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Adaptive motion model for a mobile robot
F. Westerhout (4293940), J.F.R.W. Kievits (4448693), T.F. Zondag (4326954), T.S.A.Sow (4322134)

Abstract—We propose an online adaptive model that can be used
to model the motion of a skid-steered mobile robot on different
terrains. A mathematical model is designed to model the wheel
slip interaction and the resultant forces using the Dugoff tire
model. The motion of the robot is subsequently modeled using
Newtonian dynamics and connected to the wheel slip model. This
joint dynamic model is implemented in MATLAB and Simulink.
Real-world experiments with the mobile robot are performed to
gather data. On-board sensors and an external Motion Capture
System are used to obtain measurements. These measurements
are used in combination with a parameter estimation method to
obtain adapted parameters for the Simulink model. The adapted
model is shown to be accurate for different surfaces for small
amounts of pure longitudinal slip (e.g. |κ|< 0.1). Furthermore,
alternative approaches are proposed for modeling forces at larger
amounts of longitudinal slip and situations of combined slip,
based on measurements from the performed experiments.

I. INTRODUCTION

Skid-steered mobile robots are widely used in many different
fields, such as exploration, waste management, defense, se-
curity, and household services. These wheeled mobile robots
move by rotating the wheels on the left and right side of the
robot body independently at different velocities. This allows
the robot to drive and steer without a mechanical steering
system. As a result, skid-steered robots only have a few
moving parts which makes them very robust. These robots are
therefore suitable for outdoor use in rough environment condi-
tions. However, the over-constrained wheel-ground interaction
for skid-steered vehicles causes the wheels to both skid and
roll while rotating [1]. Due to these cumulative phenomena it
is challenging to develop accurate dynamic models for these
mobile robots [2].

The robot platform used for this project is the Jackal Un-
manned Ground Vehicle from Clearpath Robotics, which uses
a skid-steered driving mechanism and is operated with ROS.
Currently the controller of the Jackal has no dynamic model
that accounts for slip at the wheel-surface contact, which
occurs when the robot is in motion. As a result, the robot is
unable to follow commanded trajectories accurately. Obtaining
an accurate dynamic model of the skid-steered robot with an
incorporated slip model would be very useful in future control
research and development. Modelling of the system dynamics
of skid-steered robots has already been investigated in multiple
research papers [3] [4]. However, for the Jackall UGV there
is no accurate dynamical model present. Most of the research
on online model identification with incorporated wheel slip is
focused on larger vehicles, such as agricultural vehicles [5].
These research papers are not useful when regarding a skid-
steered robot due to the large differences in the kinematics
of these different types of vehicles. Therefore, the aim of

this project is to build an accurate adaptive motion model,
that accounts for non-linear slip behaviour, for a skid-steered
mobile robot.

This paper is organized as follows. In Section II, the relevant
background theory on the topic of dynamical modeling of
wheeled mobile robots will be described as well as the
preliminaries. This includes relevant information about the
robot platform, analysis of the dynamics of the different
subsystems and the wheel-ground interaction model. Section
III describes the experimental setup, the measurement proce-
dure and the processing of data. In Section IV, the results
of the experiments will be presented. Section V discusses
the obtained experimental results and compares these with
model simulations. Finally, a conclusion is presented and
recommendations are made for future research. 1

II. BACKGROUND AND THEORY

A. Jackal mobile robot

The ROS-operated Jackal has an x86 PC running Ubuntu,
paired with a 32-bit microcontroller unit (MCU) and an inertial
measurement unit (IMU). The MCU handles ROS inputs and
outputs, power supply monitoring, and motor control. It also
receives data from the integrated IMU and transforms this into
ROS outputs. The wheels are powered by two DC motors,
one on each side of the vehicle [6]. Sturctural parameters
of the Jackal can be found in Table IV in the Appendix.
The current control system for the Jackal can be seen in
Figure 1. The Jackal receives an input signal from a Bluetooth
controller. This signal consists of a forward and a rotational
velocity for the robot, denoted by v and ψ̇ respectively. A
differential drive controller is then used to transform v and
ψ̇ into setpoints for the angular velocities for the left and
right wheels, denoted by ωL and ωR respectively. These values
are converted to a pulse width modulation signal for the DC
motors. The DC motors then apply a torque to the wheels
using a geared transmission. This makes the wheels rotate at
angular velocities, ω̃L and ω̃R. These values are measured by
the integrated wheel encoders and sent back to the differential
drive controller. This controller then changes the output signal
after comparing ω̃L to ωL and ω̃R to ωR. The measured wheel
velocities are also used to localize the robot in space using
an odometry estimator. The data from this estimator is then
used, along with filtered acceleration data from the IMU, in
an extended Kalman filter to produce a data set containing all
position and velocity values.

1This research has been conducted as part of the Bachelor End Project for
Mechanical Engineering students at the TU Delft in the third year of their
Bachelor studies.
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Fig. 1. Block diagram of the current Jackal control system

From the block diagram in Figure 1, the relevant subsys-
tems of the Jackal can be identified. These subsystems are
subsequently modeled using either algebraic or differential
equations. This is described in the following paragraphs.

Assumptions are made to allow the modeling of the dynamics
of the mobile robot without having to know certain parameters.
These assumptions are listed below.

Modeling assumptions:

• The center of mass of the robot lies at the geometric
center of the body frame.

• The normal forces are equally distributed among the four
wheels when stationary and when in motion.

• The robot is driving on a flat surface and the wheels are
always in contact with the ground.

• Friction forces are assumed to be constant.
• The motion model always starts from rest

B. Differential drive controller

In the differential drive controller the left and right wheel
velocities are calculated independently. A simplified model
of a skid-steered vehicle is used in these calculations. A
kinematic diagram of this vehicle is shown in Figure 2.

The differential drive controller calculates the velocities as
shown below:

ωR =
2v − ψ̇W

4r
(1)

ωL =
2v + ψ̇W

4r
(2)

where r and W denotes the radius of the wheels and vehicle
width respectively; v and ψ̇ are the linear input velocity
and rotational input velocity of the Jackal respectively. The
calculated angular velocities for the wheels are then converted

into an analog voltage signal which is sent to the respective
DC motors.

Fig. 2. Kinematic diagram of the vehicle as used in the differential drive
controller

C. DC Motor

The motor equations give the torque Tm on the rotor in terms
of the armature current ia which is induced by the analog
voltage signal.

T = Ktia (3)

By using Newton’s laws the following equation is obtained:

Jmθ̈m +

(
b+

Kt

Ra

)
θ̇m = Tm (4)

where Ra denotes the armature resistance [7], Jm denotes
the rotor inertia, b the viscous friction coefficient and Kt the
torque constant.

D. Wheel dynamics

The assumptions mentioned before, allow the Jackal to be
modeled as a combination of four separate wheels with the
same wheel dynamics. The Jackal is therefore modeled using
a quarter-car model. The forces acting on the wheel, as shown
in Figure 3, are analyzed in the body fixed frame.

Fy
Fz

Rx

Fx

T

r

Fig. 3. Free-body diagram of the wheel with radius r: The torque T is
giving a forward force Fx. The rolling resistance, lateral and normal force
are denoted by Rx, Fy and Fz respectively. The arrows indicate the positive
directions.
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To calculate the torque applied to the wheel the following
equation is used:

Twheel =
jηTm
2

(5)

Here j is the ratio of the gear transmission between the
DC motor and the wheels, η is the efficiency of this gear
transmission and Tm is the total torque exerted by the DC
motor. The angular acceleration of the wheels can then be
found through the following equilibrium:

Jwheelω̇wheel = Twheel − Fx,wheelr −Rx,wheelr (6)

The direction of movement is in the x-direction. Fx represents
the driving force of a wheel and Rx represents the rolling
resistance force. The radius of the wheel is denoted r.

Furthermore, Fx is dependent on the amount of slip that occurs
at the contact point of the wheel with the ground. To account
for this slip, two semi-empirical estimation models have been
considered, the Pacejka model [8] and the Dugoff model [9].
Both models express the linear traction force and the lateral
force using the longitudinal slip κ and the slip angle α,

κ =
ωwheelr − vx
| vx |

(7)

α = arctan

(
vy
| vx |

)
(8)

Where vx and vy denote the velocity of the wheel hub in
longitudinal direction and lateral direction respectively.

1) Pacejka Model: The standard form of the Pacejka model
is given by,

P (q) = D·sin[C ·arctan {Bq − E(Bq − arctan(Bq))}] (9)

where B, C, D and E represent fitting constants characterized
by stiffness, shape, peak and curvature of the fitting function
respectively; the function P (q) represent the forces on the tires
based on:

• Vertical load per wheel Fz
• Wheel slip κ
• Slip angle α

Rewriting 9 to calculate the longitudinal force Fx and lateral
force Fy gives

Fx(κ) = FzDsin(C arctan

{Bκ− E[Bκ− arctan(Bκ)]}) (10)

Fy(α) = FzDsin(C arctan

{B tan(α)− E[B tan(α)− arctan(B tan(α))]}) (11)

This formula is completed by using experimental data to
estimate the B, C, D and E fitting constants. These are
dependent on certain physical parameters of the wheel and
surface [10]. Using the Pacejka model for online adaption is
not ideal, when regarding simplicity and computational load,
due to the relatively large number of parameters. If the number
of parameters in the model would be smaller, the computation

time needed for parameter estimation would also decrease.
Therefore another model is considered with less parameters
that have to be estimated.

2) Dugoff Model: A simplified form of the Dugoff model with
longitudinal force Fx and lateral force Fy is given by

Fx(κ, f) =
Kxκκ

1− κ
f(λ) (12)

Fy(α, κ, f) =
Kyα tanα

1− κ
f(λ) (13)

with a shape function to accommodate for the non-linear slip
behaviour,

f(λ) =

{
λ(2− λ), if λ < 1

1, if λ > 1
(14)

and a weighting coefficient,

λ(κ, α) =
µFz(1− κ)

2
√

(Kxκκ)2 + (Kyα tanα)2
(15)

Here the friction coefficient µ is considered to be constant
instead of a function of v, κ and α, as is normally the case [9].
This assumption can be made because the Jackal does not drive
at high velocities like, for instance, cars do. The acceleration
of the Jackal is also limited and therefore the values of the
slip coefficient κ will be limited. This simplification implies
that the model will be less accurate for large velocities or
large values of κ but that is acceptable for the scope of this
project. This simplification allows the model to be tuned with
only three parameters, Kyα, Kxκ and µ. Here, both of the K-
values are used to describe the physical stiffness of the tires
and µ is used to describe the roughness of the surface. Ideally,
the goal is to adjust only one parameter to allow the model to
behave accurately on different surfaces. To achieve this goal
the Dugoff model is preferred over the Pacejka model because
of the smaller number of parameters that have to be estimated.

E. Vehicle dynamics

The ’xyz’ frame in Figure 4 represents the body fixed frame
of the Jackal. The x and y-axis coincide with the orientation
of the vehicle in the longitudinal and lateral direction respec-
tively. The z-axis is directed downward, perpendicular to the
x and y-axis. The rotational motion along the x, y and z-axis
are called roll, pitch and yaw respectively; denoted by β, φ
and ψ respectively. However due to the fact that only planar
motion is considered, both β and φ will always equal zero.
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Fig. 4. Global and body fixed coordinate system, denoted by the axis ’XYZ’
and ’xyz’ respectively

The global coordinate system is represented by an ’XYZ’
frame which is fixed to the ground. The motion of the Jackal
happens relative to this frame. By using Newtonian dynamics,
it is possible to describe the motion of the Jackal in terms of
the forces applied to the vehicle.

An overview of all the relevant forces acting on the Jackal is
given in Figure 5. Parameters l1 and l2 represent the respective
distances from the wheel to the center of mass, denoted by
symbol A, in x-direction; W represents the width of the
vehicle. Each wheel is numbered from 1 to 4.

Fy21 2

3 4

Fy1

Fy3 Fy4

Fx2Fx1

Fx3 Fx4

x

y
A

l1

l2

W

z

Fig. 5. Free-body diagram of the Jackal

Because the vehicle moves on flat ground, the motion in
the z-axis is not taken into consideration. This results in the
following equations of motion of the rigid body in the body
fixed frame, ∑

Fx = m · ax (16)∑
Fy = m · ay (17)∑
M = Izz · ψ̈ (18)

Where the sums of the forces and moments are given by,∑
Fx = Fx1+Fx2+Fx3+Fx4−Rx1−Rx2−Rx3−Rx4 (19)∑
Fy = Fy1+Fy2+Fy3+Fy4−Ry1−Ry2−Ry3−Ry4 (20)

∑
MA = l1(Fy1 + Fy2 −Ry1 −Ry2)

− l2(Fy3 + Fy4 −Ry3 −Ry4)

+
W

2
(Fx1 + Fx3 −Rx1 −Rx3)

− W

2
((Fx2 + Fx4 −Rx2 −Rx4) (21)

If the model is always assumed to start from rest, the following
equations hold, ∫

axdt = vx (22)∫
aydt = vy (23)∫
ψ̈dt = ψ̇ (24)∫

ω̇wheeldt = ωwheel (25)

The values for vx and vy are then used for calculations of κ
and α in the next iteration of the model. The values can be
compared with the input data as described in Section III.

III. METHOD

The method of the research can be divided into several steps.
The dynamic behaviour of the Jackal is firstly described in a
mathematical model, which is then converted to Simulink and
MATLAB. Then a wide range of experiments is conducted on
two different types of terrain. This data is subsequently used
for estimating parameters of the model.

The experiments with the mobile robot are performed in a lab
where it is possible to track the robot externally using a motion
capture system. This way, the motion model can be compared
to this external reference, which is regarded as ground truth
data. The experiments are carried out on two different surfaces;
smooth lino and rough carpet. The simulation results are
compared to the ground truth data of an experiment on the
first surface type. From this comparison, a set of optimized
parameters for the dynamic model can be obtained for that
first surface type. The output of the model is then compared
to the ground truth data for the same experiment on the other
surface type. By comparing simulation results with the data
again, a new set of optimized parameters is obtained for the
second surface.

A. Experimental setup

The experiments have been performed in the Delft Center for
Systems and Control lab. To accurately measure the position
of the Jackal, a Motion Capture System by Optitrack is used.
A schematic overview of the experimental setup can be seen
in Figure 6.
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Fig. 6. Experimental setup of external Motion Capture System

This system uses 10 high-tech infrared cameras that are able
to capture movements within a millimeter accuracy at a rate
of 120 Hz [11]. Besides this external measuring system,
measurements of internal sensors of the Jackal are also logged
simultaneously. This data is transmitted using WiFi to a nearby
computer. Here the measured data is stored in a format called
ROS bags. These ROS bags can be read using MATLAB and
graphical representations can be plotted.

A brief description of the experiments is shown in Table I.
Experiment 1 gives data about the longitudinal wheel slip
of the vehicle at constant speed. Experiment 2 is conducted
to find data about longitudinal slip during acceleration and
deceleration. To find data about lateral slip, experiments 3-8
are conducted. The combination of these experiments gener-
ates enough data to develop a full overview on the Jackal’s
dynamics. Each experiment is conducted multiple times to
minimize measurement errors.

TABLE I
OVERVIEW OF EXECUTED EXPERIMENTS

Experiment Description
1 Straight line, with v = 0.4m/s
2 Straight line, accelerating from rest with a = 1.0m/s2

3 U-shape, with v = 0.4m/s, turning left
4 U-shape, with v = 0.4m/s, turning right
5 Paperclip oval shape, with v = 0.4m/s in corners and

a = 1.0m/s2 in straights
6 Square shape, with v = 0.4m/s in linear direction and

rotating at position in corners
7 3 consecutive circles, with v = 0.4m/s, counter-

clockwise
8 3 consecutive circles, with v = 0.4m/s, clockwise

B. Parameter estimation

The estimation of unknown model parameters is done using
the Parameter Estimation Tool in Simulink. This tool uses a
batch of measured input and output data from the Jackal in
combination with a cost function to determine the optimal
parameters. In this case the ordinary least squares method is
used to estimate the parameters. This method, like most linear

estimators, works well for input values with high reliability
and consistency [12]. The ordinary least squares method might
deviate and become unreliable if the input variable is not
consistent. However, it has been proven that this method works
well for estimating dynamic robot model parameters for online
applications [13]. This is the reason that the ordinary least
squares method is used to estimate unknown model parameters
numerically.

The unknown parameters that are estimated using the estima-
tion tool are,

Jackal parameters:

• b, the viscous friction coefficient of the DC motors.
• Jm, the rotor and gear head inertia of the DC motors.

Dugoff model parameters:

• µ, the friction coefficient in the Dugoff model
• Kyα, the cornering stiffness of the tire
• Kxκ, the longitudinal slip stiffness of the tire

The DC motors are not used in estimating the Dugoff pa-
rameters from the experimental data. This is mainly because
the angular velocity of the wheels is measured directly. These
measurements would therefore be a more accurate input for the
Dugoff model than simulated wheel velocities. Since param-
eter estimation methods for DC motors are fairly well-known
[14], it is not expected that the estimated motor parameters
will have a large impact on the overall model. However, when
simulation results from the DC motors are used as inputs for
the Dugoff model this impact might accumulate. Therefore
the choice was made to only use the measured wheel velocity
from the wheel encoders.

C. Online adaptation

The goal of online adaptation is to collect the measured data
from the Jackal and use this to adapt parameters in the motion
model. To achieve this the data is stored in batches of a
certain size. These batches can then be used in combination
with a numerical estimation method as mentioned before.
The parameter values found by this process are then used
to update the relevant parameters in the motion model. The
only value that has to be estimated for terrain adaptation is
µ. The estimation process has to be executed in a relatively
short period of time, because otherwise the model cannot be
considered as online adaptive. This limits the complexity of
the model and the estimation method due to computation time.
Therefore simpler models with less parameters are preferred
as mentioned in Section II.

D. Experimentation on different surfaces

The set of experiments presented in table I is conducted on
two different surfaces. The experiments are first performed on
a smooth lino floor and then the same set of experiments is
conducted on rough carpet as mentioned before. The goal of
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experimenting on different surfaces is to let the model estimate
a new value for µ, the friction coefficient in the Dugoff model.

This value is estimated by fitting a Dugoff curve to measured
data, particularly the linear traction force Fx, the lateral skid
force Fy and their relation to the slip coefficient κ and the slip
angle α respectively. Graphical representations of the Dugoff
model with different parameters are shown in Figure 7 and
Figure 8.
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Fig. 7. Linear traction force Fx using Dugoff model vs slip coefficient κ for
different values of Kxκ, Kyα and µ.
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Fig. 8. Lateral skid force Fy using Dugoff model vs slip angle α for different
values of Kxκ, Kyα and µ.

It is clear that the simplified Dugoff model is linear for
small values of the slip coefficient or slip angle. Non-linear
behaviour is displayed for larger values of these variables. It
is expected that the measurements from the experiments show
similar behaviour. This will allow the Dugoff model to be ap-
plied by changing the model parameters. The aforementioned
method of the least squares error is able to estimate these pa-
rameters, if provided with smooth data without discontinuities
as mentioned before.

IV. RESULTS

In this section the MATLAB/Simulink model is presented and
results of selected performed experiments are displayed.

Figure 9 shows a schematic overview of the designed Simulink
model. The Simulink model uses the commanded linear and
rotational velocity as input for the Jackal. The commanded
linear and rotational velocity are converted to the angular
velocities of the wheels according to equations 1 and 2. A
pulse width modulation signal is then sent to the DC motors
to adjust the torque accordingly. The torque from the DC
motors is derived from equations 4 and 5. The torques are
subsequently the input for the individual wheels. From the
wheels, the rotational velocity ωi is measured and used as
input for the Dugoff model. The forces are then calculated
using equations 12, 13, 14 and 15; These are then supplied to
the rigid body from which the equations of motion 16, 17 and
18 for the vehicle can be derived. Integrating the equations
of motion using equations 22, 23 and 24 gives the velocity
components and heading rate of the Jackal. These outputs are
then fed back into the Duggoff model to estimate the model
parameters κ and α using equations 7 and 8.

Fig. 9. Schemematic representation of the Simulink model

A. Measured quantities

All incoming data signals are filtered to reduce the amount of
noise in the measured signals. A low-pass Butterworth filter is
used because this filter works well without delaying the signal
significantly [15]. The signals are plotted for experiment 1
and 4 on lino and experiment 1 on carpet in Appendix D.
The characteristics of the measured signals are listed below in
Table II.

TABLE II
OVERVIEW MEASURED SIGNALS

System Sample
rate(Hz)

Description Symbol
(Unit)

IMU 70 Acceleration in local x-direction ax(m/s2)
Acceleration in local y-direction ay(m/s2)

MOCAP 120 Global X position X(m)
Global Y position Y (m)
Yaw angle of the vehicle ψ(rad)

Wheel
encoder

20 Angular velocity left wheels ωL (rad/s)

Angular velocity right wheels ωR (rad/s)
Bluetooth
controller

20 Commanded linear velocity v(m/s)

Commanded angular velocity ψ̇(rad/s)

The wheel encoders measure the angular wheel velocity of the
left and right wheels separately. Because the two wheels on
each side are connected to one motor the angular velocity of
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the wheels on the same side remains equal. The signal from
the encoders is plotted in Figure 10, Figure 19 and Figure 28.

For the plots with respect to the orientation of the Jackal in
space, data from the MOCAP system is used. The 2D position
of the center of the robot body is shown in Figure 12, 21 and
30 The yaw angle is shown graphically in Figure 13, 22 and
31. Also the position in X and Y-direction is differentiated
over time to obtain the velocity of the Jackal in Cartesian
coordinates. These are then combined with the derivative of
the yaw angle and the yaw angle itself to obtain the velocity
in the local frame. This linear velocity is shown in Figure 14,
Figure 23 and Figure 32.

The accelerations measured by the IMU are used to calculate
the forces that are exerted on the body. The measured accel-
erations are linearly dependent on the resultant force on the
body. However for simplification, the friction forces are not
considered. The resultant force is calculated using Newton’s
second law: ∑

F = m · a (26)

The force in x-direction is plotted against time in Figure 15,
24 and 33. The longitudinal traction forces are also plotted
against the respective measured values of the slip coefficient
κ (-). This allows the application of a Dugoff model to the
data. This can be seen in Figure 16, Figure 25 and Figure 34.

For experiment 1, a Dugoff model was selected that best
matched the measured data. No statistical approach is used
because of the large number of outliers in the data which
provide unreliable results when combined with a numerical
parameter estimation method. Instead the parameters of the
Dugoff model were optimized to ensure that it crosses the
highest number of data points possible. The model was only
accurate for small values of κ, (e.g. |κ|< 0.1) as can be seen in
Figure 16 and Figure 34. The estimated parameters are listed
in Table III.

This experiment is repeated in exactly the same way on a
rough carpet surface. The measured forces are shown in Figure
34 and Figure 36. As can be seen, both experiments seem to
fit well with the Dugoff model. However, in these experiments
only longitudinal slip is considered. It is possible to neglect
the forces in the local y-direction due to the small values of Fy
in both experiments. This is shown, when comparing Figure
17 and Figure 35 with Figure 15 and Figure 33 respectively,
as the peak values of Fx are over ten times larger than Fy .
Furthermore there also does not seem to be a clear relation
between α and Fy , as shown in Figure 36.

As expected, a higher value of µ matches the data better in
the experiment with the rough carpet, with respect to the same
experiment on the lino surface. This value is µ= 0.20.

An overview of the parameter values is given below in Table
III.

When Figure 25 and Figure 27 of experiment 4 are considered,
it is clear from the shown data that an inconsistency occurs
in the measured forces. In these figures the force seems to

TABLE III
ESTIMATED PARAMETER VALUES FOR Kyα , Kxκ AND µ

Floor type Kyα (N/rad) Kxκ (N/rad) µ (-)
Lino Exp. 1 72 70 0.18
Carpet Exp. 1 72 70 0.20

have two components which behave very differently from
each other. One component seems to behave according to the
Dugoff model but there is also one value that seems to follow
a different curve. Due to these unexpected inconsistencies the
choice was made to not compare the measured values with
the Dugoff model. The model parameters of the Dugoff model
also varied too much within the data sets to find the cause of
the inconsistencies or apply a numerical parameter estimation
method.

V. DISCUSSION

In this section the aforementioned results will be discussed.
It is clear from the experiment plots that the Dugoff model
is not well suited to model the combined slip of the Jackal.
Because of the fact that the model is simplified, the complete
characteristics from the traction or lateral force, with respect
to the slip coefficient or the slip angle respectively, cannot
be approximated to a high degree. This leads to differences
when comparing the outcome of the Dugoff model with the
measured forces and accelerations as can be seen in the figures.
However, in simple experiments, where only pure longitudinal
slip is considered, the slip model is able to approximate the
measured data quite closely for small values of κ and α.
For larger values, the Pacejka model is recommended due
to the ability to model the force curve with more accuracy.
However, this might have negative effects on computation time
and model simplicity.

With the measured data the parameters of the Dugoff model
have to be optimized. The initial goal was to use batches of
input and output data in combination with a discrete numerical
estimation method. However, this advanced form of estimation
is not well suited for data with a lot of noise or inconsistencies
[12]. For a numerical estimation method to work well, the
outliers of the data would have to be removed manually which
involves data manipulation. The dynamic model with the
estimated parameters would therefore be relatively unreliable.

The choice was made to estimate values for µ, Kyα and
Kxκ by only using the acceleration data that matched our
expectation of what the forces should be. The curves with these
expected forces are found in Figure 7 and 8. As mentioned
earlier, friction forces are neglected in this approximation. The
Dugoff model therefore models a traction force for positive
slip variables and a breaking force for negative slip variables.
Even though this might not be entirely the case in reality,
it allows for simpler model approximation and parameter
estimation which is acceptable for the scope of this research.

As mentioned earlier, the traction force and lateral force show
large inconsistencies with the Dugoff model in experiment 4.
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This might be due to the shape of the trajectory in which
the Jackal is subjected to both lateral and linear slip. It is
likely that the simplified Dugoff model is not well suited for
combined slip and a weight function should be used to counter
this problem [9].

There are also other reasons, which are applicable to all
experiments, why the data does not seem to fit well to the
Dugoff model.

Firstly, because the data is retrieved from real world exper-
iments, it is subjected to noise and disturbances from the
environment. At low velocities, this leads to high values
for the slip coefficient and slip angle. This results in data
outliers when comparing the data of the slip coefficient to
the measured linear traction force for example. Either sensors
with a higher sensitivity should be used or the experiments
should be performed at higher velocities.

Secondly, the sensors that were used during the experiment
do not measure the needed quantities for calculation directly.
Instead algebraic equations along with differentiation or in-
tegration have to be used to obtain the needed values. This
always leads to irregularities of the obtained data with respect
to the real value. An example of this behaviour can be seen in
Figure 19. An error analysis of all the incoming signals could
be used to quantify the induced irregularities in the measured
data. This unfortunately does not fit within the scope of this
research.

Thirdly, the signals from the sensors are not very reliable.
The sensors do not measure the different quantities at constant
sample rates and often show an offset in the measured signal.
Both the Motion Capture System and the inertial measurement
unit in the Jackal show areas, where sampling is not performed
or is performed at a different rate, within the data sequence.
This provides synchronization problems when comparing these
values with each other. Re-sampling the faulty data sets solves
these problems somewhat. It is also recommended that the
sensors are re-calibrated to ensure a minimal offset in the
measured signal.

Lastly, the real value of µ is dependent on multiple environ-
ment variables such as temperature, wheel pressure and the
surface roughness [9] [16]. The fact that this value is simpli-
fied, to allow parameter estimation to be performed without
knowing the environment variables, can lead to an overly
simplified expression for the Dugoff model. For example, the
wheel pressure of the wheels of the Jackal is found not to be
consistent. This could highly influence the value of µ.

VI. CONCLUSION AND RECOMMENDATIONS

The goal of this research paper is to develop an adaptive
motion model for a skid-steered mobile robot that could
be used for different terrains. As mentioned before, such a
model would be useful in further research with regard to
controller design for these robots. However the dynamic model
should satisfy a certain degree of accuracy. The model that
is presented in this paper does not yet satisfy this degree

of accuracy. Due to large errors and inconsistencies in the
measured data, it is difficult to establish any statistical proof
of concept of the model. However, from the obtained data it
is clear that the Dugoff slip model can be used to simulate
the wheel-ground dynamics of the Jackal for small values of
pure longitudinal slip (e.g. |κ|< 0.1). For high values of pure
slip or combined slip, a more advanced version of the Dugoff
model is proposed.

Another slip model is also proposed, the Pacejka model, which
works better for high values of pure slip or combined slip as
well. This model would therefore match the data better but
advanced numerical parameter estimation techniques would
have to be used to obtain the large number of variables
necessary for this Pacejka model.

For further research it is essential to limit irregularities in the
measured data. This can be achieved through experimenting
with higher velocities resulting in a smaller fraction of noise
in the signal. These actions also involve recalibrating all of
the used sensors and perhaps even using sensors with a higher
sensitivity. This prevents excessive filtering and manipulation
of the measured data and allows the model itself to be applied
with more certainty.
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APPENDICES

Appendix A - Nomenclature

symbol Description

a acceleration in meter per second squared
α slip angle
b viscous friction coefficient in newton meter second
β angle around the x-axis in radian
η gearhead efficiency
e back EMF voltage in volt
Fx longitudinal force in newton
Fy lateral force in newton
Fz normal force in newton
ia armature current in ampere
Izz moment of inertia of the Jackal in the z-direction
Jm rotor and gear head inertia of the DC motors in kilogram per meter squared
j DC motor gear head ratio
Kt torque constant
Ke electric constant
κ wheel slip
Kxκ longitudinal slip stiffness
Kyα cornering stiffness
l1 distance of front axis to the center of gravity A in meter
l2 distance of rear axis to the center of gravity A in meter
λ weighting coefficient
m vehicle mass in kilogram
M moment force in newton meter
ωL rotational velocity of left wheel in radian per second
ωR rotational velocity of left wheel in radian per second
φ angle around the y-axis in radian
ψ angle around the z-axis in radian
ψ̇ angular velocity around the z-axis in radian per second
ψ̈ angular acceleration around the z-axis in radian per second squared
r radius of the wheels in meter
R friction force in newton
Ra armature resistance in ohm
T torque in newton per meter
θ̇m rotational velocity of DC motor rotor shaft in radian per second
θ̈m rotational acceleration of DC motor rotor shaft in radian per second squared
Ua armature voltage in volt
v body-fixed forward velocity in meter per second
vx longitudinal velocity in meter per second
vy lateral velocity in meter per second
W vehicle width in meter
x body-fixed position in the x-direction in meter
X global X coordinate
y body-fixed position in the y-direction in meter
Y global Y coordinate
z body-fixed position in the z-direction in meter
Z global Z coordinate
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Appendix B - Experiment plots

0 1 2 3 4 5 6 7

time(s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(r
ad

/s
)

Wheel angular velocity

L

R

Fig. 10. Experiment 1 (Lino): Graphical representation of the angular
velocities of the left- and right side wheels.
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Fig. 11. Experiment 1 (Lino): Graphical representation of the linear acceler-
ation of the Jackal robot.
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Fig. 12. Experiment 1 (Lino): Graphical representation of the 2D trajectory
of the Jackal robot starting at (0,0).
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Fig. 13. Experiment 1 (Lino): Graphical representation of the yaw angle of
the Jackal with respect to the global frame.
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Fig. 14. Experiment 1 (Lino): Graphical representation of the linear velocity
of the Jackal in the local frame.
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Fig. 15. Experiment 1(Lino): measured longitudinal traction force Fx vs time
with Dugoff model.
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Fig. 16. Experiment 1(Lino): measured longitudinal traction force Fx vs
measured slip coefficient κ with Dugoff model.
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Fig. 17. Experiment 1 (Lino): measured lateral skid force Fy vs time.
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Fig. 18. Experiment 1 (Lino): measured lateral skid force Fy vs measured
slip angle α.
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Fig. 19. Experiment 4 (Lino): Graphical representation of the angular
velocities of the left- and right side wheels.
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Fig. 20. Experiment 4 (Lino): Graphical representation of the linear acceler-
ation of the Jackal robot.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

X(m)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Y
(m

)

2D position plot

Position measured by MoCap

Fig. 21. Experiment 4 (Lino): Graphical representation of the 2D trajectory
of the Jackal robot starting at (0,0).
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Fig. 22. Experiment 4 (Lino): Graphical representation of the yaw angle of
the Jackal with respect to the global frame.
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Fig. 23. Experiment 4 (Lino) : Graphical representation of the linear velocity
of the Jackal in the local frame.
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Fig. 24. Experiment 4 (Lino): Graphical representation of the measured linear
traction force Fx vs time.
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Fig. 25. Experiment 4 (Lino): measured linear traction force Fx vs measured
slip coefficient κ with Dugoff model.
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Fig. 26. Experiment 4 (Lino): measured lateral skid force Fy vs time.
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Fig. 27. Experiment 4 (Lino): measured lateral skid force Fy vs measured
slip angle α.
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Fig. 28. Experiment 1 (Carpet): Graphical representation of the angular
velocities of the left- and right side wheels.
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Fig. 29. Experiment 1 (Carpet): Graphical representation of the linear
acceleration of the Jackal robot.
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Fig. 30. Experiment 1 (Carpet): Graphical representation of the 2D trajectory
of the Jackal robot starting at (0,0).

0 1 2 3 4 5 6 7 8 9 10

time(s)

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

(r
ad

) 
fr

o
m

 -
 t

o
 

Yaw angle

Yaw angle measured by MoCap

Fig. 31. Experiment 1 (Carpet): Graphical representation of the yaw angle
of the Jackal with respect to the global frame.
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Fig. 32. Experiment 1 (Carpet): Graphical representation of the linear velocity
of the Jackal in the local frame.

0 1 2 3 4 5 6 7 8 9 10

time(s)

-25

-20

-15

-10

-5

0

5

10

15

20

F
x
(N

)

F
x
 vs. time

F
x
 measured

F
x
 Dugoff

Fig. 33. Experiment 1 (Carpet): measured longitudinal traction force Fx vs
time with Dugoff model.
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Fig. 34. Experiment 1 (Carpet): measured longitudinal traction force Fx vs
measured slip coefficient κ with Dugoff model.
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Fig. 35. Experiment 1 (Carpet): measured lateral skid force Fy vs time.
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Fig. 36. Experiment 1 (Carpet): measured lateral skid force Fy vs measured
slip angle α.
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Appendix C - Structural parameters robot

TABLE IV
STRUCTURAL PARAMETERS OF THE JACKAL

Parameter Symbol Value Units
Mass m 16.532 kg
Wheel mass mwheel 0.477 kg
Wheel radius r 90 mm
Wheel width t 40 mm
Wheelbase lwheelbase 0.262 m
Moment of inertia wheel, xx Ixx,wheel 0.0013 kgm2

Moment of inertia wheel, yy Iyy,wheel 0.0024 kgm2

Moment of inertia wheel, zz Izz,wheel 0.0013 kgm2

Chassis length lchassis 420 mm
Chassis width W 310 mm
Chassis heigth H 420 mm
Moment of inertia chassis, xx Ixx,chassis 0.3136 kgm2

Moment of inertia chassis, yy Iyy,chassis 0.0.3922 kgm2

Moment of inertia chassis, zz Izz,chassis 0.4485 kgm2

DC motor inductance Lmotor 0.22 mH
DC motor resistance Rmotor 0.5 Ω
Gearhead ratio j 25.01 -
Gearhead efficiency η 0.75 -


