20.06 0.213 -12.77 2.97 28

Simple road - Average road -4.89 17.30 -1.77 17.84 0.198 -7.97 1.72 30
Simple road - Realistic road -5.88 16.68 1.22 19.73 0.031 -13.49 -0.70 29

Average road - Realistic road -5.57 19.60 2.47 20.62 0.083 -17.19 1.11 30

620

16

Table 10: Paired-sample Student’s t-test over the different levels of realism for the gaze(Y) change; no road,
simple road, average road and realistic road. The values for the mean are percentages of the average value
of the control slide and the standard deviation (SD) is the difference of the mean with the maximum value
of the whole set of video’s. 1 refers to the left column of ’levels of realism’ and 2 refers to the second column
of ’levels of realism’. Other values displayed are the p-value, Confidence Interval (CI), and the degrees of
freedom (df).

Levels of realism Mean 1 SD 1 Mean 2 SD 2 p-value CI(1) CI(2) df

No road - Simple road -142.11 70.55 -138.34 66.73 0.332 -11.57 4.03 31
No road - Average road -142.11 70.55 -134.05 72.90 0.090 -17.46 1.33 31
No road - Realistic road -142.11 70.55 -133.81 76.54 0.093 -18.07 1.46 31

Simple road - Average road -138.34 66.73 -134.05 72.90 0.359 -13.69 5.11 31
Simple road - Realistic road -138.34 66.73 -133.81 76.54 0.343 -14.13 5.07 31

Average road - Realistic road -134.05 72.90 -133.81 76.54 0.953 -8.47 7.99 31

17

5 Discussion

The aim of this research was to investigate
whether there is a correlation between the pupil625

size, the accommodation and the vergence of
the eye.

5.1 Task 1

During the first part of the study, task 1 in
the experiment, accommodation was measured
with 40 centimeters between the points of fix-630

ation. Figure 5, shown in the results, clearly
shows more refraction of the lens, so more diop-
tres, when the high tone was presented. The
high tone was equivalent to the stick closer to
the eye. The left stick was placed twice as far635

as the right stick. Table 4 shows that the mean
of the refraction for the low tones -this corre-
sponds with the left stick- is -0.58 D. The mean
of the refraction for the high tones is -1.14 D.
For the stick that is twice as far away from the640

eyes (high tones), the mean refraction is half of
the mean refraction of the stick nearby (- 0.58
* 2 = - 1.16). The small aberration is probably
due to inaccuracies in the measurements and
measuring device.645

The graph in Figure 5 where gaze(X) is plotted
over time verifies that the participants fixated
their eyes on the correct sticks.
Paired-sample Student’s t-test: To prove
that both low and high tone gave different val-650

ues for refraction and the gaze in x direction, a
paired-sample Student’s t-test was conducted,
see table 3 and table 4. For both variables the p-
value is smaller than 0.05, which indicates that
there is a significant difference between the low655

and high tones for the refraction.
Vergence calculation: In Appendix L.1 the
vergence is calculated for both the left and right
eye. When calculating these values by hand
-the dots are horizontally 14.0 cm away from660

each other- A vergence of 4.27◦ for the low tones
should have occurred and 8.33◦ for the high
tones. A vergence approximately twice as big
for the high tones was predicted since the dis-

tance is doubled. The graph for the vergence665

in Appendix L.1 for the low tones stabilizes
around 5◦, which is acceptable, but the high
tones converge to 1.5◦. This is not in line with
the expectation, the reason why this occurred is
unclear. The expectation would be an increase670

in vergence when looking at a closer object.

5.2 Task 2

During the second task the pupil diameter and
the refraction were looked at while performing
9 multiplications, divided into three levels of
difficulty. In Figure 6 these three levels of dif-675

ficulty are shown in two graphs. Considering
all multiplications, the result is in line with
the literature. The three lines are taken to-
gether because there is no significant difference
between the three levels of difficulty. This is680

made clear with the p-value in table 5. Pupil
diameter: The pupil dilates when performing
cognitive tasks. Participants gave an answer
on the easy and average multiplication within
15 seconds. This is visible in the graph, the685

pupil constricts after the answer is given. Most
participants could not answer the difficult mul-
tiplications in time, this explains why the pupil
does not constrict again to its baseline.
The easy and average multiplication show com-690

parable results for the pupil diameter, this
might be due to the fact that the levels of
the multiplications were not far enough apart.
It is also questionable which multiplication is
experienced as hard for the different partici-695

pants.
Refraction: The refraction is shown in the
second subplot of Figure 6. There is not a
clearly defined pattern to the graph, although
it seems like the refraction of the lens is a bigger700

value for the set of hard multiplications.
Paired-sample Student’s t-test: The p-
values in table 6 show that the multiplication
sets Easy - Average and Easy - Difficult are sig-
nificantly different (p-value smaller than 0.05).705

18

Unfortunately, this is not the case for the set
Average - Difficult. It seems that the difference
between Average and Difficult is not big enough
for the refraction.
Filtering outliers t-test/ scatterplot: The710

degrees of freedom are less than 34 (number of
participants minus one), since there were hard
limits encoded in the t-test, which filtered out-
liers. Also in the scatter plots the hard limits
were used to filter outliers. This is done so the715

outliers did not skew the whole test/graph.
Filtering the outliers was done as follows: for
each variable (on the x- and y-axis) the mean of
all 35 points was calculated, as well as the stan-
dard deviation. Simply every value grater than720

the mean plus the standard deviation -or ev-
ery value below the mean minus- the standard
deviation was filtered out. These edge-values
are the hard limits. This is the reason that not
every t-test and scatter plot contains the same725

amount of participants.

Sub-question 1: The first sub-question was:
Does mental effort (performing multiplications)
result in a change in accommodation or an in-730

crease in pupil diameter?
A hypotheses was formed, the expectation was
that only the pupil size would change as a result
of performing mental effort, the accommoda-
tion would not change. The findings are in line735

with the hypotheses. The pupil dilated when
doing mental effort and constricted after the
effort was done. The accommodation does not
change by doing mental effort.

5.3 Task 3

During the third task, static and dynamic stim-740

uli were compared to each other and four levels
of realism were considered. In figure 7 the static
and dynamic stimuli are plotted. No clear dif-
ferences can be detected between static and dy-
namic. This is substantiated by the p-values in745

table 7.

5.3.1 Static and dynamic

Starting with the gaze(Y), the same motion is
visible [figure 7]. The eyes follow the ball in
steps when looking at static motion instead of
a fluent movement. Exactly the same result750

is seen when looking at the refraction plotted
over time. It is clearly visible in the graph of
the gaze(Y) that there are steps from the static
stimuli. This should be four steps, since the
change between the static positions is equal to755

four. This can be seen at 11.5, 12.5, 14,5 and
15.5 seconds. From this information we see a
reaction time of the eye of +/- 0.5 seconds.
There is a small difference in pupil diameter
between the static and dynamic stimuli. The760

pupil diameter is a little bit smaller for the
dynamic stimuli, but this is not significant, as
shown in table 7. For all three, the means of
the static and dynamic videos are very close to-
gether, for all variables. This is also supported765

with the p-values.

Sub-question 2: A conclusion can be drawn
for the second sub-question: Does it make a
significant difference to the amount of accom-770

modation, gaze shift or change in pupil size if
the movement on a 2D screen is static instead
of dynamic?
It does not make a significant difference for
the amount of accommodation, gaze shift or775

change in pupil diameter if the movement in a
2D screen is static instead of dynamic.

5.3.2 Four levels of realism

Refraction change: The expectation was780

that more accommodation would occur, when
more depth cues were present. This means
that expected was that the biggest differences
would be seen between level 1 (no road) and
level 4 (realistic road). The accommodation785

would change the most in level 4 and the least
in level 1. In table 9, these two are compared
to each other. The p-value is not significant,

19

there is not a significant difference between the
refraction change of level 1 and level 4. Most790

p-values stay above the value of 0.05. There is
one exception for the refraction change between
the simple road and the realistic road. Here is
the p-value smaller than 0.05. Since this is the
only case, no general assumption about any795

significant difference between the levels can be
made. Furthermore does the change between
the means stay almost constant.
Gaze shift(Y): For the gaze shift(Y) a hy-
pothesis was formed that the magnitude of the800

gaze shift(Y) would not change as a result of
more depth cues. In figure 8 the four levels all
show the same result for the gaze in y direction.
The gaze(Y) increases when the ball moves up
-so in the first three seconds of the video- and805

decreases when the ball moves downwards dur-
ing the last three seconds of the video. In table
10, the p-value is above 0.05 for all t-tests and
mean 1 and mean 2 are very close together.
This means that that the depth cues do not in-810

fluence the magnitude of the change in gaze(Y).
This is in line with the hypothesis.
The values for the mean and standard devi-
ation of the change in gaze(Y) are extremely
negative, since in the equation for the paired-815

sample Student’s t-test the control slide was
implemented as well. This control slide made
participants focus on a point under a relatively
negative angle in the y direction for 10 seconds
(-3.8o). When the video starts, these values be-820

come positive (maximum 1o). However, since
the video lasted only six seconds, the mean
always stayed negative. The range could have
been taken differently, or absolute values could
have been used for the gaze(Y).825

Pupil diameter: Looking at the pupil diame-
ter 8, it does stabilize for every level to a certain
value at the end of the control slide. Then when
the video starts, the pupil constricts for the first
seconds and stabilizes again before it constricts830

just before the end of the video. This behaviour
is similar for all levels [see p-value in table 8].
A possible conclusion for the first constriction
of the pupil is that the pupil diameter does not

change during the videos due to the illusions,835

but it is due to a startle response. The control
slide only consisted of the ball, at the beginning
of the video surroundings popped up within a
frame, this caused the startle response. The
constriction at the end of the video is due to840

the pupillary near response. The eyes converge
and the pupil constricts.
The hypotheses formed for the pupil size was
that the pupil diameter does not depend on the
amount of depth cues in a stimuli. The findings845

are in line with this hypotheses. All levels show
the same shaped line. In table 8 the p-values
indicate that there are no significant differences
between different levels of realism (all p-values
are larger than 0.05). Also, the means of the850

different levels tested against each other are
quite alike. All this indicates that the pupil
size does not depend on the amount of depth
cues.
Paired-sample Student’s t-test: Looking855

at figure 8, where the different levels of realism
are shown, not much differences can be seen
between the levels, this is also visible in table
8, table 9 and table 10. All p-values are above
0.05, so there are no significant differences be-860

tween different levels of realism. The depth
cues do not cause a different response of the
eye. This result is not in line with the hypothe-
ses.

865

Sub-question 3: The last sub-question is an-
swered; Does the number of depth cues that a
static or dynamic 2D-stimuli contains, makes a
difference in the way accommodation, the gaze
shift and pupil size change?870

The number of depth cues a static or dynamic
2D-stimuli contains, does not make a difference
in the change of accommodation, gaze shift(Y)
and pupil size. The different levels can be re-
viewed as one.875

Prior research -as confirmed with task 1-
showed that near object cause a more nega-
tive value for the refraction, thus an increase in
accommodation [figure 5]. Expectations were880

20

that because of the illusion of the ball trav-
elling farther away from the participant, the
refraction would becomes less negative as well.
However, the refraction becomes more negative
when the ball moves away from the participant,885

as can be seen in figure 8. The refraction be-
comes less negative when the ball is coming
closer. This is happening for all levels and is
against measurements of task 1. The reason for
this horizontal inverted behaviour is unclear.890

It has to be taken into account that these val-
ues were measured with infra-red rays, which
refract on the surface of the eye. Since the eyes
surface is not completely smooth -caused by
little bumps, bacteria, etcetera- it is not sure if895

the refraction the PowerRef III has measured
from the eyes is completely reliable.
It could also be possible that it had something
to do with the orientation of the eye. The Pow-
erRef III measured straight from the eye, but900

it is possible that when the eyes of the par-
ticipant made a rotation (follow the ball), the
bulging of the eye changed at the place where
the rays entered the eye. It could be possible
that the more rotation the eyes made, the more905

change in refraction was measured due to this
difference in bulging. For now, this is a possi-
ble reason why the refraction had an opposite
shape as expected.

5.4 Conclusion

In sum, no correlation was found between any910

of the three variables of the triad during mental
activity and looking at 2D images. The pupil
size, the accommodation and the vergence did
not depend on each other. These findings are
consistent with the hypothesis of the research915

question.
Prior studies that made use of pupillometry on
a 2D screen will not be judged on the fact that
they did not take accommodation and vergence
into account while measuring the pupil size.920

5.5 Recommendations

Several things in this study could have influ-
enced the measurements. For this reason a
p-value of 0.05 was chosen, in order not to dis-
miss correlations falsely. In future research a
p-value of 0.005 could be chosen [1], this would925

be more robust.
In the first instance a LED light box was used
as lighting during the experiment. With most
participants the pupil size became to big or
to small for the PowerRef III to measure the930

eyes. The range of the pupil diameter that the
PowerRef III can measure, is between the 4.0
mm and 8.0 mm. The measurements where
the LED light was used were not taken into ac-
count. The cause of these wrong measurements935

is not clear.
Instead of the LED light box, a desk lamp
was used during the experiments. With light
coming from the LED light box the pupil size
became too big with some participants. Also,940

the illumination could not be kept constant.
This was because every time the LED light box
would turn on and off, the light intensity would
change as well. The power button was able
to twist to change the light intensity. Mea-945

surements taken from these participants were
excluded from the data used in this research.
The light intensity was measured with an illu-
minance meter (T-10A, Konica Minolta, Inc.).
Measurement were taken with the illuminance950

meter right where the participants eyes would
be, with the sensor directed to the computer
screen. Values measured were; 9.8 lx with the
LED light box and 1.15 lx with the desk lamp.

955

Whenever the pupil diameter became to big
to measure during the experiment, the Pow-
erRef III interpolated between the last value
that could be measured and the first value af-
ter no measurements. This caused incorrect960

results over small periods of time. In further
research, these interpolated results should be
filtered out. It can not be made sure what the
measured values were in that interval. It is
even better if in future research the PowerRef965

21

III, or another eye-measuring device, is able to
measure a broader range of the pupil size.

The scatter plots could have been more mean-

ingful. Gaze(Y) changes of -340% (Figure K.9)970

seems strange. In future research maybe some
plots could better be displayed in concrete val-
ues instead of percentages.

22

A Appendix A
Depth cues

975

Occlusion
Occlusion appears when near objects overlap objects that are more in the distance. The object in
the front is fully visible, the view of the one behind is partially blocked.

Relative height980

The cue of relative height means that objects that are more in the distance are placed higher in an
image. This is true for objects underneath the horizon. For objects above the horizon; they appear
to be closer the higher they are placed above the horizon. As in figure A.1, all three men are the
same size, but the higher they stand in the image, the further they seem to be away. The clouds
above the horizon appear to be closer, the higher float.985

Figure A.1: Example of rel-
ative height; The higher the
man is placed in the image,
the further away he seems to
be [6].

Figure A.2: Example of relative
size; The smaller the same ball, the
further away it seems to be [6].

Figure A.3: Example of atmo-
spheric perspective; The hazier the
part of the image, the further away
it seems to be [6].

Cast shadow
The place of a shadow provides information about the location of an object.

Relative size
The relative size of objects gives insight into the relative depth of objects. If it is clear that several990

objects have the same size, relative size cues give insight in on the relative depth of the objects. If
several three tennis balls are shown, the size they have compared to each other, shows how far they
are away. The smaller the three, the further away it seems to be, this is shown in figure A.2.

Familiar size995

Prior knowledge of actual sizes influences the perception of depth. The projected size can be com-
pared to information from previous seen objects, to determine the depth of objects.

23

Atmospheric perspective
Objects nearby are more sharp. Distant objects are more hazy. This is due to the air that has1000

different small things in it, like water, dust and pollutants. So the hazier an object is, the further
it appears to be. An example of this depth cue is shown in figure A.3.

Linear perspective
The depth cue of linear perspective refers to the parallel lines that converge in the distance. The1005

more the lines converge, the greater the distance is. At infinity these lines meet in one point.

Texture gradient
Goldstein (2002) describes texture gradient as follows: ”Elements that are equally spaced in a scene
appear to be more closely packed as distance increases, such as square tiles in the floor”. So for1010

example with the stripes that separate two lanes on a road, the more the stripes are in the distance,
the closer they are together. The cue of texture gradient is usually located on the floor. The
perception of depth is less when the floor is removed.

Motion parallax1015

When sitting in a train, nearby objects move away fast, distant objects seem to move slower. Mo-
tion parallax says something about about the speed of movement for far and near objects. Objects
far away move slow, near objects speed

Deletion and accretion1020

There are two surfaces, when an observer moves, the surfaces overlap or one gets covered up by the
otherone. The way they move relative to each other gives insight into their place.

Depth from motion
This depth cue only applies to moving objects. An object that moves away from an observer, seems1025

to move away when the size of the objects gets smaller. This change in size gives a perception of
depth. When the objects moves towards the eyes, it gets bigger, this gives the perception that the
objects comes closer to the eye [6], [5].

24

B Appendix B
B.1 Inform consent

See next page.

Consent form for participants

Research Title: “Accommodation As A Possible Confounder In Pupillometrics Research”

Researchers:
Tamir Themans – Researcher Email: T.S.Themans@student.tudelft.nl
Stefan Jansen – Researcher Email: S.T.Jansen@student.tudelft.nl
Julia Russell – Researcher Email: J.N.M.Russell@student.tudelft.nl

Ir. Lars Kooijman – Supervisor Email: l.kooijman-1@tudelft.nl
Dr.ir. Bastiaan Petermeijer – Supervisor Email: s.m.petermeijer@tudelft.nl
Dr. Dimitra Dodou – Supervisor Email: d.dodou@tudelft.nl
Dr.ir. Joost de Winter – Supervisor Email: j.c.f.dewinter@tudelft.nl

Location of the experiment:
Room 34 A-0-811 (above lecture room C), see Figure 1.
Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2,
2628 CD Delft

Figure 1: Location of the experiment (door at the right side, then up the stairs to the right)

Introduction: Please read this consent document carefully before you decide to participate. This
document describes the purpose, procedures, and potential risks/discomforts. Your signature is required
for participation.

If you have any form of eyesight deficiency (i.e., near- or far-sightness) and you wear contact lenses,
please wear these during the experiment. The measurement equipment functions better with contact
lenses than glasses, so please try to wear contact lenses instead of glasses. Due to measurement errors,
glasses will not be accepted when participating in the experiment.

Purpose of the study: The aim is to investigate whether accommodation, pupil size, and vergence are
influenced by mental workload and illusion of depth.

Duration: Your participation in this experiment will last approximately 15 minutes.

1030

Figure 2: Experimental setup with head support and eye tracker

Procedures and instructions

Before the experiment starts: You will be asked to complete a short questionnaire about your gender,
age, refractive error (please check on beforehand when your last eye control has been done), and eye
colour. You will then be asked to place your head in the head support shown in Figure 2.

During the experiment: Your first task will be to visually focus at the marked ends of two sticks placed in
front of you. Your second task will be to mentally solve a number of multiplications that are shown to you
on a computer screen and to audibly state your answer. Your third task will be to follow a ball shown on
the screen.

After the experiment: You can ask the experimenter about your performance after the completion of the
entire experiment.

Risks and discomforts: Some multiplications may be experienced as difficult, and due to the time
constraint, you may experience some frustration. However, there are no known risks for you in this study.
Some minor eyestrain or discomfort may arise from looking at the screen. If at any point you begin to feel
uneasy for any reason, please do not hesitate to inform the experimenter so that you take a break to
counteract any such symptoms.

Anonymity: All data collected in this study will be stored anonymously. You will not be personally
identifiable in any future publications based on this work or in any data shared with other researchers.

Right to refuse or withdraw: Your participation in this study is entirely voluntary. You have the right to
refuse or withdraw from this experiment at any time, without any negative consequences, and without
needing to provide any explanation.

Questions: For any questions, you can contact one of the researchers at the email addresses provided
above.

I have read and understood the information provided above. I give permission to store and use of collected
data for the purposes of this study described above. The results of the study will not be made available
in a way that could reveal the identity of individuals. I voluntarily agree to participate in this study.

Name:

………………………………………………………………………………………………..

Signature:

………………………………………………………………………………………………..

Date:

……… / …….. / ………

27

B.2 Questionnaire

See next page.

Questionnaire

Research Title: ‘Accommodation As A Possible Confounder In Pupillometrics Research’

Researchers:
Tamir Themans – Researcher Email: T.S.Themans@student.tudelft.nl
Stefan Jansen – Researcher Email: S.T.Jansen@student.tudelft.nl
Julia Russell – Researcher Email: J.N.M.Russell@student.tudelft.nl

Ir. Lars Kooijman – Supervisor Email: l.kooijman-1@tudelft.nl
Dr.ir. Bastiaan Petermeijer – Supervisor Email: s.m.petermeijer@tudelft.nl
Dr. Dimitra Dodou – Supervisor Email: d.dodou@tudelft.nl
Dr.ir. Joost de Winter – Supervisor Email: j.c.f.dewinter@tudelft.nl

1. Gender:

o Male
o Female
o Other

2. Age: ______________

3. Eye colour: ___

4. Do you have a refraction error?

o No
o Yes

4a. If filled in Yes, what is your refraction error?

Left eye: ___________________________

Right eye: ___________________________

4b. When were these values measured? (month/year) ______________

4c. Are you wearing contact lenses right now?

o No
o Yes

Thank you for filling in this form and participating in the experiment!

29

C Appendix C
C.1 ExperimentBEP.m

See next page.

function varargout = ExperimentBEP(varargin)
% EXPERIMENTBEP MATLAB code for ExperimentBEP.fig
% EXPERIMENTBEP, by itself, creates a new EXPERIMENTBEP or raises the existing
% singleton*.
%
% H = EXPERIMENTBEP returns the handle to a new EXPERIMENTBEP or the handle to
% the existing singleton*.
%
% EXPERIMENTBEP('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in EXPERIMENTBEP.M with the given input arguments.
%
% EXPERIMENTBEP('Property','Value',...) creates a new EXPERIMENTBEP or raises
the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before ExperimentBEP_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to ExperimentBEP_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help ExperimentBEP

% Last Modified by GUIDE v2.5 30-Apr-2019 10:47:00

% Begin initialization code - DO NOT EDIT
 global super
 gui_Singleton = 1;
 gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @ExperimentBEP_OpeningFcn, ...
 'gui_OutputFcn', @ExperimentBEP_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
 if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
 end

 if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
 else
 gui_mainfcn(gui_State, varargin{:});
 end
end
% End initialization code - DO NOT EDIT

% --- Executes just before ExperimentBEP is made visible.
function ExperimentBEP_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ExperimentBEP (see VARARGIN)
 global super
% Choose default command line output for ExperimentBEP
 handles.output = hObject;
% Update handles structure
 guidata(hObject, handles);
end

% UIWAIT makes ExperimentBEP wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = ExperimentBEP_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

1035

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
 global super
 %%%%%%%%%%%%%%%
 rng('shuffle'); % MAKES SURE RANDOM IS REALLY RANDOM!!!
 %%%%%%%%%%%%%%%
 opengl hardware
 varargout{1} = handles.output;
 % Pre-allocate space experiment 1
 enter = 0;
 ClockSoundLow = zeros(3,6);
 ClockSoundHigh = zeros(3,6);
 elapsedTimeLow1 = zeros(3,1);
 elapsedTimeHigh1 = zeros(3,1);
 ClockStartExperiment1 = zeros(1,6);

 % Pre-allocate space experiment 2
 ClockCross = zeros(9,6);
 ClockProblem = zeros(9,6);
 reactionTime = zeros(9,1);
 elapsedTime2 = zeros(9,1);
 ClockStartExperiment2 = zeros(1,6);

 % Pre-allocate space experiment 3
 ClockControlBall = zeros(24,6);
 ClockMoveBall = zeros(24,6);
 elapsedTime3 = zeros(24,1);
 ClockStartExperiment3 = zeros(1,6);

%% Organize Instructions
% Find and organise instruction slides
 handles.InstructionMap = super.InstructionMap; %
Stimuli background folder location
 fileInstruction = fullfile(handles.InstructionMap,...
 '*.jpg'); % Find
all the images in the folder
 allInstructions = dir(fileInstruction); % Find
all the images in the folder
 handles.InstructionFileNames = {allInstructions.name}; % Names
of all the images
 handles.numberOfInstructions = length(handles.InstructionFileNames); % Find
the number of stimulus images in the folder

%% Organize Control Slides
% Find and organise control slides
 handles.ControlMap = super.ControlMap; %
Stimuli background folder location
 fileControl = fullfile(handles.ControlMap, '*.jpg'); % Find
all the images in the folder
 allControl = dir(fileControl); % Find
all the images in the folder
 handles.ControlFileNames = {allControl.name}; % Names
of all the images
 handles.numberOfControl = length(handles.ControlFileNames); % Find
the number of stimulus images in the folder

%% Organize Sounds
 Fs = 44100;
 time = 0:1/Fs:1-1/Fs;
 Amplitude_low = 15;
 Amplitude_high = 5;
 Frequency_low = 100;
 Frequency_high = 1000;
 Pause = 10;
 Number_of_sequences = 3;

 tone_low = Amplitude_low*sin(2*pi*Frequency_low*time); % Lage
toon
 tone_high = Amplitude_high*sin(2*pi*Frequency_high*time); % Hoge
toon
 player_low = audioplayer(tone_low, Fs);
 player_high = audioplayer(tone_high, Fs);

%% Organize Multiplications
% Find and organise multiplication slides
 handles.MultiplicationMap = super.MultiplicationMap; %
Stimuli background folder location
 fileMultiplication = fullfile(handles.MultiplicationMap,...
 '*.jpg'); % Find
all the images in the folder
 allMultiplications = dir(fileMultiplication); % Find
all the images in the folder
 handles.MultiplicationFileNames = {allMultiplications.name}; % Names
of all the images
 handles.numberOfMultiplications = length(handles.MultiplicationFileNames);%
Find the number of stimulus images in the folder
 handles.randomOrderMultiplications =
randperm(handles.numberOfMultiplications) % Create an array for the random
presentation of the images
 super.RandomOrderMultiplications = handles.randomOrderMultiplications;
%% Organize Videos
% Find and organise videos
 handles.VideoMap = super.VideoMap; %
Stimuli background folder location
 VideoMap = handles.VideoMap;
 rootFolder = pwd;
 cd(VideoMap)
 tic
 load('AllVideos.mat');
 toc
 T = 1/VideoCell{3,1}:1/VideoCell{3,1}:181/VideoCell{3,1};
 cd(rootFolder);
 handles.VideoFileNames = VideoCell{1,1}; % Names
of all the images
 handles.numberOfVideo = length(handles.VideoFileNames); % Find
the number of stimulus images in the folder
 handles.randomOrderVideo = [randperm(handles.numberOfVideo);...
 randperm(handles.numberOfVideo);...
 randperm(handles.numberOfVideo)] % Create
an array for the random presentation of the images
 super.RandomOrderVideos = handles.randomOrderVideo;
 AllVideoFrames = VideoCell{2,1}; % Locate
all video frames
 super.RandomOrderVideos = handles.randomOrderVideo;
%% -------------------------Start Instruction 1--------------------------%%
 img_Instruction =
imread([handles.InstructionMap,char(handles.InstructionFileNames(1))]); %
Preload the control image
 imshow(img_Instruction);
 getkeywait(9000);
 ClockStartExperiment1(1,:) = clock;
 pulseStartExperiment1 = 's10';
 fprintf(super.s,pulseStartExperiment1); % Pulse
indicating start control trial

%% -------------------------Start Sounds---------------------------------%%
 %Which Pulses are we going to log?
 %Which clocks are we going to log?

 ControlSlideExperiment1 = handles.ControlFileNames{1}; % Create
path for the selected image
 img_control =
imread([handles.ControlMap,ControlSlideExperiment1]); % Preload the control slide
 imshow(img_control);

 for k = 1:Number_of_sequences
 pulseStartSoundLow =
strcat('s0',num2str(k)); % Compute pulse number start trial.
Pulse number corroborates with multiplication number
 ClockSoundLow(k,:) = clock; % Store
computer time of control slide
 tic
 fprintf(super.s,pulseStartSoundLow); % Pulse
indicating start control trial
 playblocking(player_low);
 elapsedTimeLow1(k,1) = toc; % Store
stimulus time
 pause(Pause);

 pulseStartSoundHigh =
strcat('s9',num2str(k)); % Compute pulse number start trial.
Pulse number corroborates with multiplication number
 ClockSoundHigh(k,:) = clock; % Store
computer time of control slide
 tic
 fprintf(super.s,pulseStartSoundHigh); % Pulse
indicating start control trial
 playblocking(player_high);
 elapsedTimeHigh1(k,1) = toc; % Store
stimulus time
 pause(Pause);
 end
 pulseEndExperiment1 = 's20';
 ClockEndExperiment1 = clock;

 fprintf(super.s,pulseEndExperiment1); % Pulse
indicating start control trial

 super.ClockSoundLow_Experiment1 = ClockSoundLow; % Write
control slide times in super
 super.ClockSoundHigh_Experiment1 = ClockSoundHigh; % Write
control slide times in super
 super.elapsedTimeLow_Experiment1 = elapsedTimeLow1; % Write
trial times in super
 super.elapsedTimeHigh_Experiment1 = elapsedTimeHigh1; % Write
trial times in super
 super.StartExperiment1 = ClockStartExperiment1;
 super.EndExperiment1 = ClockEndExperiment1;

%% -------------------------Remove Object--------------------------------%%
 img_Instruction =
imread([handles.InstructionMap,char(handles.InstructionFileNames(4))]);
 imshow(img_Instruction);

 while enter ~= 13
 enter = getkeywait(900);
 end
 enter = 0;

%% -------------------------Start Instruction 2--------------------------%%
 img_Instruction =
imread([handles.InstructionMap,char(handles.InstructionFileNames(2))]);
 imshow(img_Instruction);
 getkeywait(9000);
 ClockStartExperiment2(1,:) = clock;
 pulseStartExperiment2 = 's30';
 fprintf(super.s,pulseStartExperiment2); % Pulse
indicating start control trial

%% -------------------------Start Multiplications------------------------%%

 ControlSlideExperiment2 = handles.ControlFileNames{2};

 img_control =
imread([handles.ControlMap,ControlSlideExperiment2]); % Preload the control slide

 for k = 1 : handles.numberOfMultiplications
 filenumber =
handles.randomOrderMultiplications(k); % Select the image
number from the random array
 fullFileName = handles.MultiplicationFileNames{filenumber}; % Create
path for the selected image
 MultiplicationMap = handles.MultiplicationMap;
 pulseStart =
strcat('s7',num2str(filenumber)); % Compute pulse number start
trial. Pulse number corroborates with multiplication number
 pulseReaction = strcat('s8',num2str(filenumber)); %
Compute pulse number reaction time. Pulse number corroborates with 10 +
multiplication number
 pulseEnd = strcat('s9',num2str(filenumber)); %
Compute pulse number end trial. Pulse number corroborates with 20 + multiplication
number
 img = imread([MultiplicationMap,fullFileName]); %
Preload the random stimulus image
 fprintf('Multiplication :%s \n',fullFileName)
% Show Controlslide
 imshow(img_control);
 axis off;
 ClockCross(k,:) = clock; % Store
computer time of control slide
 fprintf(super.s,pulseStart); % Pulse
indicating start control trial
 pause(10); %
Showing control slide for 10 seconds

% Show The Randomly Selected Image
 imshow(img);
 axis off;
 ClockProblem(k,:) = clock; % Store
computer time of stimulus image
 tic % Start
stimulus
 [~, rt] = getkeywait(15); % Wait
15 second or until a key is pressed and return key and reaction time
 fprintf(super.s,pulseReaction); % Pulse
indicating reaction time
 pause(15-rt); % Wait
remaining time
 fprintf(super.s,pulseEnd); % Pulse
indicating end trial
 elapsedTime2(k,1) = toc; % Store
stimulus time
 reactionTime(k,1) = rt; % Store
reaction time
 guidata(hObject,handles); % Update
GUI data
 end
 pulseEndExperiment2 = 's40';
 ClockEndExperiment2 = clock;

 fprintf(super.s,pulseEndExperiment2); % End of
trial

 super.reactionTime_Experiment2 = reactionTime; % Write
reaction times in super
 super.ClockCross_Experiment2 = ClockCross; % Write
control slide times in super
 super.ClockProblem_Experiment2 = ClockProblem; % Write
stimulus slide times in super
 super.elapsedTime_Experiment2 = elapsedTime2; % Write
trial times in super

 super.StartExperiment2 = ClockStartExperiment2;
 super.EndExperiment2 = ClockEndExperiment2;

%% -------------------------Start Instruction 3--------------------------
%%

 img_Instruction =
imread([handles.InstructionMap,char(handles.InstructionFileNames(3))]);
 imshow(img_Instruction);
 getkeywait(9000);
 ClockStartExperiment3(1,:) = clock;
 pulseStartExperiment3 = 's50';
 fprintf(super.s,pulseStartExperiment3); % Pulse
indicating start control trial

%% -------------------------Start Moving Ball----------------------------%%

 ControlSlideExperiment3 = handles.ControlFileNames{3}; % Create
path for the selected image
 img_control = imread([handles.ControlMap,ControlSlideExperiment3]);
% Preload the control slide
 Trial = 1;
 for j = 1 : 3
 for k = 1 : handles.numberOfVideo
 filenumber = handles.randomOrderVideo(j,k); %
Select the video number from the random array
 fullFileName = handles.VideoFileNames{filenumber};

 pulseControl = strcat('s',num2str(j),num2str(filenumber));
 % Compute pulse number start trial. Pulse number corroborates with
multiplication number
 pulseMovie = strcat('s',num2str(j+3),num2str(filenumber));
 % Create path for the selected video

 CurrentVideo = squeeze(AllVideoFrames(:,:,:,filenumber));
 fprintf('Videos :%s \n',fullFileName)

 % Show Controlslide
 imshow(img_control);
 axis off;
 ClockControlBall(Trial,:) =
clock; % Store computer time of control slide
 fprintf(super.s,pulseControl); %
Pulse indicating start control trial
 pause(10);
 FrameCount = length(CurrentVideo(1080,1920,:));
 tic
 for nFrames = 1 : FrameCount-1
 CurrentFrame = double(squeeze(CurrentVideo(:,:,nFrames)))/255;
 if nFrames ==1
 h = imshow_jdw(CurrentFrame);
 pause(0.005);
 ClockMoveBall(Trial,:) = clock; % Store
computer time of control slide
 fprintf(super.s,pulseMovie);
 while toc < T(nFrames)
 end
 else
 set(h,'Cdata',CurrentFrame)
 pause(0.005)
 while toc < T(nFrames)
 end
 end
 end
 elapsedTime3(Trial,:) = toc;
 Trial = Trial + 1;
 end
 end

1040

 pulseEndExperiment3 = 's60';
 ClockEndExperiment3 = clock;

 fprintf(super.s,pulseEndExperiment3); % End of
trial

 super.elapsedTime_Experiment3 = elapsedTime3; % Write
trial times in super
 super.ClockControl_Experiment3 = ClockControlBall; % Write
control slide times in super
 super.ClockProblem_Experiment3 = ClockMoveBall; % Write
stimulus slide times in super
 super.StartExperiment3 = ClockStartExperiment3;
 super.EndExperiment3 = ClockEndExperiment3;

 EndExperiment =
imread([handles.InstructionMap,char(handles.InstructionFileNames(5))]);
 imshow(EndExperiment);
 escape = getkeywait(900);
 while escape ~= 27
 escape = getkeywait(900);
 end
 close all

end
% --- Executes when figure1 is resized --- %
function figure1_SizeChangedFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 global super
 opengl hardware
 set(gcf, 'Color', [0 0 0]); %
Black background colour
 set(gcf,'Units','pixels'); %
Set figure size in pixels
 set(gcf,'pos',[-1921 1 1920 1080]); %
Change figure location to second screen
 set(gcf,'MenuBar','none','NumberTitle','off','WindowState',...
 'fullscreen'); % Turns
off menubar, numbertitle and sets image to fullscreen
 set(gca,'Visible','off'); %
Turns off axis in figure
 set(gca,'LooseInset',get(gca,'TightInset'));
 set(gca,'pos',[0 0 1 1]);
end

37

C.2 ExperimentBEPMainScript.m

See next page.

%% Replicatie - Powerref
% Lars Kooijman April 2019
% This code is run to prompt a GUI which can be used to perform the
% experimen t. The GUI code
% can be found in Experiment.m
% The GUI figure can be found in Eclearxperiment.fig

clear all; %#ok<*CLALL>
close all;
clc; opengl hardware
global super

Pilot = 0;
%% 0. Folder locations
rootFolder = pwd; % Sets
running folder as root folder
if Pilot == 1
 SaveFolder = strcat(rootFolder,'\Data\Pilot');
else
 SaveFolder = strcat(rootFolder,'\Data\Experiment');
end

%% 1. Serialization
% Preparing serial port to send syncpulse in order to synchronize PlusOptix
% data to the start of the experiment in Matlab.

super.s = serial('COM4','BaudRate',115200); %
Defines the serial port at COM4 and sets the transfer rate
fopen(super.s); % Opens
the serial port

%% 2. Participant Data Trial 1, 2 & 3
% Here you define at which distance the screen will be placed during trial
% 1, 2 and 3 including the multiplication set that will be used.
prompt = {'Enter Participant Number:'
% ,'Enter distance:','Enter Multiplication Set',...
% 'Enter distance:', 'Enter Multiplication Set',...
% 'Enter distance:', 'Enter Multiplication Set',...
% 'Group Number'
 }; % Prompt that
requires input
title = 'Participant Number';
dims = [1 35];
definput = {'Participant00'};
answer = inputdlg(prompt,title,dims,definput);
% Stores answer in global variable structure

%% 3. Stimuli location
super.ImageMap = strcat('./Backgrounds/');
super.ControlMap = strcat('./ControlSlide/');
super.InstructionMap = strcat('./Instructions/');
super.MultiplicationMap = strcat('./Multiplications/');
super.SoundMap = strcat('./Sounds/');
super.VideoMap = strcat('./Videos/');
ExperimentBEP;

%% 4. Saving Data

filename = strcat(answer{1,1},'.mat');
if exist(SaveFolder)
 cd(SaveFolder)
 save(filename, '-struct', 'super');
else
 mkdir(SaveFolder);
 cd(SaveFolder)
 save(filename, '-struct', 'super');
end

39

C.3 readRaw.m

See next page.

function pilotpart001 = readRaw(filename, startRow, endRow)
%IMPORTFILE Import numeric data from a text file as a matrix.
% PILOTPART001 = IMPORTFILE(FILENAME) Reads data from text file FILENAME
% for the default selection.
%
% PILOTPART001 = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from
% rows STARTROW through ENDROW of text file FILENAME.
%
% Example:
% pilotpart001 = importfile('pilot_part_001.csv', 1, 15986);
%
% See also TEXTSCAN.

% Auto-generated by MATLAB on 2018/12/13 09:19:29

%% Initialize variables.
delimiter = ';';
if nargin<=2
 startRow = 2;
 endRow = inf;
end

%% Read columns of data as text:
% For more information, see the TEXTSCAN documentation.
formatSpec =
'%q%*q%*q%*q%q%*q%*q%q%q%q%*q%*q%*q%*q%*q%q%q%q%*q%*q%*q%q%*q%*q%q%q%q%*q%*q%*q%*q%
*q%q%q%q%*q%*q%*q%*q%*q%q%[^\n\r]';

%% Open the text file.
fileID = fopen(filename,'r');

%% Read columns of data according to the format.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the code
% from the Import Tool.
dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter',
delimiter, 'TextType', 'string', 'HeaderLines', startRow(1)-1, 'ReturnOnError',
false, 'EndOfLine', '\r\n');
for block=2:length(startRow)
 frewind(fileID);
 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1,
'Delimiter', delimiter, 'TextType', 'string', 'HeaderLines', startRow(block)-1,
'ReturnOnError', false, 'EndOfLine', '\r\n');
 for col=1:length(dataArray)
 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
 end
end

%% Close the text file.
fclose(fileID);

%% Convert the contents of columns containing numeric text to numbers.
% Replace non-numeric text with NaN.
raw = repmat({''},length(dataArray{1}),length(dataArray)-1);
for col=1:length(dataArray)-1
 raw(1:length(dataArray{col}),col) = mat2cell(dataArray{col},
ones(length(dataArray{col}), 1));
end
numericData = NaN(size(dataArray{1},1),size(dataArray,2));

for col=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
 % Converts text in the input cell array to numbers. Replaced non-numeric
 % text with NaN.
 rawData = dataArray{col};
 for row=1:size(rawData, 1)
 % Create a regular expression to detect and remove non-numeric prefixes and
 % suffixes.

1045

 regexstr = '(?<prefix>.*?)(?<numbers>([-
]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|([-
]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)';
 try
 result = regexp(rawData(row), regexstr, 'names');
 numbers = result.numbers;

 % Detected commas in non-thousand locations.
 invalidThousandsSeparator = false;
 if numbers.contains(',')
 thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$';
 if isempty(regexp(numbers, thousandsRegExp, 'once'))
 numbers = NaN;
 invalidThousandsSeparator = true;
 end
 end
 % Convert numeric text to numbers.
 if ~invalidThousandsSeparator
 numbers = textscan(char(strrep(numbers, ',', '')), '%f');
 numericData(row, col) = numbers{1};
 raw{row, col} = numbers{1};
 end
 catch
 raw{row, col} = rawData{row};
 end
 end
end

%% Replace non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells
raw(R) = {NaN}; % Replace non-numeric cells

%% Create output variable
pilotpart001 = cell2mat(raw);
	

42

C.4 processRawData.m

See next page.

%% Replicatie BEP-groep - Powerref
% Matlab script build by Bastiaan Petermeijer to analyse data
% Edited by Lars Kooijman and Joost de Winter

% Organization CSV datafile
% 1. Timestamp (milliseconds)
% 2. Eye Tracking Left (1 = yes, 2 = no)
% 3. Pupil Size X Left (mm)
% 4. Pupil Size Y Left (mm)
% 5. Pupil Diameter Left (mm)
% 6. Gaze X Left (degrees)
% 7. Gaze Y Left (degrees)
% 8. Refraction Left (diopters)
% 9. Eye Tracking Right (1 = yes, 2 = no)
% 10. Pupil Size X Right (mm)
% 11. Pupil Size Y Right (mm)
% 12. Pupil Diameter Right (mm)
% 13. Gaze X Right (degrees)
% 14. Gaze Y Right (degrees)
% 15. Refraction Right (diopters)
% 16. Sync Pulse Column (1-100)

clear all; %#ok<*CLALL>
close all;clc;
opengl('save','software')

readdata = 0;

Pilot = 0;
Experiment = 1;

PilotData = 0;
ExperimentData = 1;

%% Initialization
rootFolder = pwd;
if Pilot == 1
 dataFolder = strcat(rootFolder,'\Metingen PowerRef\Pilot');
 cd(dataFolder);
 fileNames = dir('*.csv');
elseif Experiment == 1
 dataFolder = strcat(rootFolder,'\Metingen PowerRef\Experiment');
 MatlabData = strcat(rootFolder,'\Metingen Matlab\Experiment');
 cd(dataFolder);
 fileNames = dir('*.csv');
end
%Contents = dir(rootFolder);
%fileNames = dir('*.csv');

if readdata==1
 % Preallocate data
 data = NaN(((15*60)/0.02)*1.25, 16, length(fileNames));
 fileSize = zeros(length(fileNames),1);
 %% Read RawData files
 for pp = 2:length(fileNames) % Skip Participant 1 for sounds
 fprintf('Reading participant %.0d \n',pp);
 temp = readRaw(fileNames(pp).name);
 start = find(temp(:,16)==10,1); %
Removes data before experiment starts
 ending = find(temp(:,16)==60,1); %
Renoves data after experiment ended
 fileSize(pp,1) = length(temp(start:ending,:));
 data(1:fileSize(pp,1),:,pp) = temp(start:ending,:);
 end
 %% Store imported Data to mat-file
 CutSize = max(fileSize);
 data = data(1:CutSize,:,:);
 fprintf('----------------- Saving data \n');

 save('RawData','data','-v7.3');
 cd(rootFolder);

else
 load RawData
 cd(rootFolder);
 fileNames = dir('*.mat');

end
%% Blink and missing data removal
% Variabes 1, 2, 9 and 16 do not need to be interpolated because they are
% binary.
datafix = data(:,:,2:36);% participant 1 is NANS
datafilt = data(:,:,2:36);
fc = 4;
fs = 50;
[b,a] = butter(3,(fc/(fs/2)),'low');
for pp = 1 : 35 % Loop
over all files
 for nn = [3 4 5 6 7 8 10 11 12 13 14 15] % For
these files a 0 is missing data
 temp = squeeze(data(:,nn,pp+1));
 temp(isnan(temp)) = [];
 temp(temp == 0 | temp == -100) = NaN;
 temp1 = squeeze(data(:,6,pp+1)); %
6. Gaze X Left (degrees)
 temp2 = squeeze(data(:,7,pp+1)); %
7. Gaze Y Left (degrees)
 temp3 = squeeze(data(:,13,pp+1)); % 13.
Gaze X Right (degrees)
 temp4 = squeeze(data(:,14,pp+1)); % 14.
Gaze Y Right (degrees)

 temp(temp1<-30 | temp2<-30 | temp3<-30 | temp4<-30 |...
 temp1>30 | temp2>30 | temp3>30 | temp4>30) = NaN; % Remove
data if there are eye movements
 MM(pp,nn) = mean(isnan(temp));
 blinkmoments = FindBlink(temp,2); % Find
the blinks with period before and after each blink (remove 5 samples, 0.1 s before
and after)
 temp(blinkmoments)=NaN;
 if sum(~isnan(temp))>0
 temp=fixgapsj(temp); % interpolate the data around blinks
 datafix(1:length(temp),nn,pp)=temp;
 datafilt(1:length(temp),nn,pp)=filtfilt(b,a,temp);
 else
 datafix(:,nn,pp)=NaN;
 datafilt(:,nn,pp)=NaN; %
Tijd,Variabele,Deelnemers
 end
 end
end

%% sort participants on Task 1: Vergence and accommodation check
MatrixTask1_1 = NaN(((10)/0.02)*1.05, 6, length(datafilt(1,1,:))); % 1 toon
duurt 10s
MatrixTask1_2 = NaN(((10)/0.02)*1.05, 6, length(datafilt(1,1,:))); % /0.02
betekent 50 samples per seconde
 % 1.05
is 5% marge van de dataset
 % 6
tonen (3 laag, 3 hoog)
StartPulseTask1 = 10;
EndPulseTask1 = 20;

% AANPASSEN WELKE KOLOMMEN WE WILLEN VOOR DE ANALYSE!
DataTask1_1 = cell(2,12);
DataTask1_2 = cell(2,12);

DataTask1_1{1,1} = 'Pupil Size X Left'; %3
DataTask1_1{1,2} = 'Pupil Size Y Left'; %4
DataTask1_1{1,3} = 'Pupil Diameter Left'; %5 <--
DataTask1_1{1,4} = 'Gaze X Left'; %6 (<--)
DataTask1_1{1,5} = 'Gaze Y Left'; %7 <--
DataTask1_1{1,6} = 'Refraction Left'; %8 <--

DataTask1_1{1,7} = 'Pupil Size X Right'; %10
DataTask1_1{1,8} = 'Pupil Size Y Right'; %11
DataTask1_1{1,9} = 'Pupil Diameter Right'; %12 <--
DataTask1_1{1,10} = 'Gaze X Right'; %13 (<--)
DataTask1_1{1,11} = 'Gaze Y Right'; %14 <--
DataTask1_1{1,12} = 'Refraction Right'; %15 <--

DataTask1_2{1,1} = 'Pupil Size X Left'; %3
DataTask1_2{1,2} = 'Pupil Size Y Left'; %4
DataTask1_2{1,3} = 'Pupil Diameter Left'; %5
DataTask1_2{1,4} = 'Gaze X Left'; %6
DataTask1_2{1,5} = 'Gaze Y Left'; %7
DataTask1_2{1,6} = 'Refraction Left'; %8

DataTask1_2{1,7} = 'Pupil Size X Right'; %10
DataTask1_2{1,8} = 'Pupil Size Y Right'; %11
DataTask1_2{1,9} = 'Pupil Diameter Right'; %12
DataTask1_2{1,10} = 'Gaze X Right'; %13
DataTask1_2{1,11} = 'Gaze Y Right'; %14
DataTask1_2{1,12} = 'Refraction Right'; %15

for nParticipant = 1 : 35
 StartLoopHigh = StartPulseTask1;
 EndLoopHigh = EndPulseTask1;
 StartPointLoop = find(datafilt(:,16,nParticipant) == StartLoopHigh,1);
 EndPointLoop = find(datafilt(:,16,nParticipant) == EndLoopHigh,1);
 templengthlow = StartPointLow+1:EndPointLow;
 MatrixTask1_1(1:length(templengthlow),nTone,nParticipant) =
datafilt(StartPointLow+1:EndPointLow,nVariables,nParticipant);

end

k = 1;
for nVariables = [3 4 5 6 7 8 10 11 12 13 14 15]
 for nParticipant = 1 : 35
 for nTone = 1 : 3
 if nParticipant == 17 && nTone == 1 && nVariables == 3
 templength = length(datafilt(3717:end,16,nParticipant)); %
Experiment restarted, cut off first bit.
 datafilt(1:templength,:,nParticipant) =
datafilt(3717:end,:,nParticipant);
 end
 % Low tone pulses
 StartToneLow = nTone;
 EndToneLow = nTone + 90;
 % High tone pulses
 StartToneHigh = nTone + 90;
 EndToneHigh = nTone+1;

% TaskLimit1 = find(datafilt(:,16,nParticipant) ==
StartPulseTask1,1);

 StartPointLow = find(datafilt(:,16,nParticipant) == StartToneLow,1);
 StartPointHigh = find(datafilt(:,16,nParticipant) ==
StartToneHigh,1);
 EndPointLow = find(datafilt(:,16,nParticipant) == EndToneLow,1);
% EndPointHigh = find(datafilt(:,16,nParticipant) ==
EndToneHigh,1);
 if nTone < 3

1050

 EndPointHigh = find(datafilt(:,16,nParticipant) == EndToneHigh,1);
 else
 EndPointLow = find(datafilt(:,16,nParticipant) == 93,1);
 EndPointHigh = find(datafilt(:,16,nParticipant) == 20,1);
 end
 templengthlow = StartPointLow+1:EndPointLow;
 templengthhigh = StartPointHigh+1:EndPointHigh;
 MatrixTask1_1(1:length(templengthlow),nTone,nParticipant) =
datafilt(StartPointLow+1:EndPointLow,nVariables,nParticipant); %Check of
eventueel nog +1
 MatrixTask1_2(1:length(templengthhigh),nTone,nParticipant) =
datafilt(StartPointHigh+1:EndPointHigh,nVariables,nParticipant); %Check of
eventueel nog +1
 end
 end
DataTask1_1{2,k} = MatrixTask1_1;
DataTask1_2{2,k} = MatrixTask1_2;
k = k + 1;
end

%% sort participants on Task 2: Multiplications
MatrixTask2 = NaN(ceil(((25)/0.02)*1.05), 9, length(datafilt(1,1,:))); %
1 som duurt 25s // ceil is nodig omdat de smaples anders geen heel getal zijn, maar
1312,5. nu is het 1313
 % /0.02
betekent 50 samples per seconde
 % 1.05
is 5% marge van de dataset
 % 9
multiplications
StartPulseTask2 = 30;
EndPulseTask2 = 40;

% AANPASSEN WELKE KOLOMMEN WE WILLEN VOOR DE ANALYSE!
DataTask2 = cell(2,12);
DataReaction = cell(9,35);

DataTask2{1,1} = 'Pupil Size X Left'; %3
DataTask2{1,2} = 'Pupil Size Y Left'; %4
DataTask2{1,3} = 'Pupil Diameter Left'; %5
DataTask2{1,4} = 'Gaze X Left'; %6
DataTask2{1,5} = 'Gaze Y Left'; %7
DataTask2{1,6} = 'Refraction Left'; %8

DataTask2{1,7} = 'Pupil Size X Right'; %10
DataTask2{1,8} = 'Pupil Size Y Right'; %11
DataTask2{1,9} = 'Pupil Diameter Right'; %12
DataTask2{1,10} = 'Gaze X Right'; %13
DataTask2{1,11} = 'Gaze Y Right'; %14
DataTask2{1,12} = 'Refraction Right'; %15

k = 1;
cd(MatlabData)
for nVariables = [3 4 5 6 7 8 10 11 12 13 14 15]
 for nParticipant = 1 : 35
 if nParticipant <9 && nVariables == 3
 load(strcat('Participant0',num2str(nParticipant+1),'.mat'))
 elseif nParticipant >= 9 && nVariables == 3
 load(strcat('Participant',num2str(nParticipant+1),'.mat'))
 end
 for nMultiplication = 1 : 9
 StartSum = nMultiplication + 70;
 ReactionSum = nMultiplication + 80;
 EndSum = nMultiplication + 90;
 TaskLimit2 = find(datafilt(:,16,nParticipant) ==
StartPulseTask2,1);

 StartPointSum = find(datafilt(TaskLimit2:end,16,nParticipant) ==
StartSum,1);
 ReactionPointSum = find(datafilt(TaskLimit2:end,16,nParticipant) ==
ReactionSum,1);
 EndPointSum = find(datafilt(TaskLimit2:end,16,nParticipant) ==
EndSum,1);

 datalengthtask2 = TaskLimit2+StartPointSum+1:TaskLimit2+EndPointSum;
 MatrixTask2(1:length(datalengthtask2),nMultiplication,nParticipant) =
datafilt(TaskLimit2+StartPointSum+1:TaskLimit2+EndPointSum,nVariables,nParticipant)
; %Check of eventueel nog +1
 LocationRT = RandomOrderMultiplications==nMultiplication;
 ReactionTime(nMultiplication,nParticipant) =
reactionTime_Experiment2(LocationRT);
% DataReaction(nMultiplication,
 end
 end
DataTask2{2,k} = MatrixTask2;
% DataReaction(
k = k + 1;
end
cd(rootFolder);

%% sort participants on Task 3: Follow the ball
MatrixTask3 = NaN(((16)/0.02)*1.05, 24, length(datafilt(1,1,:))); % 1
video duurt 16s
 % /0.02
betekent 50 samples per seconde
 % 1.05
is 5% marge van de dataset
 % 24
videos (3 loops van 8 videos)
StartPulseTask3 = 50;
EndPulseTask3 = 60;

% AANPASSEN WELKE KOLOMMEN WE WILLEN VOOR DE ANALYSE!
DataTask3 = cell(2,12);

DataTask3{1,1} = 'Pupil Size X Left'; %3
DataTask3{1,2} = 'Pupil Size Y Left'; %4
DataTask3{1,3} = 'Pupil Diameter Left'; %5
DataTask3{1,4} = 'Gaze X Left'; %6
DataTask3{1,5} = 'Gaze Y Left'; %7
DataTask3{1,6} = 'Refraction Left'; %8

DataTask3{1,7} = 'Pupil Size X Right'; %10
DataTask3{1,8} = 'Pupil Size Y Right'; %11
DataTask3{1,9} = 'Pupil Diameter Right'; %12
DataTask3{1,10} = 'Gaze X Right'; %13
DataTask3{1,11} = 'Gaze Y Right'; %14
DataTask3{1,12} = 'Refraction Right'; %15

k = 1;
for nVariables = [3 4 5 6 7 8 10 11 12 13 14 15]
 for nParticipant = 1 : 35
 for j = 1 : 3
 for nVideo = 1 : 8
 StartVideo = nVideo + 10*j;
 EndVideo = nVideo + 10*j + 30;
 TaskLimit3 = find(datafilt(:,16,nParticipant) ==
StartPulseTask3,1);

 StartPointVideo = find(datafilt(TaskLimit3:end,16,nParticipant)
== StartVideo,1);
 VideoPulses = find(datafilt(TaskLimit3:end,16,nParticipant)
== EndVideo);
 EndPointVideo = VideoPulses(1,1)+length(VideoPulses);

 datalengthtask3 =
TaskLimit3+StartPointVideo+1:TaskLimit3+EndPointVideo;
 MatrixTask3(1:length(datalengthtask3),nVideo+8*j-8,nParticipant) =
datafilt(TaskLimit3+StartPointVideo+1:TaskLimit3+EndPointVideo,nVariables,nParticip
ant); %Check of eventueel nog +1
 end
 end
 end
DataTask3{2,k} = MatrixTask3;
k = k + 1;
end

%% Save FiltData in folders
if PilotData == 1
 SaveFolder = strcat(rootFolder,'\FiltData\Pilot');
elseif ExperimentData == 1
 SaveFolder = strcat(rootFolder,'\FiltData\Experiment');
end

%% Save Organized Data
filename1_1 = strcat('FiltDataSoundsLow.mat');
filename1_2 = strcat('FiltDataSoundsHigh.mat');
filename2 = strcat('FiltDataMultiplications.mat');
filename3 = strcat('FiltDataVideos.mat');
if exist(SaveFolder)
 cd(SaveFolder)
 save(filename1_1, 'DataTask1_1', '-v7.3');
 save(filename1_2, 'DataTask1_2', '-v7.3');
 save(filename2, 'DataTask2', '-v7.3');
 save(filename3, 'DataTask3', '-v7.3');
else
 mkdir(SaveFolder);
 cd(SaveFolder)
 save(filename1_1, 'DataTask1_1', '-v7.3');
 save(filename1_2, 'DataTask1_2', '-v7.3');
 save(filename2, 'DataTask2', '-v7.3');
 save(filename3, 'DataTask3', '-v7.3');
end

%% mean van soort en standaard deviatie

%% plot pupilsize
	

49

C.5 StaticsFiltDatapaper.m

See next page.

%% Replicatie BEP-groep - Powerref
% Matlab script build by Lars Kooijman to analyse data
% Edited by Stefan Jansen, Julia Russell and Tamir Themans
% Scatter plots & Cross correlations(from line 1160)

clear all; %#ok<*CLALL>
close all;clc;
opengl('save','software')

PilotData = 0;
ExperimentData = 1;

%% Initialization
rootFolder = pwd;
if PilotData == 1
 dataFolder = strcat(rootFolder,'\FiltData\Pilot');
 cd(dataFolder);
 load FiltDataSoundsLow
 load FiltDataSoundsHigh
 load FiltDataMultiplications
 load FiltDataVideos
% fileNames = dir('*.mat');

elseif ExperimentData == 1
 dataFolder = strcat(rootFolder,'\FiltData\Experiment');
 cd(dataFolder);
 load FiltDataSoundsLow
 load FiltDataSoundsHigh
 load FiltDataMultiplications
 load FiltDataVideos

end

%% Variables

% 1. Pupil Size X Left
% 2. Pupil Size Y Left
% 3. Pupil Diameter Left <-- PDL
% 4. Gaze X Left <-- VL (X)
% 5. Gaze Y Left <-- VL (Y)
% 6. Refraction Left <-- AL
%
% 7. Pupil Size X Right
% 8. Pupil Size Y Right
% 9. Pupil Diameter Right <-- PDR
% 10. Gaze X Right <-- VR (X)
% 11. Gaze Y Right <-- VR (Y)
% 12. Refraction Right <-- AR

% Task 1: PDL, VL (X), AL
% PDR, VR (X), AR
% Task 2: PDL, AL
% PDR, AR
% Task 3: PDL, VL (Y), AL
% PDR, VR (Y), AR

%% Colors for plots
colors = [204 255 153; % 1 lichtgroen
 153 255 51 ; % 2 middelgroen
 102 204 0 ; % 3 donkergroen
 153 153 255; % 4 lichtblauw
 51 51 255; % 5 middelblauw
 0 0 204; % 6 donkerblauw
 255 153 153; % 7 lichtrood
 255 51 51 ; % 8 middelrood

1055

 204 0 0 ; % 9 donkerrood
 255 102 178; % 10 lichtroze
 255 0 127; % 11 middelroze
 153 0 76 ; % 12 donkerroze
 153 0 76 ; % 13 donkerpaars
 0 255 255; % 14 turquiose
 0 128 255; % 15 donkerturquiose
 0 0 0]/255; % 16 zwart

%% DATA CHECKEN OP NaN's PER ONDERDEEL

% Task 1
VarianceMatrix = NaN(6,35,8);
nLow = 1;
nHigh = 3;
Variables = [3 4 5 6 9 10 11 12];

for nVariables = [3 4 5 6 9 10 11 12]
 for nParticipant = 1 : 35
 nLow = 1;
 nHigh = 4;
 for nTonesLow = 1 : 3
 TempLowTones = DataTask1_1{2,nVariables}(:,nTonesLow,nParticipant);
 VarianceLow = nanvar(TempLowTones);
 VarianceMatrix(nLow,nParticipant,(nVariables == Variables)) =
VarianceLow;
 nLow = nLow + 1;
 end
 for nTonesHigh = 1 : 3
 TempHighTones = DataTask1_2{2,nVariables}(:,nTonesHigh,nParticipant);
 VarianceHigh = nanvar(TempHighTones);
 VarianceMatrix(nHigh,nParticipant,(nVariables == Variables)) =
VarianceHigh;
 nHigh = nHigh + 1;
 end
 end
end

%% ------------------------- TASK 3 ---------------------------------- %%

% PDL3 = Pupil Diameter Right, Task 3
% VL3 = Gaze Y Right, Task 3
% AL3 = Refraction Right, Task 3
% PDR3 = Pupil Diameter Right, Task 3
% VR3 = Gaze Y Right, Task 3
% AR3 = Refraction Right, Task 3

% Inladen variabelen
DataPDL3 = DataTask3{2,3};
DataVL3 = DataTask3{2,5};
DataAL3 = DataTask3{2,6};

DataPDR3 = DataTask3{2,9};
DataVR3 = DataTask3{2,11};
DataAR3 = DataTask3{2,12};

k = 1;
for nVideos = 1:24
 PDL3 = squeeze(DataPDL3(:,nVideos,:));
 VL3 = squeeze(DataVL3(:,nVideos,:));
 AL3 = squeeze(DataAL3(:,nVideos,:));

 PDR3 = squeeze(DataPDR3(:,nVideos,:));
 VR3 = squeeze(DataVR3(:,nVideos,:));
 AR3 = squeeze(DataAR3(:,nVideos,:));

 PDL3_Row{1,k} = PDL3;

 VL3_Row{1,k} = VL3;
 AL3_Row{1,k} = AL3;
 PDR3_Row{1,k} = PDR3;
 VR3_Row{1,k} = VR3;
 AR3_Row{1,k} = AR3;
 k = k + 1;
end
%% (SUBQUESTION 2+3+4)
% Subquestion (2+3+4): comparing the 4 levels with eachother
Indices = [1:4:21;
 2:4:22;
 3:4:23;
 4:4:24];

for n = 1:4 % links
en recht gemiddeld, van de 6 videos van level 1, enz. in totaal 4 levels
 PDL3_Temp = DataPDL3(:,Indices(n,:),:);
 PDR3_Temp = DataPDR3(:,Indices(n,:),:);
 PDL3_MeanMatrix{n,1} = squeeze(nanmean(PDL3_Temp,2));
 PDR3_MeanMatrix{n,1} = squeeze(nanmean(PDR3_Temp,2));
 PD3_MeanMatrixGem = (PDL3_MeanMatrix{n,1} + PDR3_MeanMatrix{n,1})/2;
 PD3_MeanMatrix{n,1} = PD3_MeanMatrixGem;
end

for n = 1:4 % links
en recht gemiddeld, van de 6 videos van level 1, enz. in totaal 4 levels
 VL3_Temp = DataVL3(:,Indices(n,:),:);
 VR3_Temp = DataVR3(:,Indices(n,:),:);
 VL3_MeanMatrix{n,1} = squeeze(nanmean(VL3_Temp,2));
 VR3_MeanMatrix{n,1} = squeeze(nanmean(VR3_Temp,2));
 V3_MeanMatrixGem = (VL3_MeanMatrix{n,1} + VR3_MeanMatrix{n,1})/2;
 V3_MeanMatrix{n,1} = V3_MeanMatrixGem;
end

for n = 1:4 % links
en recht gemiddeld, van de 6 videos van level 1, enz. in totaal 4 levels
 AL3_Temp = DataAL3(:,Indices(n,:),:);
 AR3_Temp = DataAR3(:,Indices(n,:),:);
 AL3_MeanMatrix{n,1} = squeeze(nanmean(AL3_Temp,2));
 AR3_MeanMatrix{n,1} = squeeze(nanmean(AR3_Temp,2));
 A3_MeanMatrixGem = (AL3_MeanMatrix{n,1} + AR3_MeanMatrix{n,1})/2;
 A3_MeanMatrix{n,1} = A3_MeanMatrixGem;
end

% PD3C = Pupil Diameter Change in Percentage
% V3C = Vergence, Gaze Y Change in Percentage
% A3C = Accommodation, refraction Change in Percentage
PD3C_Level = NaN(35,4);
for nLevel = 1:4
 for nParticipants = 1 : 35
 MeanControlSlidePD234 =
nanmean(PD3_MeanMatrix{nLevel,1}(50*0.5:50*9.5,nParticipants));
 MaxVideoPD234 =
max(PD3_MeanMatrix{nLevel,1}(50*10.5:50*15.5,nParticipants));
 PD3C_LevelX = (MaxVideoPD234 -
MeanControlSlidePD234)/MeanControlSlidePD234;
 PD3C_Level(nParticipants,nLevel) = PD3C_LevelX*100; % kolom
is level 1, kolom 2 is level 2, enz.
 end
end

V3C_Level = NaN(35,4);
for nLevel = 1:4
 for nParticipants = 1 : 35
 MeanControlSlideV234 =
nanmean(V3_MeanMatrix{nLevel,1}(50*0.5:50*9.5,nParticipants));

 MaxVideoV234 =
max(V3_MeanMatrix{nLevel,1}(50*10.5:50*15.5,nParticipants));
 V3C_LevelX = (MaxVideoV234 -
MeanControlSlideV234)/MeanControlSlideV234;
 V3C_Level(nParticipants,nLevel) = V3C_LevelX*100; % kolom
is level 1, kolom 2 is level 2, enz.
 end
end

A3C_Level = NaN(35,4);
for nLevel = 1:4
 for nParticipants = 1 : 35
 MeanControlSlideA234 =
nanmean(A3_MeanMatrix{nLevel,1}(50*0.5:50*9.5,nParticipants));
 MaxVideoA234 =
max(A3_MeanMatrix{nLevel,1}(50*10.5:50*15.5,nParticipants));
 A3C_LevelX = (MaxVideoA234 -
MeanControlSlideA234)/MeanControlSlideA234;
 A3C_Level(nParticipants,nLevel) = A3C_LevelX*100; % kolom is level 1, kolom
2 is level 2, enz.
 end
end

% PD3C_Level (35 participanten x 4 levels)
% V3C_Level (35 participanten x 4 levels)
% A3C_Level (35 participanten x 4 levels)
%% LEVEL 1 PD3 <-> V3 (SUBQUESTION 2+3+4)
% PD3 <-> V3
%

fitA = PD3C_Level(:,1); % X-as
fitB = V3C_Level(:,1); % Y-as
for n=1:35
 if (fitB(n,1)< -500) || (fitB(n,1)> 500)
 fitB(n,1) = NaN;
 fitA(n,1) =NaN;
 end
end
for n=1:35
 if fitA(n,1)<-1 || fitA(n,1)>7
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'r-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 1');
xlabel('Pupil diameter change [%]');
ylabel('Gaze(Y) change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-
V_Level1.jpg') %uncomment to save figure
%% LEVEL 2 PD3 <-> V3 (SUBQUESTION 2+3+4)
% PD3 <-> V3
fitA = PD3C_Level(:,2); % X-as

fitB = V3C_Level(:,2); % Y-as
for n=1:35
 if (fitB(n,1)< -500) || (fitB(n,1)> 500)
 fitB(n,1) = NaN;
 fitA(n,1) =NaN;
 end
end
for n=1:35
 if fitA(n,1)<0.2754 || fitA(n,1)>4.5688
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'r-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 2');
xlabel('Pupil diameter change [%]');
ylabel('Gaze(Y) change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-
V_Level2.jpg') %uncomment to save figure
%% LEVEL 3 PD3 <-> V3 (SUBQUESTION 2+3+4)
% PD3 <-> V3
fitA = PD3C_Level(:,3); % X-as
fitB = V3C_Level(:,3); % Y-as
for n=1:35
 if fitA(n,1)<0.3786 || fitA(n,1)>5.0204
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-494.7744 || fitB(n,1)>177.3608
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'r-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 3');
xlabel('Pupil Diameter Change [%]');
ylabel('Gaze(Y) Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));

legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-V_Level3.jpg')
%% LEVEL 4 PD3 <-> V3 (SUBQUESTION 2+3+4)
% PD3 <-> V3
fitA = PD3C_Level(:,4); % X-as
fitB = V3C_Level(:,4); % Y-as
for n=1:35
 if fitA(n,1)<0.2070 || fitA(n,1)>4.1950
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-433.1405 || fitB(n,1)>145.9765
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'r-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 4');
xlabel('Pupil Diameter Change [%]');
ylabel('Gaze(Y) Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);

%saveas(Scatterplot,'Scatterplot_Task_3_PD-V_Level4.jpg')

%% LEVEL 1 PD3 <-> A3 (SUBQUESTION 2+3+4)
% PD3 <-> A3
fitA = PD3C_Level(:,1); % X-as
fitB = A3C_Level(:,1); % Y-as

for n=1:35
 if fitB(n,1)<-50 || fitB(n,1)>30
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'m-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 1')
xlabel('Pupil Diameter Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));

1060

legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-A_Level1.jpg')

%% LEVEL 2 PD3 <-> A3 (SUBQUESTION 2+3+4)
% PD3 <-> A3
fitA = PD3C_Level(:,2); % X-as
fitB = A3C_Level(:,2); % Y-as
for n=1:35
 if fitA(n,1)<0.2754 || fitA(n,1)>4.5688
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-100 || fitB(n,1)>100
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'m-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 2')
xlabel('Pupil Diameter Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-A_Level2.jpg')
%% LEVEL 3 PD3 <-> A3 (SUBQUESTION 2+3+4)
% PD3 <-> A3
fitA = PD3C_Level(:,3); % X-as
fitB = A3C_Level(:,3); % Y-as
for n=1:35
 if fitA(n,1)<0.2754 || fitA(n,1)>4.5688
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-94.5603|| fitB(n,1)>49.5153
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'m-','LineWidth',3); hold on;
slope = P(1);

title('Scatterplot of Task 3: level 3')
xlabel('Pupil Diameter Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-A_Level3.jpg')
%% LEVEL 4 PD3 <-> A3 (SUBQUESTION 2+3+4)
% PD3 <-> A3
fitA = PD3C_Level(:,4); % X-as
fitB = A3C_Level(:,4); % Y-as
for n=1:35
 if fitA(n,1)<0.2754 || fitA(n,1)>4.5688
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-81.5603|| fitB(n,1)>49.5153
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'m-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 4')
xlabel('Pupil Diameter Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-A_Level4.jpg')

%% LEVEL 1 V3 <-> A3 (SUBQUESTION 2+3+4)
% V3 <-> A3
fitA = V3C_Level(:,1); % X-as
fitB = A3C_Level(:,1); % Y-as
for n=1:35
 if fitA(n,1)<-500 || fitA(n,1)>500
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-50|| fitB(n,1)>50
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];

scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'g-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 1')
xlabel('Gaze (Y) Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_V-A_Level1.jpg')

%% LEVEL 2 V3 <-> A3 (SUBQUESTION 2+3+4)
% V3 <-> A3
fitA = V3C_Level(:,2); % X-as
fitB = A3C_Level(:,2); % Y-as
for n=1:35
 if fitA(n,1)<-475.8273 || fitA(n,1)>127.7355
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-60.8422 || fitB(n,1)>67.66
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'g-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 2')
xlabel('Gaze(Y) Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_V-A_Level2.jpg')

%% LEVEL 3 V3 <-> A3 (SUBQUESTION 2+3+4)
% V3 <-> A3
fitA = V3C_Level(:,3); % X-as
fitB = A3C_Level(:,3); % Y-as
for n=1:35
 if fitA(n,1)<-475.8273 || fitA(n,1)>127.7355
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-60.8422 || fitB(n,1)>67.66
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end

isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'g-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 3')
xlabel('Gaze(Y) Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_V-A_Level3.jpg')

%% LEVEL 4 V3 <-> A3 (SUBQUESTION 2+3+4)
% V3 <-> A3
fitA = V3C_Level(:,4); % X-as
fitB = A3C_Level(:,4); % Y-as
for n=1:35
 if fitA(n,1)<-475.8273 || fitA(n,1)>127.7355
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-60.8422 || fitB(n,1)>67.66
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'g-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: level 4');
xlabel('Gaze(Y) Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_V-A_Level4.jpg')

%% SUBQUETION 1
% Subquestion (1): comparing dynamic vs static.
Indices1 = [1:4 9:12 17:20; %dynamisch
 5:8 13:16 21:24]; %statisch

for n = 1:2 % links en recht gemiddeld, van alle statische video's,
en alle dynamische video's. in totaal 2 groepen.
 PDL3_Temp1 = DataPDL3(:,Indices1(n,:),:);
 PDR3_Temp1 = DataPDR3(:,Indices1(n,:),:);

 PDL3_MeanMatrix1{n,1} = squeeze(nanmean(PDL3_Temp1,2));
 PDR3_MeanMatrix1{n,1} = squeeze(nanmean(PDR3_Temp1,2));
 PD3_MeanMatrixGem = (PDL3_MeanMatrix1{n,1} + PDR3_MeanMatrix1{n,1})/2;
 PD3_MeanMatrix1{n,1} = PD3_MeanMatrixGem;
end

for n = 1:2 % links en recht gemiddeld, van alle statische video's,
en alle dynamische video's. in totaal 2 groepen.
 VL3_Temp1 = DataVL3(:,Indices1(n,:),:);
 VR3_Temp1 = DataVR3(:,Indices1(n,:),:);
 VL3_MeanMatrix1{n,1} = squeeze(nanmean(VL3_Temp1,2));
 VR3_MeanMatrix1{n,1} = squeeze(nanmean(VR3_Temp1,2));
 V3_MeanMatrixGem1 = (VL3_MeanMatrix1{n,1} + VR3_MeanMatrix1{n,1})/2;
 V3_MeanMatrix1{n,1} = V3_MeanMatrixGem1;
end

for n = 1:2 % links en recht gemiddeld, van alle statische video's,
en alle dynamische video's. in totaal 2 groepen.
 AL3_Temp1 = DataAL3(:,Indices1(n,:),:);
 AR3_Temp1 = DataAR3(:,Indices1(n,:),:);
 AL3_MeanMatrix1{n,1} = squeeze(nanmean(AL3_Temp1,2));
 AR3_MeanMatrix1{n,1} = squeeze(nanmean(AR3_Temp1,2));
 A3_MeanMatrixGem1 = (AL3_MeanMatrix1{n,1} + AR3_MeanMatrix1{n,1})/2;
 A3_MeanMatrix1{n,1} = A3_MeanMatrixGem1;
end

% PD3C = Pupil Diameter Change in Percentage
% V3C = Vergence, Gaze Y Change in Percentage
% A3C = Accommodation, refraction Change in Percentage
PD3C_Level1 = NaN(35,2);
for nLevel1 = 1:2
 for nParticipants = 1 : 35
 MeanControlSlidePD1 =
nanmean(PD3_MeanMatrix1{nLevel1,1}(50*0.5:50*9.5,nParticipants));
 MaxVideoPD1 =
max(PD3_MeanMatrix1{nLevel1,1}(50*10.5:50*15.5,nParticipants));
 PD3C_Level1X = (MaxVideoPD1 -
MeanControlSlidePD1)/MeanControlSlidePD1;
 PD3C_Level1(nParticipants,nLevel1) = PD3C_Level1X*100; %
kolom 1 is dynamisch, kolom 2 is statisch?
 end
end

V3C_Level1 = NaN(35,2);
for nLevel1 = 1:2
 for nParticipants = 1 : 35
 MeanControlSlideV1 =
nanmean(V3_MeanMatrix1{nLevel1,1}(50*0.5:50*9.5,nParticipants));
 MaxVideoV1 =
max(V3_MeanMatrix1{nLevel1,1}(50*10.5:50*15.5,nParticipants));
 V3C_Level1X = (MaxVideoV1 - MeanControlSlideV1)/MeanControlSlideV1;
 V3C_Level1(nParticipants,nLevel1) = V3C_Level1X*100; %
kolom 1 is dynamisch, kolom 2 is statisch?
 end
end

A3C_Level1 = NaN(35,2);
for nLevel1 = 1:2
 for nParticipants = 1 : 35
 MeanControlSlideA1 =
nanmean(A3_MeanMatrix1{nLevel1,1}(50*0.5:50*9.5,nParticipants));
 MaxVideoA1 =
max(A3_MeanMatrix1{nLevel1,1}(50*10.5:50*15.5,nParticipants));
 A3C_Level1X = (MaxVideoA1 - MeanControlSlideA1)/MeanControlSlideA1;
 A3C_Level1(nParticipants,nLevel1) = A3C_Level1X*100; % kolom
1 is dynamisch, kolom 2 is statisch?
 end

1065

end

%% DYNAMIC PD3 <-> V3 (SUBQUESTION 1)
% PD3 <-> V3
fitA = PD3C_Level1(:,1); % X-as
fitB = V3C_Level1(:,1); % Y-as
for n=1:35
 if fitA(n,1)<0.2754 || fitA(n,1)>5.5688
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-300.8422 || fitB(n,1)>100
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'r-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: Dynamic');
xlabel('Pupil Diameter Change [%]');
ylabel('Gaze(Y) Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-
V_Dynamic.jpg') %uncomment to save figure

%% STATIC PD3 <-> V3 (SUBQUESTION 1)
% PD3 <-> V3
fitA = PD3C_Level1(:,2); % X-as
fitB = V3C_Level1(:,2); % Y-as
for n=1:35
 if fitA(n,1)<0.2754 || fitA(n,1)>5.5688
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-300.8422 || fitB(n,1)>100
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'m-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: Static');

xlabel('Pupil Diameter Change [%]');
ylabel('Gaze(Y) Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-
V_Static.jpg') %uncomment to save figure

%% DYNAMIC PD3 <-> A3 (SUBQUESTION 1)
% PD3 <-> A3
fitA = PD3C_Level1(:,1); % X-as
fitB = A3C_Level1(:,1); % Y-as
for n=1:35
 if fitA(n,1)<0.2754 || fitA(n,1)>5.5688
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-80 || fitB(n,1)>50
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'r-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3:Dynamic');
xlabel('Pupil Diameter Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-
A_Dynamic.jpg') %uncomment to save figure

%% Static PD3 <-> A3 (SUBQUESTION 1)
% PD3 <-> A3
fitA = PD3C_Level1(:,2); % X-as
fitB = A3C_Level1(:,2); % Y-as
for n=1:35
 if fitA(n,1)<0.2754 || fitA(n,1)>5.5688
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-80 || fitB(n,1)>50
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;

fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'m-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: Static');
xlabel('Pupil Diameter Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_PD-
A_Static.jpg') %uncomment to save figure

%% DYNAMIC V3 <-> A3 (SUBQUESTION 1)
% V3 <-> A3
fitA = V3C_Level1(:,1); % X-as
fitB = A3C_Level1(:,1); % Y-as
for n=1:35
 if fitA(n,1)<-400 || fitA(n,1)>0
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35
 if fitB(n,1)<-50 || fitB(n,1)>50
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'r-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: Dynamic');
xlabel('Gaze(Y) change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
saveas(Scatterplot,'Scatterplot_Task_3_V-
A_Dynamic.jpg') %uncomment to save figure

%% STATIC V3 <-> A3 (SUBQUESTION 1)
% V3 <-> A3
fitA = V3C_Level1(:,2); % X-as
fitB = A3C_Level1(:,2); % Y-as
for n=1:35
 if fitA(n,1)<-400 || fitA(n,1)>0
 fitA(n,1) = NaN;
 fitB(n,1) = NaN;
 end
end
for n=1:35

 if fitB(n,1)<-50 || fitB(n,1)>50
 fitB(n,1) = NaN;
 fitA(n,1) = NaN
 end
end
isnan(fitA(:,1))
VectorNaN = isnan(fitA(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA(isnan(fitA))=[];
fitB(isnan(fitB))=[];
scatter(fitA,fitB,35,'b','*')
P = polyfit(fitA,fitB,1);
FitLine = P(1)*fitA+P(2); hold on;
Scatterplot = plot(fitA,FitLine,'m-','LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 3: Static');
xlabel('Gaze(Y) Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1);
%saveas(Scatterplot,'Scatterplot_Task_3_V-
A_Static.jpg') %uncomment to save figure

%% ------------------------- TASK 2 subquestions 5+6 ----------------------------
------ %%

% PDL2 = Pupil Diameter Right, Task 2
% VL2 = Gaze Y Right, Task 2
% AL2 = Refraction Right, Task 2
% PDR2 = Pupil Diameter Right, Task 2
% VR2 = Gaze Y Right, Task 2
% AR2 = Refraction Right, Task 2

% Inladen variabelen
DataPDL2 = DataTask2{2,3};
DataVL2 = DataTask2{2,5};
DataAL2 = DataTask2{2,6};

DataPDR2 = DataTask2{2,9};
DataVR2 = DataTask2{2,11};
DataAR2 = DataTask2{2,12};

k = 1;
for nMultiplications = 1:9
 PDL2 = squeeze(DataPDL2(:,nMultiplications,:));
 VL2 = squeeze(DataVL2(:,nMultiplications,:));
 AL2 = squeeze(DataAL2(:,nMultiplications,:));

 PDR2 = squeeze(DataPDR2(:,nMultiplications,:));
 VR2 = squeeze(DataVR2(:,nMultiplications,:));
 AR2 = squeeze(DataAR2(:,nMultiplications,:));

 PDL2_Row{1,k} = PDL2;
 VL2_Row{1,k} = VL2;
 AL2_Row{1,k} = AL2;
 PDR2_Row{1,k} = PDR2;
 VR2_Row{1,k} = VR2;
 AR2_Row{1,k} = AR2;
 k = k + 1;
end

%% (SUBQUESTIONS 5+6)
% Subquestion (5+6): comparing easy, medium and hard multiplications with eachother

Indices56 = [1:3;
 4:6;
 7:9];

for n = 1:3 % links
en recht gemiddeld, van de 3 moeilijkheidsgraden
 PDL2_Temp56 = DataPDL2(:,Indices56(n,:),:);
 PDR2_Temp56 = DataPDR2(:,Indices56(n,:),:);
 PDL2_MeanMatrix56{n,1} = squeeze(nanmean(PDL2_Temp56,2));
 PDR2_MeanMatrix56{n,1} = squeeze(nanmean(PDR2_Temp56,2));
 PD2_MeanMatrixGem56 = (PDL2_MeanMatrix56{n,1} + PDR2_MeanMatrix56{n,1})/2;
 PD2_MeanMatrix56{n,1} = PD2_MeanMatrixGem56;
end

for n = 1:3 % links
en recht gemiddeld, van de 3 moeilijkheidsgraden
 VL2_Temp56 = DataVL2(:,Indices56(n,:),:);
 VR2_Temp56 = DataVR2(:,Indices56(n,:),:);
 VL2_MeanMatrix56{n,1} = squeeze(nanmean(VL2_Temp56,2));
 VR2_MeanMatrix56{n,1} = squeeze(nanmean(VR2_Temp56,2));
 V2_MeanMatrixGem56 = (VL2_MeanMatrix56{n,1} + VR2_MeanMatrix56{n,1})/2;
 V2_MeanMatrix56{n,1} = V2_MeanMatrixGem56;
end

for n = 1:3 %links
en recht gemiddeld, van de 3 moeilijkheidsgraden
 AL2_Temp56 = DataAL2(:,Indices56(n,:),:);
 AR2_Temp56 = DataAR2(:,Indices56(n,:),:);
 AL2_MeanMatrix56{n,1} = squeeze(nanmean(AL2_Temp56,2));
 AR2_MeanMatrix56{n,1} = squeeze(nanmean(AR2_Temp56,2));
 A2_MeanMatrixGem56 = (AL2_MeanMatrix56{n,1} + AR2_MeanMatrix56{n,1})/2;
 A2_MeanMatrix56{n,1} = A2_MeanMatrixGem56;
end

% PD2C = Pupil Diameter Change in Percentage
% V2C = Vergence, Gaze Y Change in Percentage
% A2C = Accommodation, refraction Change in Percentage
PD2C_Level56 = NaN(35,3);
for nLevel56 = 1:3
 for nParticipants = 1 : 35
 MeanControlSlidePD56 =
nanmean(PD2_MeanMatrix56{nLevel56,1}(50*0.5:50*9.5,nParticipants));
 MaxVideoPD56 =
max(PD2_MeanMatrix56{nLevel56,1}(50*10.5:50*24.5,nParticipants));
 PD2C_Level56X = (MaxVideoPD56 -
MeanControlSlidePD56)/MeanControlSlidePD56;
 PD2C_Level56(nParticipants,nLevel56) = PD2C_Level56X*100; %
kolom 1 is makkelijk, kolom 2 is middel, kolom 3 is moeilijke sommen.
 end
end

V2C_Level56 = NaN(35,3);
for nLevel56 = 1:3
 for nParticipants = 1 : 35
 MeanControlSlideV56 =
nanmean(V2_MeanMatrix56{nLevel56,1}(50*0.5:50*9.5,nParticipants));
 MaxVideoV56 =
max(V2_MeanMatrix56{nLevel56,1}(50*10.5:50*24.5,nParticipants));
 V2C_Level56X = (MaxVideoV56 -
MeanControlSlideV56)/MeanControlSlideV56;
 V2C_Level56(nParticipants,nLevel56) = V2C_Level56X*100; %
kolom 1 is makkelijk, kolom 2 is middel, kolom 3 is moeilijke sommen.
 end
end

A2C_Level56 = NaN(35,3);

1070

for nLevel56 = 1:3
 for nParticipants = 1 : 35
 MeanControlSlideA56 =
nanmean(A2_MeanMatrix56{nLevel56,1}(50*0.5:50*9.5,nParticipants));
 MaxVideoA56 =
max(A2_MeanMatrix56{nLevel56,1}(50*10.5:50*24.5,nParticipants));
 A2C_Level56X = (MaxVideoA56 -
MeanControlSlideA56)/MeanControlSlideA56;
 A2C_Level56(nParticipants,nLevel56) =
A2C_Level56X*100; % kolom 1 is makkelijk, kolom 2 is
middel, kolom 3 is moeilijke sommen.
 end
end

%% MAKKELIJK PD2 <-> A2 (SUBQUESTION 5+6)
% PD2 <-> A2
fitA56 = PD2C_Level56(:,1); % X-as
fitB56 = A2C_Level56(:,1); % Y-as
for n=1:35
 if fitA56(n,1)<2.1868 || fitA56(n,1)>11.4794
 fitA56(n,1) = NaN;
 fitB56(n,1) = NaN;
 end
end
for n=1:35
 if fitB56(n,1)<-93.8012 || fitB56(n,1)>34.5726
 fitB56(n,1) = NaN;
 fitA56(n,1) = NaN
 end
end
isnan(fitA56(:,1))
VectorNaN = isnan(fitA56(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA56(isnan(fitA56))=[];
fitB56(isnan(fitB56))=[];
scatter(fitA56,fitB56,35,'b','*')
P = polyfit(fitA56,fitB56,1);
FitLine = P(1)*fitA56+P(2); hold on;
Scatterplot = plot(fitA56,FitLine,'color',colors(2,:),'LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 2: Easy multiplications');
xlabel('Pupil Diameter Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1)
%saveas(Scatterplot,'Scatterplot_Task_2_PD-
A_easy_multiplications.jpg') %uncomment to save figure

%% Middel moeilijk PD2 <-> A2 (SUBQUESTION 5+6)
% PD2 <-> A2
fitA56 = PD2C_Level56(:,2); % X-as
fitB56 = A2C_Level56(:,2); % Y-as
for n=1:35
 if fitA56(n,1)<3.4852 || fitA56(n,1)>11.8882
 fitA56(n,1) = NaN;
 fitB56(n,1) = NaN;
 end
end
for n=1:35
 if fitB56(n,1)<-135.4164 || fitB56(n,1)>89.3018
 fitB56(n,1) = NaN;
 fitA56(n,1) = NaN

 end
end
isnan(fitA56(:,1))
VectorNaN = isnan(fitA56(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA56(isnan(fitA56))=[];
fitB56(isnan(fitB56))=[];
scatter(fitA56,fitB56,35,'b','*')
P = polyfit(fitA56,fitB56,1);
FitLine = P(1)*fitA56+P(2); hold on;
Scatterplot = plot(fitA56,FitLine,'color',colors(15,:),'LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 2: Middle hard multiplications');
xlabel('Pupil Diameter Change [%]');
ylabel('Refraction Change');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1)
%saveas(Scatterplot,'Scatterplot_Task_2_PD-
A_middle_hard_multiplications.jpg') %uncomment to save
figure

%% Moeilijk PD2 <-> A2 (SUBQUESTION 5+6)
% PD2 <-> A2
fitA56 = PD2C_Level56(:,3); % X-as
fitB56 = A2C_Level56(:,3); % Y-as
for n=1:35
 if fitA56(n,1)<2.3562 || fitA56(n,1)>13.3112
 fitA56(n,1) = NaN;
 fitB56(n,1) = NaN;
 end
end
for n=1:35
 if fitB56(n,1)<-2.0325e+03|| fitB56(n,1)>1.4101e+03
 fitB56(n,1) = NaN;
 fitA56(n,1) = NaN;
 end
end
isnan(fitA56(:,1))
VectorNaN = isnan(fitA56(:,1))
TotalNan = sum(VectorNaN)
participants = 35-TotalNan;
fitA56(isnan(fitA56))=[];
fitB56(isnan(fitB56))=[];
scatter(fitA56,fitB56,35,'b','*')
P = polyfit(fitA56,fitB56,1);
FitLine = P(1)*fitA56+P(2); hold on;
Scatterplot = plot(fitA56,FitLine,'color',colors(8,:),'LineWidth',3); hold on;
slope = P(1);
title('Scatterplot of Task 2: Hard multiplications');
xlabel('Pupil Diameter Change [%]');
ylabel('Refraction Change [%]');
grid on; grid minor;
set(gcf,'Position',get(0,'Screensize'));
legendInfo1 = sprintf('Fitted curve with slope = {%0.1f}', (slope));
legendinfo2 = sprintf('total participants = {%1.f}', (participants));
legend(legendinfo2,legendInfo1)
%saveas(Scatterplot,'Scatterplot_Task_2_PD-
A_hard_multiplications.jpg') %uncomment to save figure

%% ----------- Cross Correlation // Task 1 (low tones) ----------------- %%
close all; clc;
PDL1_1_xcorr = PDL1_1_Plot(:,1);
PDR1_1_xcorr = PDR1_1_Plot(:,1);

PDL1_1_xcorr(isnan(PDL1_1_xcorr)) = [];
PDR1_1_xcorr(isnan(PDR1_1_xcorr)) = [];
[xcorr_c_PD1_1,xcorr_lags_PD1_1] = xcorr(PDL1_1_xcorr,PDR1_1_xcorr);
figPD1_1 = plot(xcorr_lags_PD1_1,xcorr_c_PD1_1/max(xcorr_c_PD1_1)); hold on;
title('Cross-Correlation Task 1 (low tones): Pupil Diameter')
% saveas(figPD1_1,'Cross-Correlation Task 1 (low tones) Pupil Diameter.jpg')
figure
VL1_1_xcorr = VL1_1_Plot(:,1);
VR1_1_xcorr = VR1_1_Plot(:,1);
VL1_1_xcorr(isnan(VL1_1_xcorr)) = [];
VR1_1_xcorr(isnan(VR1_1_xcorr)) = [];
[xcorr_c_V1_1,xcorr_lags_V1_1] = xcorr(VL1_1_xcorr,VR1_1_xcorr);
figV1_1 = plot(xcorr_lags_V1_1,xcorr_c_V1_1/max(xcorr_c_V1_1)); hold on;
title('Cross-Correlation Task 1 (low tones): Vergence, Gaze X')
% saveas(figV1_1,'Cross-Correlation Task 1 (low tones) Vergence, Gaze X.jpg')
figure
AL1_1_xcorr = AL1_1_Plot(:,1);
AR1_1_xcorr = AR1_1_Plot(:,1);
AL1_1_xcorr(isnan(AL1_1_xcorr)) = [];
AR1_1_xcorr(isnan(AR1_1_xcorr)) = [];
[xcorr_c_A1_1,xcorr_lags_A1_1] = xcorr(AL1_1_xcorr,AR1_1_xcorr);
figA1_1 = plot(xcorr_lags_A1_1,xcorr_c_A1_1/max(xcorr_c_A1_1)); hold on;
title('Cross-Correlation Task 1 (low tones): Accommodation, Refraction')
% saveas(figA1_1,'Cross-Correlation Task 1 (low tones) Accommodation,
Refraction.jpg')
%% ----------- Cross Correlation // Task 1 (high tones) ---------------- %%
close all; clc;
PDL1_2_xcorr = PDL1_2_Plot(:,1);
PDR1_2_xcorr = PDR1_2_Plot(:,1);
PDL1_2_xcorr(isnan(PDL1_2_xcorr)) = [];
PDR1_2_xcorr(isnan(PDR1_2_xcorr)) = [];
[xcorr_c_PD1_2,xcorr_lags_PD1_2] = xcorr(PDL1_2_xcorr,PDR1_2_xcorr);
figPD1_2 = plot(xcorr_lags_PD1_2,xcorr_c_PD1_2/max(xcorr_c_PD1_2)); hold on;
title('Cross-Correlation Task 1 (high tones): Pupil Diameter')
% saveas(figPD1_2,'Cross-Correlation Task 1 (high tones) Pupil Diameter.jpg')
figure
VL1_2_xcorr = VL1_2_Plot(:,1);
VR1_2_xcorr = VR1_2_Plot(:,1);
VL1_2_xcorr(isnan(VL1_2_xcorr)) = [];
VR1_2_xcorr(isnan(VR1_2_xcorr)) = [];
[xcorr_c_V1_2,xcorr_lags_V1_2] = xcorr(VL1_2_xcorr,VR1_2_xcorr);
figV1_2 = plot(xcorr_lags_V1_2,xcorr_c_V1_2/max(xcorr_c_V1_2)); hold on;
title('Cross-Correlation Task 1 (high tones): Vergence, Gaze X')
% saveas(figV1_2,'Cross-Correlation Task 1 (high tones) Vergence, Gaze X.jpg')
figure
AL1_2_xcorr = AL1_2_Plot(:,1);
AR1_2_xcorr = AR1_2_Plot(:,1);
AL1_2_xcorr(isnan(AL1_2_xcorr)) = [];
AR1_2_xcorr(isnan(AR1_2_xcorr)) = [];
[xcorr_c_A1_2,xcorr_lags_A1_2] = xcorr(AL1_2_xcorr,AR1_2_xcorr);
figA1_2 = plot(xcorr_lags_A1_2,xcorr_c_A1_2/max(xcorr_c_A1_2)); hold on;
title('Cross-Correlation Task 1 (high tones): Accommodation, Refraction')
% saveas(figA1_2,'Cross-Correlation Task 1 (high tones) Accommodation,
Refraction.jpg')

%% ------------------ Cross-Correlation // Task 2 ---------------------- %%
close all; clc;
PDL2_xcorr = PDL2_Plot(:,1);
PDR2_xcorr = PDR2_Plot(:,1);
PDL2_xcorr(isnan(PDL2_xcorr)) = [];
PDR2_xcorr(isnan(PDR2_xcorr)) = [];
[xcorr_c_PD2,xcorr_lags_PD2] = xcorr(PDL2_xcorr,PDR2_xcorr);
figPD2 = plot(xcorr_lags_PD2,xcorr_c_PD2/max(xcorr_c_PD2)); hold on;
title('Cross-Correlation Task 2: Pupil Diameter')
% saveas(figPD2,'Cross-Correlation Task 2 Pupil Diameter.jpg')
figure
AL2_xcorr = AL2_Plot(:,1);
AR2_xcorr = AR2_Plot(:,1);

AL2_xcorr(isnan(AL2_xcorr)) = [];
AR2_xcorr(isnan(AR2_xcorr)) = [];
[xcorr_c_A2,xcorr_lags_A2] = xcorr(AL2_xcorr,AR2_xcorr);
figA2 = plot(xcorr_lags_A2,xcorr_c_A2/max(xcorr_c_A2)); hold on;
title('Cross-Correlation Task 2: Accommodation, Refraction')
% saveas(figA2,'Cross-Correlation Task 2 Accommodation, Refraction.jpg')

%% ------------------ Cross-Correlation // Task 3 ---------------------- %%
close all; clc;
PDL3_xcorr = PDL3_Plot(:,1);
PDR3_xcorr = PDR3_Plot(:,1);
PDL3_xcorr(isnan(PDL3_xcorr)) = [];
PDR3_xcorr(isnan(PDR3_xcorr)) = [];
[xcorr_c_PD3,xcorr_lags_PD3] = xcorr(PDL3_xcorr,PDR3_xcorr);
figPD3 = plot(xcorr_lags_PD3,xcorr_c_PD3/max(xcorr_c_PD3)); hold on;
title('Cross-Correlation Task 3: Pupil Diameter')
% saveas(figPD3,'Cross-Correlation Task 3 Pupil Diameter.jpg')
figure
VL3_xcorr = VL3_Plot(:,1);
VR3_xcorr = VR3_Plot(:,1);
VL3_xcorr(isnan(VL3_xcorr)) = [];
VR3_xcorr(isnan(VR3_xcorr)) = [];
[xcorr_c_V3,xcorr_lags_V3] = xcorr(VL3_xcorr,VR3_xcorr);
figV3 = plot(xcorr_lags_V3,xcorr_c_V3/max(xcorr_c_V3)); hold on;
title('Cross-Correlation Task 3: Vergence, Gaze Y')
% saveas(figV3,'Cross-Correlation Task 3 Vergence, Gaze Y.jpg')
figure
AL3_xcorr = AL3_Plot(:,1);
AR3_xcorr = AR3_Plot(:,1);
AL3_xcorr(isnan(AL3_xcorr)) = [];
AR3_xcorr(isnan(AR3_xcorr)) = [];
[xcorr_c_A3,xcorr_lags_A3] = xcorr(AL3_xcorr,AR3_xcorr);
figA3 = plot(xcorr_lags_A3,xcorr_c_A3/max(xcorr_c_A3)); hold on;
title('Cross-Correlation Task 3: Accommodation')
% saveas(figA3,'Cross-Correlation Task 3 Accommodation, Refraction.jpg')
	

70

C.6 Subplotgeneratorpaper.m

See next page.1075

%% Replicatie BEP-groep - Powerref
% Matlab script build by Lars Kooijman to analyse data
% Edited by Stefan Jansen, Julia Russell and Tamir Themans

clear all; %#ok<*CLALL>
close all;clc;
opengl('save','software')

PilotData = 0;
ExperimentData = 1;

figure
sub1 = subplot(3,1,1); hold on;
sub2 = subplot(3,1,2);
sub3 = subplot(3,1,3);
Dimensions_3_Subplots = [sub1.Position;sub2.Position;sub3.Position];
%hold off;
%close all;

figure
sub1 = subplot(2,1,1); hold on;
sub2 = subplot(2,1,2);
Dimensions_2_Subplots = [sub1.Position;sub2.Position];
hold off;
close all;
clear sub1 sub2 sub3
%% Initialization
rootFolder = pwd;
if PilotData == 1
 dataFolder = strcat(rootFolder,'\FiltData\Pilot');
 cd(dataFolder);
 load FiltDataSoundsLow
 load FiltDataSoundsHigh
 load FiltDataMultiplications
 load FiltDataVideos
% fileNames = dir('*.mat');

elseif ExperimentData == 1
 dataFolder = strcat(rootFolder,'\FiltData\Experiment');
 cd(dataFolder);
 load FiltDataSoundsLow
 load FiltDataSoundsHigh
 load FiltDataMultiplications
 load FiltDataVideos
end

%% Variables

% 1. Pupil Size X Left
% 2. Pupil Size Y Left
% 3. Pupil Diameter Left <-- PDL
% 4. Gaze X Left <-- VL (X)
% 5. Gaze Y Left <-- VL (Y)
% 6. Refraction Left <-- AL
%
% 7. Pupil Size X Right
% 8. Pupil Size Y Right
% 9. Pupil Diameter Right <-- PDR
% 10. Gaze X Right <-- VR (X)
% 11. Gaze Y Right <-- VR (Y)
% 12. Refraction Right <-- AR

% Task 1: PDL, VL (X), AL
% PDR, VR (X), AR
% Task 2: PDL, AL

% PDR, AR
% Task 3: PDL, VL (Y), AL
% PDR, VR (Y), AR

%% Colors for plots
colors = [204 255 153 ; % 1 lichtgroen
 153 255 51; % 2 middelgroen
 102 204 0; % 3 donkergroen
 153 153 255; % 4 lichtblauw
 51 51 255; % 5 middelblauw
 0 0 204; % 6 donkerblauw
 255 153 153; % 7 lichtrood
 255 51 51; % 8 middelrood
 204 0 0; % 9 donkerrood
 255 102 178; % 10 lichtroze
 255 0 127; % 11 middelroze
 153 0 76 ; % 12 donkerroze
 153 0 76; % 13 donkerpaars
 0 255 255; % 14 turquiose
 0 128 255; % 15 donkerturquiose
 0 0 255; % 16 nog donderder blauw
 255 128 0; % 17 oranje
 255 255 0; % 18 geel
 153 0 153; % 19 paars
 255 51 255]/255; % 20 knalroze

%% -------------------- TASK 1 (low&high) ---------------------------------- %%

% PDL1 = Pupil Diameter Left, Task 1
% VL1 = Gaze X Left, Task 1
% AL1 = Refraction Left, Task 1
% PDR1 = Pupil Diameter Right, Task 1
% VR1 = Gaze X Right, Task 1
% AR1 = Refraction Right, Task 1

% Inladen variabelen
DataVL1_2 = DataTask1_2{2,4}(:,1:3,:); % Gaze X
- High Tones - Left
DataVR1_2 = DataTask1_2{2,10}(:,1:3,:); % Gaze X
- High Tones - Right

DataAL1_2 = DataTask1_2{2,6}(:,1:3,:); %
Refraction - High Tones - Left
DataAR1_2 = DataTask1_2{2,12}(:,1:3,:); %
Refraction - High Tones - Right

DataVL1_1 = DataTask1_1{2,4}(:,1:3,:); % Gaze X
- Low Tones - Left
DataVR1_1 = DataTask1_1{2,10}(:,1:3,:); % Gaze X
- Low Tones - Right

DataAL1_1 = DataTask1_1{2,6}(:,1:3,:); %
Refraction - Low Tones - Left
DataAR1_1 = DataTask1_1{2,12}(:,1:3,:); %
Refraction - Low Tones - Right

% Mean Over Eyes
DataV1_2MeanEyes = (DataVL1_2+DataVR1_2)/2;
DataA1_2MeanEyes = (DataAL1_2+DataAR1_2)/2;
DataV1_1MeanEyes = (DataVL1_1+DataVR1_1)/2;
DataA1_1MeanEyes = (DataAL1_1+DataAR1_1)/2;

% Mean Over Repeated Tones (both eyes)
DataV1_2_MeanTones = squeeze(nanmean(DataV1_2MeanEyes,2)); %mean 3
high tones Vergence

DataA1_2_MeanTones = squeeze(nanmean(DataA1_2MeanEyes,2)); %mean 3
high tones Accommodation

DataV1_1_MeanTones = squeeze(nanmean(DataV1_1MeanEyes,2)); %mean 3
low tones Vergence
DataA1_1_MeanTones = squeeze(nanmean(DataA1_1MeanEyes,2)); %mean 3
low tones Accommodation

% Mean Over Participants (both eyes)
DataV1_2_MeanPar = squeeze(nanmean(DataV1_2_MeanTones,2)); %all
participants together(1 value over time)
DataA1_2_MeanPar = squeeze(nanmean(DataA1_2_MeanTones,2)); %all
participants together(1 value over time)

DataV1_1_MeanPar = squeeze(nanmean(DataV1_1_MeanTones,2)); %all
participants together(1 value over time)
DataA1_1_MeanPar = squeeze(nanmean(DataA1_1_MeanTones,2)); %all
participants together(1 value over time)

Time_Low = 0:1/50:length(DataV1_1_MeanPar)/50 - 1/50;
Time_High = 0:1/50:length(DataV1_2_MeanPar)/50 - 1/50;

fig= figure
sub1 = subplot(2,1,1);
plot(Time_Low ,DataA1_1_MeanPar,'LineWidth',2,'color',colors(14,:)); hold on
plot(Time_High,DataA1_2_MeanPar,'LineWidth',2,'color',colors(5,:));
xlim([0 10]);
title('Task 1: Low tones vs. High tones');
ylabel('Refraction [D]');
grid on;
grid minor;
legend('Low tones','High tones','Location','northeastoutside');

sub2 = subplot(2,1,2);
plot(Time_Low ,DataV1_1_MeanPar,'LineWidth',2,'color',colors(14,:)); hold on
plot(Time_High,DataV1_2_MeanPar,'LineWidth',2,'color',colors(5,:));
xlim([0 10]);
xlabel('Time [s]');
ylabel('Gaze (X) [Deg]');
grid on;
grid minor;
legend('Low tones','High tones','Location','northeastoutside');
set(gcf,'Position',[1 1 960 450])
StandardSizeSub1 = Dimensions_2_Subplots(1,:);
AdjustedSizeSub1 = StandardSizeSub1 - [0.048 0 -0.0 -0.0443];
StandardSizeSub2 = Dimensions_2_Subplots(2,:);
AdjustedSizeSub2 = StandardSizeSub2 - [0.048 0 -0.0 -0.0443];
sub1.Position = AdjustedSizeSub1;
sub2.Position = AdjustedSizeSub2;
hold off;

%saveas(fig,'Task1_Subplot_Low_tones_vs._High_Tones2.jpg')
% hold off

%% KIJKHOEK PLOT

% Mean over repeated tones (eyes seperate) [V]
DataVL1_2_Mean = squeeze(nanmean(DataVL1_2,2)); % low
tones
DataVR1_2_Mean = squeeze(nanmean(DataVR1_2,2));

DataVL1_1_Mean = squeeze(nanmean(DataVL1_1,2)); % high
tones
DataVR1_1_Mean = squeeze(nanmean(DataVR1_1,2));

% Mean Over Participants (eyes seperate) [V]
DataVL1_2_MP = squeeze(nanmean(DataVL1_2_Mean,2));
DataVR1_2_MP = squeeze(nanmean(DataVR1_2_Mean,2));

DataVL1_1_MP = squeeze(nanmean(DataVL1_1_Mean,2));
DataVR1_1_MP = squeeze(nanmean(DataVR1_1_Mean,2));

DataV1_2_vergence = abs(-DataVL1_2_MP + DataVR1_2_MP);
DataV1_1_vergence = abs(-DataVL1_1_MP + DataVR1_1_MP);

fig= figure
sub1 = subplot(3,1,1);
plot(Time_High,DataVL1_2_MP,'LineWidth',2,'color',colors(14,:)); hold on % high
tone, left an right
plot(Time_High,DataVR1_2_MP,'LineWidth',2,'color',colors(5,:));
xlim([0 10]);
title('Task 1: low tones vs. high tones');
ylabel('Gaze (X) [Deg]');
grid on;
grid minor;
legend('High tones, Gaze X left','High tones, Gaze X
right','Location','northeastoutside');

sub2 = subplot(3,1,2);
plot(Time_Low,DataVL1_1_MP,'LineWidth',2,'color',colors(14,:)); hold on % Low
tone, left an right
plot(Time_Low,DataVR1_1_MP,'LineWidth',2,'color',colors(5,:));
xlim([0 10]);
ylabel('Gaze (X) [Deg]');
grid on;
grid minor;
legend('Low tones, Gaze X left','Low tones, Gaze X
right','Location','northeastoutside')

sub3 = subplot(3,1,3);
plot(Time_High,DataV1_2_vergence,'LineWidth',2,'color',colors(14,:)); hold
on % both vergences, high and low tones
plot(Time_Low ,DataV1_1_vergence,'LineWidth',2,'color',colors(5,:));
xlim([0 10]);
xlabel('Time [s]');
ylabel('Vergence [Deg]');
grid on;
grid minor;
legend('High tones, Vergence','Low tones, Vergence','Location','northeastoutside')
set(gcf,'Position',[1 1 960 450])
StandardSizeSub1 = Dimensions_3_Subplots(1,:);
AdjustedSizeSub1 = StandardSizeSub1 - [0.048 0 0.05 -0.0443];
StandardSizeSub2 = Dimensions_3_Subplots(2,:);
AdjustedSizeSub2 = StandardSizeSub2 - [0.048 0 0.05 -0.0443];
StandardSizeSub3 = Dimensions_3_Subplots(3,:);
AdjustedSizeSub3 = StandardSizeSub3 - [0.048 0 0.05 -0.0443];
sub1.Position = AdjustedSizeSub1;
sub2.Position = AdjustedSizeSub2;
sub3.Position = AdjustedSizeSub3;
hold off;

%saveas(fig,'Task_1_Subplot_refraction_High_Low_tones_Vergence2.jpg')

%% ------------------------- TASK 2 ---------------------------------- %%

% PDL2 = Pupil Diameter Left, Task 2
% VL2 = Gaze Y Left, Task 2
% AL2 = Refraction Left, Task 2
% PDR2 = Pupil Diameter Right, Task 2
% VR2 = Gaze Y Right, Task 2
% AR2 = Refraction Right, Task 2

%% EASY, AVERAGE, DIFFICULT

DataPDL2 = DataTask2{2,3};
DataAL2 = DataTask2{2,6};

DataPDR2 = DataTask2{2,9};
DataAR2 = DataTask2{2,12};
k = 1;
for nMultiplications = 1:9
 PDL2 = squeeze(DataPDL2(:,nMultiplications,:));
 AL2 = squeeze(DataAL2(:,nMultiplications,:));

 PDR2 = squeeze(DataPDR2(:,nMultiplications,:));
 AR2 = squeeze(DataAR2(:,nMultiplications,:));

 PDL2_Row{1,k} = PDL2;
 AL2_Row{1,k} = AL2;
 PDR2_Row{1,k} = PDR2;
 AR2_Row{1,k} = AR2;
 k = k + 1;
end

Indices = [1:3;
 4:6;
 7:9];

for n = 1:3
 PDL2_Temp = DataPDL2(:,Indices(n,:),:);
 PDR2_Temp = DataPDR2(:,Indices(n,:),:);
 PDL2_MeanMatrix{n,1} = squeeze(nanmean(PDL2_Temp,2));
 PDR2_MeanMatrix{n,1} = squeeze(nanmean(PDR2_Temp,2));
 PD2_MeanMatrixGem = (PDL2_MeanMatrix{n,1} + PDR2_MeanMatrix{n,1})/2;
 PD2_MeanMatrix{n,1} = PD2_MeanMatrixGem;
end

for n = 1:3
 AL2_Temp = DataAL2(:,Indices(n,:),:);
 AR2_Temp = DataAR2(:,Indices(n,:),:);
 AL2_MeanMatrix{n,1} = squeeze(nanmean(AL2_Temp,2));
 AR2_MeanMatrix{n,1} = squeeze(nanmean(AR2_Temp,2));
 A2_MeanMatrixGem = (AL2_MeanMatrix{n,1} + AR2_MeanMatrix{n,1})/2;
 A2_MeanMatrix{n,1} = A2_MeanMatrixGem;
end

PD2_easy = nanmean(PD2_MeanMatrix{1,1},2);
PD2_mid = nanmean(PD2_MeanMatrix{2,1},2);
PD2_hard = nanmean(PD2_MeanMatrix{3,1},2);
A2_easy = nanmean(A2_MeanMatrix{1,1},2);
A2_mid = nanmean(A2_MeanMatrix{2,1},2);
A2_hard = nanmean(A2_MeanMatrix{3,1},2);

PD2_Time_easy = 0:1/50:length(PD2_easy)/50 - 1/50; %
bepaal lengte tijdsvector PD2, easy
PD2_Time_mid = 0:1/50:length(PD2_mid)/50 - 1/50; %
bepaal lengte tijdsvector PD2, mid
PD2_Time_hard = 0:1/50:length(PD2_hard)/50 - 1/50; %
bepaal lengte tijdsvector PD2, hard
A2_Time_easy = 0:1/50:length(A2_easy)/50 - 1/50; %
bepaal lengte tijdsvector A2, easy
A2_Time_mid = 0:1/50:length(A2_mid)/50 - 1/50; %
bepaal lengte tijdsvector A2, mid
A2_Time_hard = 0:1/50:length(A2_hard)/50 - 1/50; %
bepaal lengte tijdsvector A2, hard

figure
sub1= subplot(2,1,1)
fig = plot(PD2_Time_easy,PD2_easy,'LineWidth',2,'color',colors(2,:)); hold on; %
plot PD2, easy

1080

fig = plot(PD2_Time_mid,PD2_mid,'LineWidth',2,'color',colors(5,:)); hold on; %
plot PD2, mid
fig = plot(PD2_Time_hard,PD2_hard,'LineWidth',2,'color',colors(8,:)); hold on; %
plot PD2, hard
fig= plot([10 10], [6 7], 'k');
xlim([0 25]); ylim([6.50 7.0]);
title('Task 2: Levels of difficulty');
ylabel('Pupil Diameter [mm]');
grid on; grid minor;
set(gca,'LooseInset',[0 0 0 0]);
legend('Easy multiplications','Average multiplications','Difficult
multiplications','Location','northeastoutside')
set(gcf,'Position',get(0,'Screensize'));

sub2= subplot(2,1,2)
fig = plot(A2_Time_easy,A2_easy,'LineWidth',2,'color',colors(2,:)); hold on; % plot
A2, easy
fig = plot(A2_Time_mid,A2_mid,'LineWidth',2,'color',colors(5,:)); hold on; % plot
A2, mid
fig = plot(A2_Time_hard,A2_hard,'LineWidth',2,'color',colors(8,:)); hold on; % plot
A2, hard
fig= plot([10 10], [-0.7 -0.4], 'k');
xlim([0 25]); ylim([-0.65 -0.45]);
xlabel('Time [s]');
ylabel('Refraction [D]');
grid on; grid minor;
set(gca,'LooseInset',[0 0 0 0]);
legend('Easy multiplications','Average multiplications','Difficult
multiplications','Location','northeastoutside')
set(gcf,'Position',[1 1 960 450])
StandardSizeSub1 = Dimensions_2_Subplots(1,:);
AdjustedSizeSub1 = StandardSizeSub1 - [0.048 0 0.05 -0.0343];
StandardSizeSub2 = Dimensions_2_Subplots(2,:);
AdjustedSizeSub2 = StandardSizeSub2 - [0.048 0 0.05 -0.0343];
sub1.Position = AdjustedSizeSub1;
sub2.Position = AdjustedSizeSub2;

%saveas(fig,'subquestion_5_6_Subplot_Easy_Average_Difficult_Multiplications2.jpg')
hold off
%% ------------------------- TASK 3 ---------------------------------- %%

% PDL3 = Pupil Diameter Right, Task 3
% VL3 = Gaze Y Right, Task 3
% AL3 = Refraction Right, Task 3
% PDR3 = Pupil Diameter Right, Task 3
% VR3 = Gaze Y Right, Task 3
% AR3 = Refraction Right, Task 3

% Inladen variabelen
DataPDL3 = DataTask3{2,3};
DataVL3 = DataTask3{2,5};
DataAL3 = DataTask3{2,6};

DataPDR3 = DataTask3{2,9};
DataVR3 = DataTask3{2,11};
DataAR3 = DataTask3{2,12};

k = 1;
for nVideos = 1:24
 PDL3 = squeeze(DataPDL3(:,nVideos,:));
 VL3 = squeeze(DataVL3(:,nVideos,:));
 AL3 = squeeze(DataAL3(:,nVideos,:));

 PDR3 = squeeze(DataPDR3(:,nVideos,:));
 VR3 = squeeze(DataVR3(:,nVideos,:));
 AR3 = squeeze(DataAR3(:,nVideos,:));

 PDL3_Row{1,k} = PDL3;

 VL3_Row{1,k} = VL3;
 AL3_Row{1,k} = AL3;
 PDR3_Row{1,k} = PDR3;
 VR3_Row{1,k} = VR3;
 AR3_Row{1,k} = AR3;
 k = k + 1;
end

%% 4 LEVELS, PD3 // V3 // A3
Indices = [1:4:21;
 2:4:22;
 3:4:23;
 4:4:24];

for n = 1:4 % links
en recht gemiddeld, van de 6 videos van level 1, enz. in totaal 4 levels
 PDL3_Temp = DataPDL3(:,Indices(n,:),:);
 PDR3_Temp = DataPDR3(:,Indices(n,:),:);
 PDL3_MeanMatrix{n,1} = squeeze(nanmean(PDL3_Temp,2));
 PDR3_MeanMatrix{n,1} = squeeze(nanmean(PDR3_Temp,2));
 PD3_MeanMatrixGem = (PDL3_MeanMatrix{n,1} + PDR3_MeanMatrix{n,1})/2;
 PD3_MeanMatrix{n,1} = PD3_MeanMatrixGem;
end

for n = 1:4 % links
en recht gemiddeld, van de 6 videos van level 1, enz. in totaal 4 levels
 VL3_Temp = DataVL3(:,Indices(n,:),:);
 VR3_Temp = DataVR3(:,Indices(n,:),:);
 VL3_MeanMatrix{n,1} = squeeze(nanmean(VL3_Temp,2));
 VR3_MeanMatrix{n,1} = squeeze(nanmean(VR3_Temp,2));
 V3_MeanMatrixGem = (VL3_MeanMatrix{n,1} + VR3_MeanMatrix{n,1})/2;
 V3_MeanMatrix{n,1} = V3_MeanMatrixGem;
end

for n = 1:4 % links
en recht gemiddeld, van de 6 videos van level 1, enz. in totaal 4 levels
 AL3_Temp = DataAL3(:,Indices(n,:),:);
 AR3_Temp = DataAR3(:,Indices(n,:),:);
 AL3_MeanMatrix{n,1} = squeeze(nanmean(AL3_Temp,2));
 AR3_MeanMatrix{n,1} = squeeze(nanmean(AR3_Temp,2));
 A3_MeanMatrixGem = (AL3_MeanMatrix{n,1} + AR3_MeanMatrix{n,1})/2;
 A3_MeanMatrix{n,1} = A3_MeanMatrixGem;
end

PD3_level_1 = nanmean(PD3_MeanMatrix{1,1},2);
PD3_level_2 = nanmean(PD3_MeanMatrix{2,1},2);
PD3_level_3 = nanmean(PD3_MeanMatrix{3,1},2);
PD3_level_4 = nanmean(PD3_MeanMatrix{4,1},2);
V3_level_1 = nanmean(V3_MeanMatrix{1,1},2);
V3_level_2 = nanmean(V3_MeanMatrix{2,1},2);
V3_level_3 = nanmean(V3_MeanMatrix{3,1},2);
V3_level_4 = nanmean(V3_MeanMatrix{4,1},2);
A3_level_1 = nanmean(A3_MeanMatrix{1,1},2);
A3_level_2 = nanmean(A3_MeanMatrix{2,1},2);
A3_level_3 = nanmean(A3_MeanMatrix{3,1},2);
A3_level_4 = nanmean(A3_MeanMatrix{4,1},2);

PD3_Time_level_1 = 0:1/50:length(PD3_level_1)/50 - 1/50; %
bepaal lengte tijdsvector PD3, level X
PD3_Time_level_2 = 0:1/50:length(PD3_level_2)/50 - 1/50; %
bepaal lengte tijdsvector PD3, level X
PD3_Time_level_3 = 0:1/50:length(PD3_level_3)/50 - 1/50; %
bepaal lengte tijdsvector PD3, level X
PD3_Time_level_4 = 0:1/50:length(PD3_level_4)/50 - 1/50; %
bepaal lengte tijdsvector PD3, level X
V3_Time_level_1 = 0:1/50:length(V3_level_1)/50 - 1/50; %
bepaal lengte tijdsvector V3, level X

V3_Time_level_2 = 0:1/50:length(V3_level_2)/50 - 1/50; %
bepaal lengte tijdsvector V3, level X
V3_Time_level_3 = 0:1/50:length(V3_level_3)/50 - 1/50; %
bepaal lengte tijdsvector V3, level X
V3_Time_level_4 = 0:1/50:length(V3_level_4)/50 - 1/50; %
bepaal lengte tijdsvector V3, level X
A3_Time_level_1 = 0:1/50:length(A3_level_1)/50 - 1/50; %
bepaal lengte tijdsvector A3, level X
A3_Time_level_2 = 0:1/50:length(A3_level_2)/50 - 1/50; %
bepaal lengte tijdsvector A3, level X
A3_Time_level_3 = 0:1/50:length(A3_level_3)/50 - 1/50; %
bepaal lengte tijdsvector A3, level X
A3_Time_level_4 = 0:1/50:length(A3_level_4)/50 - 1/50; %
bepaal lengte tijdsvector A3, level X

fig = figure;
sub1 = subplot(3,1,1);
plot(PD3_Time_level_1,PD3_level_1,'LineWidth',2,'color',colors(2,:)); hold on; %
plot PD3, level X
plot(PD3_Time_level_2,PD3_level_2,'LineWidth',2,'color',colors(5,:)); hold on; %
plot PD3, level X
plot(PD3_Time_level_3,PD3_level_3,'LineWidth',2,'color',colors(8,:)); hold on; %
plot PD3, level X
plot(PD3_Time_level_4,PD3_level_4,'LineWidth',2,'color',colors(20,:)); hold on; %
plot PD3, level X
plot([10 10], [5 7], 'k');
xlim([0 16]); ylim([5.5 5.9]);
title('Task 3: All four levels of simplicity')
ylabel('Pupil Diameter [mm]');
grid on; grid minor;
legend('level 1: no road','level 2: simple road','level 3: average road','level 4:
realistic road', 'Location','northeastoutside')
set(gcf,'Position',get(0,'Screensize'));

sub2 = subplot(3,1,2);
plot(A3_Time_level_1,A3_level_1,'LineWidth',2,'color',colors(2,:)); hold on; % plot
A3, level X
plot(A3_Time_level_2,A3_level_2,'LineWidth',2,'color',colors(5,:)); hold on; % plot
A3, level X
plot(A3_Time_level_3,A3_level_3,'LineWidth',2,'color',colors(8,:)); hold on; % plot
A3, level X
plot(A3_Time_level_4,A3_level_4,'LineWidth',2,'color',colors(20,:)); hold on; %
plot A3, level X
plot([10 10], [-1 0], 'k');
xlim([0 16]); ylim([-0.5 -0.2]); yticks([-0.5 -0.4 -0.3 -0.2]);
ylabel('Refraction [D]');
grid on; grid minor;
legend('level 1: no road','level 2: simple road','level 3: average road','level 4:
realistic road','Location','northeastoutside')
set(gcf,'Position',get(0,'Screensize'));

sub3 = subplot(3,1,3);
plot(V3_Time_level_1,V3_level_1,'LineWidth',2,'color',colors(2,:)); hold on; % plot
V3, level X
plot(V3_Time_level_2,V3_level_2,'LineWidth',2,'color',colors(5,:)); hold on; % plot
V3, level X
plot(V3_Time_level_3,V3_level_3,'LineWidth',2,'color',colors(8,:)); hold on; % plot
V3, level X
plot(V3_Time_level_4,V3_level_4,'LineWidth',2,'color',colors(20,:)); hold on; %
plot V3, level X
plot([10 10], [-4 1.5], 'k');
xlim([0 16]); ylim([-4 2]);
xlabel('Time [s]');
ylabel('Gaze(Y) [Deg]');
grid on; grid minor;
set(gcf,'Position',[1 1 960 450])
legend('level 1: no road','level 2: simple road','level 3: average road','level 4:
realistic road', 'Location','northeastoutside')

StandardSizeSub1 = Dimensions_3_Subplots(1,:);
AdjustedSizeSub1 = StandardSizeSub1 - [0.048 0 0.04 -0.0343];
StandardSizeSub2 = Dimensions_3_Subplots(2,:);
AdjustedSizeSub2 = StandardSizeSub2 - [0.048 0 0.04 -0.0343];
StandardSizeSub3 = Dimensions_3_Subplots(3,:);
AdjustedSizeSub3 = StandardSizeSub3 - [0.048 0 0.04 -0.0343];
sub1.Position = AdjustedSizeSub1;
sub2.Position = AdjustedSizeSub2;
sub3.Position = AdjustedSizeSub3;

saveas(fig,'subquestion_2_3_4_Subplot_All_Four_levels_of_simplicity2.jpg')
hold off

%% STATISCH EN DYNAMISCH, PD3 // A3 // V3

Indices = [5:8 13:16 21:24;
 1:4 9:12 17:20];

for n = 1:2 % links
en recht gemiddeld, van de 6 videos van level 1, enz. in totaal 4 levels
 PDL3_Temp = DataPDL3(:,Indices(n,:),:);
 PDR3_Temp = DataPDR3(:,Indices(n,:),:);
 PDL3_MeanMatrix{n,1} = squeeze(nanmean(PDL3_Temp,2));
 PDR3_MeanMatrix{n,1} = squeeze(nanmean(PDR3_Temp,2));
 PD3_MeanMatrixGem = (PDL3_MeanMatrix{n,1} + PDR3_MeanMatrix{n,1})/2;
 PD3_MeanMatrix{n,1} = PD3_MeanMatrixGem;
end

for n = 1:2 % links
en recht gemiddeld, van de 6 videos van level 1, enz. in totaal 4 levels
 VL3_Temp = DataVL3(:,Indices(n,:),:);
 VR3_Temp = DataVR3(:,Indices(n,:),:);
 VL3_MeanMatrix{n,1} = squeeze(nanmean(VL3_Temp,2));
 VR3_MeanMatrix{n,1} = squeeze(nanmean(VR3_Temp,2));
 V3_MeanMatrixGem = (VL3_MeanMatrix{n,1} + VR3_MeanMatrix{n,1})/2;
 V3_MeanMatrix{n,1} = V3_MeanMatrixGem;
end

for n = 1:2 % links
en recht gemiddeld, van de 6 videos van level 1, enz. in totaal 4 levels
 AL3_Temp = DataAL3(:,Indices(n,:),:);
 AR3_Temp = DataAR3(:,Indices(n,:),:);
 AL3_MeanMatrix{n,1} = squeeze(nanmean(AL3_Temp,2));
 AR3_MeanMatrix{n,1} = squeeze(nanmean(AR3_Temp,2));
 A3_MeanMatrixGem = (AL3_MeanMatrix{n,1} + AR3_MeanMatrix{n,1})/2;
 A3_MeanMatrix{n,1} = A3_MeanMatrixGem;
end

PD3_static = nanmean(PD3_MeanMatrix{1,1},2);
PD3_dynamic = nanmean(PD3_MeanMatrix{2,1},2);
V3_static = nanmean(V3_MeanMatrix{1,1},2);
V3_dynamic = nanmean(V3_MeanMatrix{2,1},2);
A3_static = nanmean(A3_MeanMatrix{1,1},2);
A3_dynamic = nanmean(A3_MeanMatrix{2,1},2);

PD3_Time_static = 0:1/50:length(PD3_static)/50 - 1/50; %
bepaal lengte tijdsvector PD3, static
PD3_Time_dynamic = 0:1/50:length(PD3_dynamic)/50 - 1/50; %
bepaal lengte tijdsvector PD3, dynamic
V3_Time_static = 0:1/50:length(V3_static)/50 - 1/50; %
bepaal lengte tijdsvector V3, static
V3_Time_dynamic = 0:1/50:length(V3_dynamic)/50 - 1/50; %
bepaal lengte tijdsvector V3, dynamic
A3_Time_static = 0:1/50:length(A3_static)/50 - 1/50; %
bepaal lengte tijdsvector A3, static
A3_Time_dynamic = 0:1/50:length(A3_dynamic)/50 - 1/50; %
bepaal lengte tijdsvector A3, dynamic

%% SUBPLOTS STATISCH VS. DYNAMISCH

figure
sub1= subplot(3,1,1);
fig = plot(PD3_Time_static,PD3_static,'LineWidth',2,'color',colors(14,:)); hold on;
% plot PD3, static
fig = plot(PD3_Time_dynamic,PD3_dynamic,'LineWidth',2,'color',colors(5,:)); hold
on; % plot PD3, dynamic % pupil diameter alle levels bij elkaar, van alle
loops, DYNAMISCH
plot([10 10], [5 7], 'k');
xlim([0 16]); ylim([5.55 5.85]);
title('Task 3: Static vs. Dynamic');
ylabel('Pupil Diameter [mm]');
grid on; grid minor;
legend('Static','Dynamic', 'Location','northeastoutside');

sub2= subplot(3,1,2);
fig = plot(A3_Time_static,A3_static,'LineWidth',2,'color',colors(14,:)); hold on; %
plot A3, static
fig = plot(A3_Time_dynamic,A3_dynamic,'LineWidth',2,'color',colors(5,:)); hold on;
% plot A3, dynamic % dynamic accommodation dark blue plot alle levels bij
elkaar, van alle loops, STATISCH
fig= plot([10 10], [-1 0], 'k');
xlim([0 16]); ylim([-0.5 -0.199999]);
ylabel('Refraction [D]');
grid on; grid minor;
legend('Static ','Dynamic','Location','northeastoutside')

sub3= subplot(3,1,3);
fig = plot(V3_Time_static,V3_static,'LineWidth',2,'color',colors(14,:)); hold on; %
plot V3, static
fig = plot(V3_Time_dynamic,V3_dynamic,'LineWidth',2,'color',colors(5,:)); hold on;
% plot V3, dynamic % dynamisch vergence dark blue
fig= plot([10 10], [-6 4], 'k');
xlim([0 16]); ylim([-4 2]);
xlabel('Time [s]');
ylabel('Gaze(Y) [Deg]');
grid on; grid minor;
set(gcf,'Position',[1 1 960 450])
legend('Static','Dynamic','Location','northeastoutside')
StandardSizeSub1 = Dimensions_3_Subplots(1,:);
AdjustedSizeSub1 = StandardSizeSub1 - [0.048 0 -0.01 -0.0343];
StandardSizeSub2 = Dimensions_3_Subplots(2,:);
AdjustedSizeSub2 = StandardSizeSub2 - [0.048 0 -0.01 -0.0343];
StandardSizeSub3 = Dimensions_3_Subplots(3,:);
AdjustedSizeSub3 = StandardSizeSub3 - [0.048 0 -0.01 -0.0343];
sub1.Position = AdjustedSizeSub1;
sub2.Position = AdjustedSizeSub2;
sub3.Position = AdjustedSizeSub3;

%saveas(fig,'subquestion_1_Subplot_Static_vs_Dynamic2.jpg')

%hold off
	

1085

81

C.7 MovementVideosFinal.m

See next page.

%% Name Matlab Code
% Creator : (Lars, 4-2019)
% Checked and adapted by Julia Tamir en Stefan

clear all;%#ok<CLALL>
close all;
opengl hardware

Type = 2; % static == 1 dynamic == 2

%% 0. Name Section
% Create data

time = 0:0.01:6; % Time
Vector
MotionPath1 = -1*(-535-exp((0.4*time-2.55).^2)); % Motion
Marker
MotionPath2 = -1*(-535-exp((-0.4*time-0.15).^2)); % Motion
Marker

samples = 12 : 312;
StartSize = 3.7*exp((0.0064*samples-2).^2);
func1 = [StartSize,fliplr(StartSize(1:end-1))];
StartSize2 = 3*exp((0.0064*samples-2).^2);
func2 = [StartSize2,fliplr(StartSize2(1:end-1))];

filename = 'ballmovementvid8';
RingColor = [0 0 0];
FillColor2 = [127 127 127]/255;

%% 1. Name Section
% Create Environment

Background = imread('4_realistic_road_127.jpg');
image(Background); axis off

hFig = gcf; % get
the figure and axes handles
hAx = gca;

set(hAx,'LooseInset',[0 0 0 0]);
set(hAx,'pos',[0 0 1 1]);
set(hAx,'Unit','normalized','Position',[0 0 1 1]); % set
the axes to full screen

set(hFig,'menubar','none','NumberTitle','off','WindowState','fullscreen')
set(hFig,'Unit','normalized','Position',[0 0 1 1]); % set
the axes to full screen
hold on;
v = VideoWriter(filename,'MPEG-
4'); % Videowriter
v.FrameRate = 96;
open(v); %
Videowriter
i = 1;
% Please explain what happens here in this loop. Other people need to
% understand what you are doing by reading your comments.
%first 30 frames were made unvisible; ball is entering script.
%frame 30-301(halfway) made by MotionPath1, when ball is returning(frame
%301-601), the ball follows MotionPath2

switch Type
 case 1
 %% Static Movies
 while i<=length(MotionPath1)

 if i>0 && i<=100
 h1(i) =
plot(960,MotionPath1(30),'o','color',RingColor,'MarkerSize',func1(30),'MarkerFaceCo
lor',RingColor);
 h2(i) =
plot(960,MotionPath1(30),'o','color',RingColor,'MarkerSize',func2(30),'MarkerFaceCo
lor',FillColor2);
 elseif i> 100 && i <= 200
 h1(i) =
plot(960,MotionPath1(115),'o','color',RingColor,'MarkerSize',func1(115),'MarkerFace
Color',RingColor);
 h2(i) =
plot(960,MotionPath1(115),'o','color',RingColor,'MarkerSize',func2(115),'MarkerFace
Color',FillColor2);
 elseif i> 200 && i <= 400
 h1(i) =
plot(960,MotionPath1(301),'o','color',RingColor,'MarkerSize',func1(301),'MarkerFace
Color',RingColor);
 h2(i) =
plot(960,MotionPath1(301),'o','color',RingColor,'MarkerSize',func2(301),'MarkerFace
Color',FillColor2);
 elseif i> 400 && i <= 500
 h1(i) =
plot(960,MotionPath1(115),'o','color',RingColor,'MarkerSize',func1(115),'MarkerFace
Color',RingColor);
 h2(i) =
plot(960,MotionPath1(115),'o','color',RingColor,'MarkerSize',func2(115),'MarkerFace
Color',FillColor2);
 elseif i> 500 && i <= 601
 h1(i) =
plot(960,MotionPath1(30),'o','color',RingColor,'MarkerSize',func1(30),'MarkerFaceCo
lor',RingColor);
 h2(i) =
plot(960,MotionPath1(30),'o','color',RingColor,'MarkerSize',func2(30),'MarkerFaceCo
lor',FillColor2);
 end
 if i >= 2
 set(h1(i-1),'Visible','off');
 set(h2(i-1),'Visible','off');
 end
 drawnow;
 i = i+1;
 frame = getframe(gcf); %videowriter
 writeVideo(v,frame); %videowriter
 end
 close(v)
 close all

 case 2
 %% Dynamic movies
 while i<=length(MotionPath1)
 if i>0 && i<=30
 h1(i) =
plot(960,MotionPath1(30),'o','color',RingColor,'MarkerSize',func1(30),'MarkerFaceCo
lor',RingColor);
 h2(i) =
plot(960,MotionPath1(30),'o','color',RingColor,'MarkerSize',func2(30),'MarkerFaceCo
lor',FillColor2);
 elseif i> 30 && i<=300.5
 h1(i) =
plot(960,MotionPath1(i),'o','color',RingColor,'MarkerSize',func1(i),'MarkerFaceColo
r',RingColor);
 h2(i) =
plot(960,MotionPath1(i),'o','color',RingColor,'MarkerSize',func2(i),'MarkerFaceColo
r',FillColor2);
 set(h1(i),'yData',MotionPath1(i));
 set(h2(i),'yData',MotionPath1(i));
 elseif i>300.5 && i<=572

 h1(i) =
plot(960,MotionPath2(i),'o','color',RingColor,'MarkerSize',func1(i),'MarkerFaceColo
r',RingColor); % Here matlab tells you that the variable increases in
size every iteration. This is a bit sloppy coding.
 h2(i) =
plot(960,MotionPath2(i),'o','color',RingColor,'MarkerSize',func2(i),'MarkerFaceColo
r',FillColor2);
 set(h1(i),'yData',MotionPath2(i));
 set(h2(i),'yData',MotionPath2(i));

 else i > 572 && i<=601
 h1(i) =
plot(960,MotionPath2(572),'o','color',RingColor,'MarkerSize',func1(30),'MarkerFaceC
olor',RingColor);
 h2(i) =
plot(960,MotionPath2(572),'o','color',RingColor,'MarkerSize',func2(30),'MarkerFaceC
olor',FillColor2);
 end

 if i >= 2
 set(h1(i-1),'Visible','off');
 set(h2(i-1),'Visible','off');
 end
 drawnow;
 i = i+1;
 frame = getframe(gcf); %videowriter
 writeVideo(v,frame); %videowriter
 end
 close(v)
 close all
end

% %% Create Control Slide
% SaveThisBadBoy = figure;
% Background = imread('1_no_road_127.jpg');
% image(Background); axis off; hold on;
%
%
% hFig = gcf; % get
the figure and axes handles
% hAx = gca;
%
% set(hAx,'LooseInset',[0 0 0 0]);
% set(hAx,'pos',[0 0 1 1]);
% set(hAx,'Unit','normalized','Position',[0 0 1 1]); % set
the axes to full screen
%
% set(hFig,'menubar','none','NumberTitle','off','WindowState','fullscreen')
% set(hFig,'Unit','normalized','Position',[0 0 1 1]); % set
the axes to full screen
% h1 =
plot(960,MotionPath1(30),'o','color',RingColor,'MarkerSize',func1(30),'MarkerFaceCo
lor',RingColor);
% h2 =
plot(960,MotionPath1(30),'o','color',RingColor,'MarkerSize',func2(30),'MarkerFaceCo
lor',FillColor2);
% saveas(SaveThisBadBoy,'Controlslide.jpg')
	

85

D Appendix D

Figure D.1: Setup PowerRef III with wooden object

Figure D.2: Detailed overview task 1

86

Figure D.3: Detailed overview task 2

Figure D.4: Detailed overview task 3

87

E Appendix E

Figure E.1: Control slide task 1

Figure E.2: Control slide task 2

88

Figure E.3: Control slide task 3

89

F Appendix F

Figure F.1: Multiplication slide of 6x12 during Task 2.

Figure F.2: Multiplication slide of 7x14 during Task 2.

90

Figure F.3: Multiplication slide of 8x13 during Task 2.

Figure F.4: Multiplication slide of 8x16 during Task 2.

91

Figure F.5: Multiplication slide of 9x14 during Task 2.

Figure F.6: Multiplication slide of 11x13 during Task 2.

92

Figure F.7: Multiplication slide of 14x17 during Task 2.

Figure F.8: Multiplication slide of 15x16 during Task 2.

93

Figure F.9: Multiplication slide of 16x18 during Task 2.

94

G Appendix G

Figure G.1: Background of level 1, no road, during Task 3.

Figure G.2: Background of level 2, simple road, during Task 3.

95

Figure G.3: Background of level 3, average road, during Task 3.

Figure G.4: Background of level 4, realistic road, during Task 3.

96

H Appendix H

Figure H.1: Instruction slide task 1

Figure H.2: Instruction slide containing the message that the object of task 1 is being removed

97

Figure H.3: Instruction slide task 2

Figure H.4: Instruction slide task 3

98

Figure H.5: Instruction slide containing the message of thanking the participant for their participation

99

I Appendix I

Table 11: List of all the variables coming out of the PoweRef III. These variables are presented as columns
in the CVS-file.1090

1 Time [ms]
2 Segment
3 Distance() [m]
4 Brightness() [percent]
5 PupilFound(L)
6 PupilPos(L).X()
7 PupilPos(L).Y()
8 PupilSizeMM(L).X() [mm]
9 PupilSizeMM(L).Y() [mm]
10 PupilDiameterMM(L) [mm]
11 PupilBrightness(L) [DU]
12 PurkinjeSize(L).X() [px]
13 PurkinjeSize(L).Y() [px]
14 Decentration(L).X() [px]
15 Decentration(L).Y() [px]
16 Gaze(L).X() [degree]
17 Gaze(L).Y() [degree]
18 Refraction(L).Sphere() [Dpt]
19 GetAverageRefraction(L).Contents()
20 GetAverageRefraction(L).Mean() [Dpt]
21 GetAverageRefraction(L).StdDeviation() [Dpt]
22 PupilFound(R)
23 PupilPos(R).X()
24 PupilPos(R).Y()
25 PupilSizeMM(R).X() [mm]
26 PupilSizeMM(R).Y() [mm]
27 PupilDiameterMM(R) [mm]
28 PupilBrightness(R) [DU]
29 PurkinjeSize(R).X() [px]
30 PurkinjeSize(R).Y() [px]
31 Decentration(R).X() [px]
32 Decentration(R).Y() [px]
33 Gaze(R).X() [degree]
34 Gaze(R).Y() [degree]
35 Refraction(R).Sphere() [Dpt]
36 GetAverageRefraction(R).Contents()
37 GetAverageRefraction(R).Mean() [Dpt]
38 GetAverageRefraction(R).StdDeviation() [Dpt]
39 InterpupDist() [mm]
40 InterpupAngle() [degree]
41 Trigger

100

Table 12: List of all the variables selected by the MATLAB-script readRaw. This is processed by the next
MATLAB-script, processRawData.

1 Time [ms]
2 PupilFound(L)
3 PupilSizeMM(L).X() [mm]
4 PupilSizeMM(L).Y() [mm]
5 PupilDiameterMM(L) [mm]
6 Gaze(L).X() [degree]
7 Gaze(L).Y() [degree]
8 Refraction(L).Sphere() [Dpt]
9 PupilFound(R)
10 PupilSizeMM(R).X() [mm]
11 PupilSizeMM(R).Y() [mm]
12 PupilDiameterMM(R) [mm]
13 Gaze(R).X() [degree]
14 Gaze(R).Y() [degree]
15 Refraction(R).Sphere() [Dpt]
16 Trigger

Table 13: List of all the variables used by the MATLAB-script processRawData. Analysis is done by the
following MATLAB-script, StatisticsFiltData.

1 PupilDiameterMM(L) [mm]
2 Gaze(L).X() [degree]
3 Gaze(L).Y() [degree]
4 Refraction(L).Sphere() [Dpt]
5 PupilDiameterMM(R) [mm]
6 Gaze(R).X() [degree]
7 Gaze(R).Y() [degree]
8 Refraction(R).Sphere() [Dpt]

1095

101

J Appendix J
J.1 Cross-correlation right and left eye task 1

Figure J.1: Cross-correlation task 1 high tones:
accommodation

Figure J.2: Cross-correlation task 1 high tones:
Pupil diameter

Figure J.3: Cross-correlation task 1 high tones:
Vergence, Gaze X

Figure J.4: Cross-correlation task 1 low tones:
accommodation

102

Figure J.5: Cross-correlation task 1 low tones:
Pupil diameter

Figure J.6: Cross-correlation task 1 low tones:
Vergence, gaze X

J.2 Cross-correlation right and left eye task 2

Figure J.7: Cross-correlation task 2: accommo-
dation

Figure J.8: Cross-correlation task 2: Pupil di-
ameter

103

J.3 Cross-correlation right and left eye task 3

Figure J.9: Cross-correlation task 3: accommo-
dation

Figure J.10: Cross-correlation task 3: Pupil di-
ameter

Figure J.11: Cross-correlation task 3: Vergence, Gaze Y

104

K Appendix K
K.1 Scatter plots Task 2

Figure K.1: Scatter plot task 2, easy multiplications

105

Figure K.2: Scatter plot task 2, average multiplications

Figure K.3: Scatter plot task 2, difficult multiplications

106

K.2 Scatter plots Task 3

Figure K.4: Scatter plot task 3, static

Figure K.5: Scatter plot task 3, dynamic

107

Figure K.6: Scatter plot task 3, static

Figure K.7: Scatter plot task 3, dynamic

108

Figure K.8: Scatter plot task 3, static

Figure K.9: Scatter plot task 3, dynamic

109

Figure K.10: Scatter plot task 3, level 1

Figure K.11: Scatter plot task 3, level 2

110

Figure K.12: Scatter plot task 3, level 3

Figure K.13: Scatter plot task 3, level 4

111

Figure K.14: Scatter plot task 3, level 1

Figure K.15: Scatter plot task 3, level 2

112

Figure K.16: Scatter plot task 3, level 3

Figure K.17: Scatter plot task 3, level 4

113

Figure K.18: Scatter plot task 3, level 1

Figure K.19: Scatter plot task 3, level 2

114

Figure K.20: Scatter plot task 3, level 3

Figure K.21: Scatter plot task 3, level 4

115

L Appendix L

Figure L.1: Subplot from task 1. Gaze(X) plotted for the high tones left and right, and Gaze(X) plotted for
the low tones left and right. The vergence is calculated using the formula:

V ergence = |(Gaze(X)righteye)− (Gaze(X)lefteye)|

116

References

[1] D.J. Benjamin. “Redefine Statistical Significance”. In: Nature Human Behaviour 2 (2018),
pp. 6–10.

[2] Medicus Medical Company. plusoptiX R09 PowerRef 3. 2019. url: https://www.medicus.
ua/eng/product/ophthalmic-equipment/plusoptiX-R09-PowerRef-3/manufacturer:

8/print:1.1100

[3] J.T. Enright. “Perspective vergence: oculomotor responses to line drawings”. In: Pergamon
Journals Ltd 27.9 (Sept. 1987), pp. 1513–1626.

[4] M. Feil, B. Moser, and M Abegg. “The interaction of pupil response with the vergence sys-
tem”. In: Graefe’s Archive for Clinical and Experimental Ophthalmology 255.11 (Aug. 2017),
pp. 2247–2253.1105

[5] M.T. Swantston W.C. Gogel. “Perceived size and motion in depth from optical expansion”.
In: Perception : Psychophysics 39.5 (Feb. 1986), pp. 309–326.

[6] E.B. Goldstein. Sensation and perception. Wadsworth-Thomson Learning, 2002.

[7] E.H. Hess. The tell-tale eye: How your eyes reveal hidden thoughts and emotions. Van Nos-
trand Reinhold, 1975.1110

[8] E.H. Hess and J.M. Polt. “Pupil Size as Related to Interest Value of Visual Stimuli”. In:
Science 132.3423 (Aug. 1960), pp. 349–350.

[9] E.H. Hess and J.M. Polt. “Pupil Size in Relation to Mental Activity during Simple Problem-
Solving”. In: Science 143.3611 (Mar. 1964), pp. 1190–1192.

[10] G.K. Hung, J.L. Semmlon, and K.J. Ciuffreda. “The Near Response: Modeling, Instrumen-1115

tation, and Clinical Applications”. In: IEEE Transactions on Biomedical Engineering 31.12
(Dec. 1984), 910–919.

[11] L. Kooijman J. De Winter S.M. Petermeijer and D. Dodou. “Replicating the studies of Eck-
hard Hess”. in press 2019.

[12] S. Jainta, J. Hoormann, and W. Jaschinski. “Ocular accommodation and cognitive demand:1120

An additional indicator besides pupil size and cardiovascular measures?” In: Journal of Neg-
ative Results in BioMedicine 7.1 (2008).

[13] M.A. Just and P.A. Carpenter. “The intensity dimension of thought: Pupillometric indices
of sentence processing”. In: Canadian Journal of Experimental Psychology 47.2 (June 1993),
pp. 310–339.1125

[14] D. Kahneman and J. Beatty. “Pupil diameter and load on memory”. In: Science 154.3756
(Dec. 1966), pp. 1583–1585.

[15] S. Mathot. “Pupillometry: Psychology, Physiology, and Function”. In: Journal of Cognition
16 (Feb. 2018), pp. 1–23.

[16] U. Sulutvedt, T.K. Mannix, and B. Laeng. “Gaze and the Eye Pupil Adjust to Imagined Size1130

and Distance”. In: Cognitive Science 42.8 (Nov. 2018), 3159–3176.

[17] G. Audesirk T. Audesirk and B.E. Byers. Biologiy, life on earth with physiology. Pearson,
2014.

[18] G. Westheimer. “Accommodation Measurements in Empty Visual Fields”. In: Journal of the
optical society of America 47.8 (1957), pp. 714–718.1135

https://www.medicus.ua/eng/product/ophthalmic-equipment/plusoptiX-R09-PowerRef-3/manufacturer:8/print:1
https://www.medicus.ua/eng/product/ophthalmic-equipment/plusoptiX-R09-PowerRef-3/manufacturer:8/print:1
https://www.medicus.ua/eng/product/ophthalmic-equipment/plusoptiX-R09-PowerRef-3/manufacturer:8/print:1
https://www.medicus.ua/eng/product/ophthalmic-equipment/plusoptiX-R09-PowerRef-3/manufacturer:8/print:1
https://www.medicus.ua/eng/product/ophthalmic-equipment/plusoptiX-R09-PowerRef-3/manufacturer:8/print:1

	Abstract
	Introduction
	Prior research
	Goal of current research
	Hypotheses

	Methods
	Participants
	Measuring device
	Stimuli
	Experimental design
	Task 1
	Task 2
	Task 3

	Main MATLAB-script
	Data analysis

	Results
	Task 1
	Task 2
	Task 3

	Discussion
	Task 1
	Task 2
	Task 3
	Static and dynamic
	Four levels of realism

	Conclusion
	Recommendations

	Appendix A
	Appendix B
	Inform consent
	Questionnaire

	Appendix C
	ExperimentBEP.m
	ExperimentBEPMainScript.m
	readRaw.m
	processRawData.m
	StaticsFiltDatapaper.m
	Subplotgeneratorpaper.m
	MovementVideosFinal.m

	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J
	Cross-correlation right and left eye task 1
	Cross-correlation right and left eye task 2
	Cross-correlation right and left eye task 3

	Appendix K
	Scatter plots Task 2
	Scatter plots Task 3

	Appendix L

