
Predictive Robot Brain in ROS Simulation

W. Arink (4458702), S. van Ginneken (4356934),
C. Lock (4325117) and S. Römer (4396545)

Abstract— This paper contains the first steps towards imple-
menting Active Inference, a neuroscientific theory, in robotics.
These steps consist of exploratory research divided into four
realms: controlling velocities vx, vy and ωz of a simple robot,
the prioritization of the sideways slip velocity, the addition
of noise, and a stability analysis of the learning rates. These
research topics are tested through simulations of a Jackal robot
within the ROS simulation environment. Results in controlling
the forward velocity vx and the addition of noise were most
successful, as the desired velocities were reached quickly. Next,
the robot was able to control the angular velocity ωz and
prioritize the slip velocity vy , however, much room is left for
optimization. Inconclusive results were obtained for the stability
analysis of the system. All things considered, the study showed
promising results which propose many further investigation
queries in optimizing the implementation of Active Inference
in robotics.

I. INTRODUCTION

As artificial intelligence becomes smarter, it starts taking
over more jobs, tasks, and routines. At the moment, artificial
intelligence is especially used for simple and predictable
tasks. Problems arise however, when situations are noisy and
become less predictable. Karl Friston, a professor in the field
of neuroscience, created a theory on how the biological brain
deals with this problem. Friston, the most cited scientist of
today, explains with his theory of Active Inference [1] how
the biological brain models the unpredictability of the world.
This could also be very helpful for developments in artificial
intelligence and robotics. Although the theory is well-known,
to date it has never been implemented in a robot system.

The goal of this paper is to present a novel implementation
of the Active Inference theory on a simple mobile robot,
where it will estimate and control the velocities of this robot.
A four-wheeled skid-steering robot has been chosen, because
the unpredictability of the slip that occurs when skid-steering
is exactly the type of noise that Active Inference should han-
dle with exceptional effectiveness. The exploratory research
is structured by the following four research questions.

1) Does the system succeed in controlling the velocities
vx, vy and ωz of a simple robot vehicle in a simulation
using Active Inference?

2) Is it possible to make the algorithm prioritize one of
the velocities vx, vy and ωz separately?

3) Does the algorithm filter out noise as the theory
promises, or is it limited to a perfect world?

4) How do different learning rates within the algorithm
affect the stability of the system?

This study has been conducted as part of the Bachelor End
Project for Mechanical Engineering students at the TU Delft
in the third year of their Bachelor studies.

II. THEORY

The theory used for this study, as mentioned in the
introduction, is Active Inference. This theory is based on the
Free Energy Principle [2], also composed by Karl Friston.
With the Free Energy Principle, Friston tries to create a
universal biological reward function based on the notion that
all forms of life try to create order in a world that consists of
thermodynamical disorder. In other words, Friston states that
all life forms try to minimize their Free Energy. He explains
that the (human) brain uses the Free Energy Principle to
minimize its Free Energy in order to reach a certain goal
and how it behaves in order to achieve this goal.

The brain, namely, tries to model the world around itself.
In order to make this model it uses two concepts: perception
and action. Through perception the brain can approximate
the (hidden) states of the world, like estimating its current
walking velocity. Through action the brain tries to change
these states, e.g. giving a signal to its leg muscles to
change its walking velocity. The theory proposes a unifying
mechanism, meaning that the brain can change both its
perception and action in order to improve its model of the
world and ultimately achieve its goal. “An intuitive example
of this process [...] would be feeling our way in darkness: we
anticipate what we might touch next and then try to confirm
those expectations.” [2]

The general neuroscientific theory has been made acces-
sible for engineering purposes through the seminal publica-
tions of Friston [1] [2] [3], a more detailed mathematical
exposition by Buckly [4] and a translation to Linear Time-
Invariant (LTI) state-space systems by Grimbergen [5]. In
this formulation Grimbergen explains how the unknown
world can be approximated as a state-space model either
by predefining it or letting the algorithm approximate it.
The algorithm approximates this through a concept called
’expectation maximization’ [3]. In this study the world’s
state-space will be predefined, due to time constraints of
this project. Once the world’s state-space is defined, the brain
uses two formulas: the rate of change of the prediction, based
on the perception, called µ̇ and the rate of change of the
action, called u̇. This way, the brain predicts how the world
will change and steers the world towards a desired outcome,
called prior ξ. Further details of how these terms are linked
together and used in this study are explained in the next
sections.

1

III. METHODS

A. Startup decisions

In order to implement Active Inference in robotics, an
operating system, a simulation environment and finally a
robot needed to be chosen. ROS (Robot Operating System)
was chosen as operating system as it has a broad availability
of packages relevant for this study. Within ROS, Gazebo
was chosen as simulation environment as it is the most
common simulation tool used in ROS. Also it is lightweight,
realistic and offers easy world manipulation. Next, a robot
was chosen suitable for implementation of Active Inference,
which needed to contain a strong uncertainty. A vehicle with
skid steering was found to be suitable for this uncertainty, as
it moves with great slippage. Skid-steering vehicles can only
turn by changing the velocity of the wheels, as they are stuck
to the frame and cannot be rotated sideways. Consequently,
the vehicle will slip sideways when it tries to turn. In this
study, this sideways velocity is defined as vy . The other
two velocities in which the kinematics of the vehicle are
expressed are the forward velocity vx and the rotational
velocity ωz , as can be seen in Fig.1. A robot with the above
characteristics is the Jackal from Clearpath Robotics. The
Jackal’s model in Gazebo includes great approximations of
its dynamics, including wheel slippage and skid-steering.
Which makes the Jackal ideal for this study.

Fig. 1. Clearpath Robotics’ Jackal with a representation of vx, vy and ωz .

B. Theoretical setup

The next step, after choosing the ROS simulation environ-
ment and the Jackal robot, was to appoint the values of the
prior. The goal of the brain was to control the velocities of
the Jackal, so the values of the prior contain the following
parameters: the forward velocity vx, the sideways velocity
vy (slip) and the angular velocity ωz . These values form the
prior vector: ξ =

(
vx vy ωz

)T
.

After that the state-space capturing the basis of the Jackal’s
kinematics was created. As mentioned above, an LTI state-
space formulation was used to implement Active Inference in
the simulation. A standard LTI state-space looks as follows:

ẋ(t) = Ax(t) + Bu(t) (1)

ẏ(t) = Cx(t) + Du(t) (2)

In this state-space, x(t) is the state vector, y(t) the output
vector and u(t) the input vector. A, B, C and D are matrices.

In the following state-spaces only the formulas for the state
x are mentioned, as the output vectors y are the same as the
state vectors x because the C matrix is an identity matrix
and D is equal to zero.

This first state-space (3) captures the properties and kine-
matics of the Jackal:v̇xv̇y

ω̇z

 =

−
4d
m 0 0

ωz0 − 4d
m −vx0

0 0 − (a2+b2)d
Ic

vxvy
ωz

+

 2d
m

2d
m

0 0
− 2db

Ic
2db
Ic

(vL(t)
vR(t)

) (3)

The states (x) of the Jackal consist of the forward velocity
vx, the sideways velocity vy (slip velocity), and the rotational
velocity ωz . The inputs (u) of the system consist of the
velocities of the two left wheels vL and the two right wheels
vR. These two inputs only influence the forward velocity
vx and the rotational velocity ωz directly, because it is not
possible to give the Jackal a sideways velocity, as this is
the slip velocity (skid steering). The A and B matrices
consist of the properties of the Jackal; including the mass
m, the moment of inertia Ic, the damping constant d, and
the dimensions a (half of the length) and b (half of the width).

Finally, the matrix A contains two more parameters: ωz0
and vx0

. Intuitively, the slip velocity vy is dependent on both
the forward velocity vx and the angular velocity ωz , see Eq.
4.

v̇y = ωz0 ∗ vx −
4d

m
∗ vy − vx0

∗ ωz (4)

In order to make the brain capable of handling the slip
velocity vy , the parameters ωz0 and vx0

are introduced. The
values of these parameters were found by exploratory means,
rather than a complex dynamical analysis. Calculating the
exact and correct values of these parameters, or how vy is
dependent on vx and ωz exactly is beyond the scope of this
study.

First, experiments were done giving ωz0 and vx0
values of

either 0.5 or 1. However, intuitive reasoning gave the insight
that ωz0 and vx0 needed to become variable and dependent on
the forward and angular velocities. Secondly, the brain needs
to influence the slip velocity vy by changing the vx and ωz
velocities. An unavoidable issue is that the brain will never
be able to reach its prior when changing the slip velocity vy ,
because it has to keep altering vx or ωz or both. To keep the
deviation from the prior as small as possible, a solution was
formulated with the following substantiation: if the forward
velocity vx is large, a relatively small angular velocity ωz
is needed in order to give the Jackal a slip velocity vy . The
same applies the other way around. Thus, ωz0 and vx0

need
to change the amount vx and ωz influence the slip velocity
respectively, as seen in matrix A, and Eq. 4. Considering all
of the above, it was chosen to make the parameters ωz0 and
vx0

represent the prior values of ωz and vx respectively.
The reason as to why a negative sign is placed in front of

vx0 is because when the Jackal is driving forward, a rotation

2

in the negative z-axis results in a slip velocity in the positive
y-axis. Thus, to create a positive slip velocity vy , either ωz0
or vx0

needs to be negative. Depending on which of the two
is negative, the direction of vx and ωz is inverted. In order
to keep the motion in the x-direction positive the negative
sign was added to vx0 .

With this state-space of the Jackal kinematics (3) and
some other variables the prediction (µ) and the action (u)
are calculated:

µ̇ = Dµ−κ(−C̃>Πz(y−C̃µ))+(D−Ã)>Πw(Dµ−Ãµ−ξ))
(5)

u̇ = −ρG̃>Πz(y − C̃µ) (6)

These two formulas can also be written in state-space form,
simplified as:

µ̇ = Aµµ+Bµ

(
y
ξ

)
(7)

u̇ = Auu+Bu

(
y
µ

)
(8)

A schematic overview of how these state-spaces interact with
each other can be seen in Fig. 2

Below, every parameter which is not already familiar is
discussed and explained. The prediction µ (7) consists of the
predicted velocities of vx, vy and ωz and their derivatives.
The number of derivatives it uses is p, which by default is
six. These derivatives are called the generalized coordinates
and are used to calculate predictions of future states. The
prediction µ has as input the measurements of the velocities
y and the prior ξ (the desired velocities). The action u (8)
consists of the velocities vL and vR which are given to
the Jackal and has as input the prediction µ and also the
measurements y. The A and B matrices of these state-spaces
consist of complicated Active Inference formulas:

Aµ = D − κ(D − Ã)>Πw(D − Ã)− κC̃>ΠzC̃> (9)

Bµ =
(
κC̃>Πz κ(D −A)>Πw

)
(10)

Au = 0 (11)

Bu =
(
ρĜ>Πz C̃ρĜ>Πz

)
(12)

D is a divergence matrix, Ã is the kronecker tensor
product of an identity matrix and the A matrix of (3), C̃
is an identity matrix and Ĝ is the steady state gain matrix.
For the details of these matrices and the derivation of these
formulas, please look at the paper of Grimbergen [5].

This study focused on the precision matrix Πz and the
learning rates κ and ρ, also found in the above formulas (5)
- (12). The precision matrix or inverse covariance matrix
influences the perception on the covariance of the noise

and the measurements. The learning rates κ and ρ influence
how much the prediction and action are adjusted each step
respectively. Changing the value of these four variables
affects the behaviour and stability of the system.

Since the brain is supposed to control the states of the
world, a closed loop system needed to be set up connecting
the brain to the world. The whole setup of the closed loop
system can be seen in Fig. 3. The output of the brain is
the steering signal u (action). This signal, which consists of
the velocities vL and vR, is then converted to the forward
velocity vx and the rotational velocity ωz . This is done
because the inputs of the state-space of the Jackal (3) are
the left and right wheel velocities, but the inputs given to
the Jackal are the forward and rotational velocities. The
Jackal receives a steering signal and the simulation interface,
Gazebo, extracts the states of the world x, in this case
the exact measurements of the Jackal velocities. However,
the frame of these velocities first have to be converted, as
the measurements from Gazebo use a fixed frame, and the
velocities in the state-space of the Jackal (3) use the frame
of the Jackal. Secondly, in addition to a frame conversion,
noise z, Gaussian white noise, has to be added in order to
transform signal x into signal y. However, noise is only being
implemented in answering the third sub research question;
does the algorithm filter out noise as it promises, or is it
limited to a rather perfect world? In all other segments of
this study noise is not added.

Fig. 2. Schematic overview of the brain (Active Inference controller) and
the interaction between the formulas µ̇ and u̇.

Now these measurements of the Jackal velocities (y),
together with the prior ξ, go into the brain, where a prediction
(µ) and a new steering signal (u) are calculated. The brain
in Fig. 3 is a simplified version of the brain in Fig. 2.

C. Implementation in Python

After the theoretical setup was finalized, it needed to be
coded so it could be interpreted by ROS. The programming
language used was Python, as it is both understood by
the ROS framework and a common programming language
among engineers. As aforementioned, Grimbergen made a
state-space formulation which he programmed in the most
basic form in MATLAB [5]. The next step was to translate
this code to the Python language. The actual code can be

3

Fig. 3. Schematic overview of the complete setup.

found in Appendix IV. Three simplifications and improve-
ments were made in order to fit the code to this study more
closely:

1. The noise was removed. In the MATLAB code there
were two forms of noise simulated, a noise z and a noise
w. Noise z was added on the measurements to simulate an
imperfect noisy sensor that measures the states of the world
x. The noise w was added on the steering signal to simulate
that the system is not able to perfectly alter the states of the
world. Removing the noise is technically cheating according
to the theory, since the biological brain is not omnipotent.
However, since this is the first time ever Active Inference is
tested in a practical setting, the implementation of the theory
was done in the most basic form, starting without noise.

2. A multiple input multiple output (MIMO) state-space
model was implemented. In the MATLAB files of Grimber-
gen [5], he simulated the states of the world as a simplified
single input single output (SISO) state-space . As explained
in the previous section, this project uses a MIMO state-space
model (3). This meant that the base code needed to be altered
in order to be able to operate with such a system.

3. The function “lsim” was removed. In the MATLAB files
of Grimbergen [5], the brain and the world were simulated
in a single closed loop system with the function “lsim”.
This meant that the world state x, the measurements y, the
prediction µ and the action u were all coded in one closed
loop system. In this study, the world was not coded but was
simulated with ROS in Gazebo. Therefore, the closed loop
system was split open into a state-space of the brain and a
state-space of the world and the function “lsim” was replaced
with individual for loops for the prediction µ, the action u
and the measurements y. All python codes can be found in
appendix IV.

D. ROS setup

As stated earlier, the operating system ROS was used
to program the simulation and the Gazebo Graphical User
Interface (GUI) was used to visualize the Jackal driving
inside the simulation. The friction coefficient in the ground
plane in Gazebo was changed to represent the damping

coefficient used in the A and B matrix used by the brain, (3).
All other parameters remained unchanged during this study.

To understand the way ROS works, ROS nodes and topics
need to be understood. Nodes send, receive and process in-
formation while topics carry this information between nodes.
Every time a node publishes its information (e.g. velocity
values) to a topic, other nodes receive this information. If all
the nodes and topics are connected, a map as seen in Fig.4
is created.
Notice the following node loop within Fig.4:
Gazebo → Frame Converter → Brain → Steering Signal
Converter → Gazebo
This loop is essentially the same loop as specified in previous
section Theoretical Setup, see Fig. 3. The code of all these
nodes can be found in appendix VII. Later on, when noise
will be added, a noise node will be created and put in
between the Frame Converter and the Brain. This node
will then alter the information in topic Measurement Jackal,
thereby creating noise, and turn it into the topic Measurement
Noise, see Fig. 5. Furthermore, the record nodes are used to
record data sent between nodes. This data is then plotted
through Matlab into analyzable graphs. This Matlab code
can be found in Appendix V. Lastly, three nodes without
any connection lines or topics can be observed within Fig.
4. These nodes are active in order to make certain events
happen. Node gazebo gui spawns the graphical user interface,
robot state publisher can be used to extract information but
is not used in this setup and the node controller spawner
makes it possible to spawn certain objects into the world,
like the Jackal.

Within the ROS files, the for-loop of measurements y was
removed from the Python script. It was removed because
the state of the world x and the measurements y going
into the brain are not calculated in the Python code, but are
the values read out of the simulated world within Gazebo.
Therefore, the for-loop of the measurements y was removed
and replaced with a callback function in ROS, explained in
the next section.

The complete implementation from Python to ROS, is
captured within the node Brain. Apart from slight alterations,
all of the Python code is inside this node. For example,
the for-loop was translated into a callback function and the
“main” in Python was kept in the “main” part of the node.
These translations and alterations make the code compatible
with ROS. Conveniently, all of the callable functions are
stored in the same directory as the Brain, so all these
functions are available to the Brain. The code of the brain
node is found in appendix VII.

E. Measurement and processing of data

As stated before, data was recorded from certain top-
ics and stored in rosbag files. The concerned topics are
Measurements Jackal, cmd vel and later on also the topic
Measurements Noise. These rosbag files contain all the data
the node publishes to the concerning topics and the publish
time-stamps of this data. Afterwards, the rosbag files were
imported into MATLAB and turned into useful plots, see

4

Fig. 4. Complete overview of all active ROS nodes, excluding noise.

appendix V. Every time a setup or test was completed, a
rosbag was made, and imported into MATLAB where plots
were made.
In order to obtain relevant results and make them compa-
rable, certain parameters were set to fixed values. The most
important parameters within this study were: the prior values
vx, vy and ωz , and the learning rates ρ and κ. The default
values for the prior were set to: ξ =

(
0.5 0 0

)T
. A

velocity of 0.5 was used, ensuring the Jackal will not make
a wheelie or flip over and thereby changing the kinematics
of the Jackal’s system. The prior values for the vy and the
ωz were both set to a value of 0, as only giving a value for
the prior vx will be the easiest for the brain to execute. The
values for ρ and κ were found using trial and error, and are
50 and 1 respectively. The above values do not completely
optimize the algorithm, however they do show stable results.
From now on these fixed values will be referred to as the
default values or the default setup.

1) Does the system succeed in controlling the velocities
vx, vy and ωz of a simple robot vehicle in a simulation using
Active Inference?: The first objective was to verify whether
the brain succeeded at controlling each of the prior values
separately. This was done by conducting a test using the
default setup, followed by simple variations to the prior:

1) Prior ξ =
(
0.5 0 0

)T
, with learning rates

ρ = 50, and κ = 1.
2) Prior ξ =

(
0 0 0.5

)T
, with learning rates

ρ = 50, and κ = 1.
3) Prior ξ =

(
0 0.5 0

)T
, with learning rates

ρ = 50, and κ = 1.

Notice that the priors for vx and ωz can be controlled
directly, whereas the prior for vy can only be controlled
indirectly. Therefore, the third test was the most difficult for
the brain to achieve. It was physically impossible to execute
for the Jackal because it cannot move with a sideways ve-
locity vy without a forward and angular velocity. Therefore,
it turned out to be crucial to prioritize vy in order to achieve
its relative prior. Another problem was that the A matrix in
(3) on p. 2 is partially dependent on the prior. Namely, since
the slippage is linearized, the effect of vx and ωz on vy is
represented in the simplified formula in (4) on p. 2. Notice
that this formula is derived from (3) on p.2, with vx and ωz
left out. Here vx0 and ωz0 were set equal to the prior value of

the brain as explained in the Theoretical setup. Thus, when
the prior of ξ =

(
0 0.5 0

)T
was given, the brain did not

understand that it could affect the Jackal’s slip velocity vy
by changing its other velocities vx and ωz , due to v̇y only
being dependent on vy when ωz0 and vx0

are zero. Both of
these problems are addressed and further explained in the
next subsection Prioritizing prior values.

2) Is it possible to make the algorithm prioritize one of the
velocities vx, vy and ωz separately?: To further investigate
and optimize the brain, changes to the code have to be made
in order to make the brain prioritize certain prior values.
Specifically, it would be interesting to test what the brain
will do when it is given a prior only for vy and thinks both
the vx and ωz directions are unimportant. Hopefully it will
stabilize around the correct slip velocity vy , and choose a
stable vx and ωz to manage this. This prioritization will be
made possible by altering the Πz matrix.

The objective is to separate the individual priors ξ for vx,
vy , and ωz , since in the default setup the brain can only
satisfy all the priors at the same time. This results in the
brain wanting to reach all desired velocities simultaneously
until the prior is reached, which for some priors, including
prior ξ =

(
0 0.5 0

)T
, is impossible.

In order to resolve this issue, a closer look at the formula
for u̇ in (6) is necessary. It is desired that the steering signal
only tries to satisfy the prior for vy even though it can not
directly do so. In this equation the variable Ĝ represents the
steady state gain, which is related to the effect action has
on the measurements based on the Jackal’s state-space (3).
This Ĝ is multiplied with the Πz , which is the precision
(or inverse covariance) matrix between the noise z and the
measurements y as explained by Grimbergen [5].

In the default setup for this study there is no noise z
yet thus the covariance should be infinite. However, it is
interesting to change the Πz matrix in such a way to make
the brain think that there is infinite noise z on the irrelevant
measurements y in order to make them unimportant for
reaching the prior. This means by making the first and third
value of the diagonal 1

∞ = 0, thus:

Πz(old) =

0.1 0 0
0 0.1 0
0 0 0.1

 (13)

5

Fig. 5. Complete overview of all active ROS nodes, including noise.

is changed to

Πz(new) =

0 0 0
0 0.1 0
0 0 0

 (14)

With this Πz the steering signal u will hypothetically only
be able to affect the second state vy .

As the last subsection states the A matrix has to be altered
in order for the brain to control the Jackal at all. So, for now
a quick fix due to time constraints is that the values in the A
matrix from the Jackal are changed manually in the following
way, note this is only done for answering the current research
question:

A(new) =

−
4d
m 0 0

0.5 − 4d
m −0.5

0 0 − (a2+b2)d
Ic

 (15)

Now, these two concepts (changing the A matrix and
changing the Πz value) need to be used together. The brain
should understand both: that it can change the velocities vx
and ωz in order to alter velocity vy; and that meeting the prior
values vx and ωz is not important. Thus, it can optimize only
towards its prior for vy .

A test with the following parameters will be performed in
order to see how these changes affect the brain and will be
discussed in the next section Results:
• Prior ξ =

(
0 0.3 0

)T
, the learning rates ρ and κ are

set to the default values, the Πz matrix and the A matrix
are altered according to (14) and (15) respectively.

The value for vy was lowered, from 0.5 to 0.3, because
exploratory research showed that 0.3 is a lot easier to reach
for the Jackal than 0.5.

3) Does the algorithm filter out noise as the theory
promises, or is it limited to a perfect world?: The default
setup is not a good representation of the real world, as no
noise is present in the system. Therefore, noise needs to be
added to see if this theory indeed works in unpredictable real
world situations, like it is claimed to be.
Gaussian white noise was added to the Measurements Jackal
topic within ROS by the Measurements Noise node, as shown
in Fig.5. The code of this node can be found in appendix VII.
From here, the measurements including the noise are sent to
the brain. The tests were done by adding levels of noise

of increasing order. Tests with the following values for the
standard deviation σ were conducted:
• σ = 0.005
• σ = 0.01
• σ = 0.05
• σ = 0.1
• σ = 0.5
• σ = 1

Notice the last two tests, with a σ equal to 0.5 and 1, consist
of unreasonably high standard deviation, thereby testing
whether the brain can handle absurdly large uncertainties.
More tests with other values for the standard deviation were
done and can be found in appendix I.

4) How do different learning rates within the algorithm
affect the stability of the system?: As both learning rates
ρ and κ influence how much the prediction and action are
adjusted every time step, high values for both are preferred
in order to reach the desired prior values in the fastest way.
However, such high values for ρ and κ might influence the
stability of the Jackal state-space system.

To test if the above is the case for high learning rates the
following tests were conducted:
• Default setup with learning rate ρ = 1 ∗ 105.
• Default setup with learning rate κ = 1 ∗ 107.
• Default setup with learning rates ρ = 1 ∗ 105 and κ =

1 ∗ 107.

To verify whether the Jackal state-space system is stable,
pole-zero plots were made. It is important to notice that the
above tests were conducted by the ROS simulation, whereas
the following pole-zero plots were made with code from the
Python simulation (see appendix IV for these Python codes).
For a system to be stable, the region of convergence (ROC)
must include the imaginary axis. The ROC is the open region
to the right of the pole with the greatest real value of any
pole in the system. This means that all poles must lie in the
left half of the s-plane for BIBO stability to occur. Also,
the system needs to be linear time-invariant and causal. This
is the case as the system is linear time-invariant, see (3) on
p.2, and causal as it only uses data from previous and current
time steps.
Using the default setup with varying learning rate ρ, many
different pole-zero plots were plotted into the same figure,

6

with varying values for ρ. Data obtained from these plots
will show whether the system will remain stable for different
learning rates and provide knowledge which (high) values
of ρ are optimal for the algorithm. In order to compare the
stability found from the pole-plots with the test above, the
following pole-zero plots have been made:
• Default setup, where ρ is gradually raised from default

value of 50 to a value of 5 ∗ 107.
• Default setup, where κ is gradually raised from default

value of 1 to a value of 1 ∗ 107.
• Default setup, where both ρ and κ are gradually raised

from default value of 50 to a value of 5 ∗ 107 and 1 to
1∗107 respectively.

IV. RESULTS

In this section the results of the four research questions
will be discussed. The most important graphs, figures, and
plots are included. All other results can be found in appendix
I, II and III. In Figs. 6-12 the following parameters are
plotted:
• the measurements of the velocities received by the brain

(meas [y]).
• the prediction of the velocities by the brain (pred [µ]).
• the steering signal received by the Jackal (action [u])

These three parameters are represented by the blue, red and
green lines in the plots respectively. On the x-axis the time is
plotted in seconds and on the y-axis the velocities are plotted
in m/s or rad/s.

Fig. 6. This figure shows the velocity plots of the default setup (with prior(
0.5 0 0

)T). It shows that the desired velocity is reached in 5 seconds
(top left plot). Note that the y-scale on the other two plots is very small.

1) Does the system succeed in controlling the velocities
vx, vy and ωz of a simple robot vehicle in a simulation
using Active Inference?: The outcomes of the first series of
tests (see p.5) using the default setup with varying priors,
are presented respectively in Fig. 6 through 8.

Fig. 7. This figure shows the velocity plot of the default setup with
prior

(
0 0 0.5

)T . It shows the desired velocity is reached at 7 seconds
(bottom left plot). However, there is still repeating patterns in all plots due
to slippage through skid steering and two anomalies at 5 seconds and 17
seconds.

Fig. 8. This figure shows the velocity plot of the default setup with prior(
0 0.5 0

)T . It shows that the desired velocity is not reached (top right
plot) as the measurements remain zero. The prediction (top right plot) does
reach the desired velocity and does not follow the measurements. Note that
y-scale on the other plots is very small.

Fig. 6 shows the theory was implemented successfully
as both the prediction and the measured Jackal velocities
converge towards the set prior ξ =

(
vx vy ωz

)T
=(

0.5 0 0
)T

. Notice that the prediction lines and measure-
ment lines stay close together, which means that the brain is
accurately predicting the actual Jackal velocities and sending
correct steering signals to the Jackal in order to reach the
prior.

Fig. 7 shows decent behaviour as well. The prediction
remains stable and converges towards the prior. The mea-
surement oscillates around the prior in, interestingly enough,
repeating patters, but ultimately stays stable as well. Notice

7

how the brain tries to meet the prior vy = 0, but is not able
to keep the slip velocity at 0 m/s. Both the repeating pattern
and the slip velocity not being zero can be explained by the
skid-steering of the robot, because when the robot turns slip
(vy) will be present, as can be seen in fig. 7 as well. The two
anomalies in the angular velocity graph at 5 and 17 seconds
are definitely also interesting behaviour, but the reason for
this behaviour has not been explored during this study.

Fig. 8 shows the test which was theorized to be set up
for failure as described in the section Measurements and
processing of data. The test was still done in order to
examine the predictions of the brain. The prediction of the
slip velocity vy as seen in the top right graph converges to
the prior while the measured vy remains zero. This confirms
the assumption that this test would fail. Nonetheless, it is
still interesting that the prediction of vy does not coincide
with the measurement. However, no further investigation as
to why this abnormality occurred has been done due to time
constraints.

Fig. 9. This figure shows the velocity plot of the default setup with prior(
0 0.3 0

)T and altered matrices A an Πz . It shows an attempt is made
to reach the desired velocity (top right plot), but the measurements do not
necessarily converge towards the desired velocity. Note that the steering
signal is not the same as the average of the measurements over time. Note
that the run time for these plots is twice as long.

2) Is it possible to make the algorithm prioritize one of
the velocities vx, vy and ωz separately?: The outcome from
the test where matrix A in (3) was manually altered and
where Πz was altered in order to prioritize the prior for vy ,
can be seen in Fig. 9. In this test the prior ξ was set to(
0 0.3 0

)T
and the learning rates ρ and κ were set to the

default values.
The tests show better results in Fig.9 compared to Fig.8.

The first notable thing that happens, is that the predictions of
vx and ωz are zero. This is probably due to the fact that the
Πz parameter affects both the prediction µ (5) and the action
u (6) on p.3. The second notable thing is that the brain does
make an attempt to reach the desired prior of vy , however the

brain still has difficulty in achieving the prior. This could be
due to the fact that the learning rates are far from optimal for
this type of prior. Regardless, the measurements for vx and
ωz seem to be very noisy compared to the smooth steering
signal u and the smooth prediction for vy . This could also
be because of the change to Πz , since the steering signal
u is also dependent on the prediction µ. It could also be
because the state-space of the Jackal is too much of an
oversimplification to approximate slipping behaviour and this
problem is simply too difficult to implement in such an early
stage of research and development of Active Inference in
robotics. Finally, the steering signal starts diverging from
the average of the measurements, which could be due to the
slip rapidly changing, making the system unable to handle
the prior. However, the reason behind the brain’s behaviour
could be because a plethora of reasons, too many in fact for
the scope of this study. Ultimately, this is probably the most
interesting test result and would be great to be build upon in
a future study.

Fig. 10. This figure shows the velocity plot of default setup with noise
(σ = 0.01). It shows the desired velocity is reached at 7 seconds (top left
plot). Note that the y-scale of the other two plots is very small and that the
measurements are recorded without the added noise.

3) Does the algorithm filter out noise as it promises, or is
it limited to a rather perfect world?: Fig. 10-12 correspond
to the tests of the default setup with added noise. Only
three tests out of six tests are depicted as this shows enough
information to make conclusions. The graphs corresponding
to the other tests can be found in appendix I, see Fig. 16 to
Fig. 18.
The figures 10-12 clearly show that the brain handles noise in
a respectable manner, compared to the graph with the default
setup without noise, see Fig. 6 on page 7.
Fig. 10 shows that for little noise the brain is very capable
of keeping the Jackal’s velocities at the prior values. The
measurements, predictions and steering signal all show no
odd behaviour. The graphs depicting the ωz and vy velocities
might look inaccurate but the scales are tiny so differences

8

Fig. 11. This figure shows the velocity plot of default setup with noise
(σ = 0.1). It shows the desired velocity is reached at 5 seconds (top left
plot). Note that the y-scale of the other two plots is very small and that the
measurements are recorded without the added noise.

Fig. 12. This figure shows the velocity plot of default setup with noise
(σ = 1). It shows the desired velocity is reached in 5 seconds (top left
plot). However the measurement and action lines start to become clearly
less stable. Note that there are two anomalies at 16 and 18 seconds and that
the measurements are recorded without the added noise.

are negligible. As the standard deviation of the noise is in-
creased, the deviations of the measurements and the steering
signals relative to the predictions increase as well, seen in
both Fig. 11 and Fig. 12. To give a further indication of
how well the brain filters the noise and how big the noise
actually is, appendix I can be looked at, see Fig. 19 to Fig. 24,
where the measurements with noise can be compared to the
outgoing steering signal. In these figures, the measurements
with noise and the steering signal are depicted in blue and
green respectively. Again, observe how constant the steering
signal is compared to the measurements with noise.
These results show the brain filters (Gaussian white) noise
extremely well, even when the standard deviation is raised

to relatively absurd values.

4) How do different learning rates within the algorithm
affect the stability of the system?: Figure 13 gives the insight
that increasing the ρ in our default setup results in unstable
behaviour. Using trial and error, it was found that the system
becomes unstable when ρ reaches a value of approximately
10.000. Within the figure, the prediction converges towards
the prior, while the measured velocities, vx, vy and ωz ,
and the steering signals of vx and ωz start oscillating and
diverging from the prediction. Notice that steering signal of
vx becomes unstable somewhere between 1 and 2 seconds
and goes to minus infinity. A zoomed out picture can be
found in Appendix II, see Fig. 25. The measurements and
predictions of the velocities do not go to infinity but do not
converge either and thus are marginally stable. If the same
applies to other priors is not tested. Also, by looking at
the difference between the prediction and the measurement,
it can be found that the brain does not predict the Jackal
behaviour correctly, which is curious, but has not been
explored further.

Figure 14 shows that a high kappa does not inherently
change the behaviour of the default setup. If this is also
the case for other priors is not tested. Notice that the
measurements and predictions actually converge quicker
than the first test with the default setup.

Fig. 13. Velocity plot of default setup with ρ = 1 ∗ 105, zoomed in.
Note that the action line, top left plot, goes to minus infinity and that the
measurements do not oscillate around the prior or prediction values for this
top left plot.

As followed from the results from the ROS simulation,
it seems like ρ impacts the stability more than κ does.
Therefore the pole-zero plot of varying values of ρ will be
analyzed first.

In the plot in Fig. 15 the default setup is used, but with
values for ρ varying between 50 and 5 million. In the left
plots the zeros are shown and on right the poles are shown.
In order to prevent extreme clustering of the poles and zeros,

9

Fig. 14. Velocity plot of default setup with κ = 1∗107. It shows the desired
velocity is reached at 2.5 seconds, note that the prediction line converges
even faster towards the prior, top left plot. Note the y-scale on the other
two plots is very small.

Fig. 15. Pole-zero plot for varying values of ρ. They are plotted with
default values with ρ varying between 50 and 5 ∗ 107. The size of ρ is
multiplied by 4 for every plot, and are all plotted within the same figure.
Red dots represent poles and zeros resulting from default values, blue dots
with approximately the first unstable value of ρ = 1 ∗ 105 and black every
other zero and pole. Note that there are no poles or zeroes with positive
x-values in these plots.

the vector for ρ is chosen to multiply its previous value 4
times. This means if the first value is equal to 50, the second
will be 200, the third 800, etc. Zoomed-in versions of the
pole-zero plots can be found in Appendix II, see Fig. 26.
The red dots represent the poles and zeros obtained using
the default value of ρ. The blue dots represent the poles
and zeros obtained using the default setup, but with ρ set
to 10.000, which is the point at which the system becomes
unstable, as was found in previous findings. The black dots
represent all the other poles and zeros.

The plot confirms that the system is indeed stable for the
default values, as all red-dotted poles are within the left-half
plane. However, the results do not coincide with the findings
for high ρ in the ROS simulation done previously. The
Jackal state-space system remains stable, even for very high

values of ρ, whereas results obtained from the simulation
(see Fig. 13) showed the system becomes unstable when
a high learning rate of ρ = 10.000 is used. The results
show it is simply not accurate enough to make a pole-
zero plot of the whole state-space system within the Python
code and expect the simulation, with the Jackal robot, to
behave the same way. In other words, a stability of the
whole system within the Python code does not translate to
a stability of the system within the ROS simulation (Python
code can be found in Appendix IV). While this difference can
simply be denoted to the state-space not being an accurate
enough representation of the Jackal kinematics, the problem
is probably more complex. This conclusion was derived by
checking the Jackal’s movements; the Jackal was accelerating
quickly and thereby constantly making wheelies and driving
on two wheels. This caused a drastic change in behaviour
and kinematics, resulting in the plots of Fig. 13 and 14 being
inadequate. This unwanted behaviour can most probably be
denoted to ρ, the learning rate of the action u, being too high
and making the action, steering signal u, change too quickly
for the Jackal.
The other tests, in which κ was raised to high values and both
learning rates were raised to higher values, were not further
analyzed in this paper because the previous test already
showed this method is not accurate enough and the ROS
environment might need some constrictions, considering
acceleration. Therefore, these results are not relevant enough
to discuss, however plots of these tests can be found in
Appendix II, Fig. 27 and 28.

V. DISCUSSION

As the study to further understand the theory of Active
Inference is still in its infancy, it is hard to say whether
it will actually accelerate artificial intelligence research.
However, as the theory shows promising results within the
neuroscientific world, it is important to do more research on
Active Inference in the field of robotics as well. This study
has made the first step of implementing this theory of Active
Inference in robotics. Using the results from this study, it can
be observed whether some theoretical occurrences also work
in a simulated environment. From this, flaws in the theory
may be addressed and possibly improved. Also, the study
gives a better visualization of the complex theory and helps
with further understanding of the theory.

A. Error analysis

In order to implement the state-space formulation into a
simulated world, multiple simplifications and assumptions
were made. The four most important ones are listed below.

Firstly, the values vx0 and ωz0 in the A matrix of (3)
on p. 2 were found by exploratory means instead of by a
full dynamical analysis. The values used are placeholders in
order to represent correlations between the slip velocity and
the forward and angular velocity.

Secondly, equations (5) and (6) on p. 3 represent the state-
space of the brain. From these state-space equations, it is
clear that the whole state-space will change when altering

10

the learning rates, as both ρ and κ are not just gains to
the system. Therefore, trying to optimize the learning rates
is difficult, as the state-space is constantly changing when
altering the learning rates. Also, even if perfect learning
rates were obtained, these would only work for certain set
priors. When changing the priors to other values, the optimal
learning rates change as well.

Thirdly, the prediction µ shows some odd behaviour which
this study has not been able to explain. When the default
setup is used with a prior for the slip velocity, the prediction
converges to the prior while the measurements stay at zero.
This could be due to an error in the code, an error in the
formulation or maybe even an intrinsic quality corresponding
to the theory of Active Inference.

Finally, a maximum value of the Jackal’s acceleration was
not accounted for. Especially with high learning rates the
Jackal occasionally makes a wheelie, disturbing its kinemat-
ics. This occurs most likely because it tries to reach the
desired velocity too fast and accelerates too fast. The state-
space of the Jackal does not take these undesired movements
into account, thereby disrupting the algorithm.

VI. CONCLUSIONS AND RECOMMENDATIONS

A. Summary of results and conclusions

The goal of this paper was to present a novel implemen-
tation of the Active Inference theory on a simple mobile
robot, the Jackal. The resulting Active Inference algorithm
was used to estimate and control the velocities of this robot.
To reach this goal, the following four research questions were
answered:

1) Does the system succeed in controlling the velocities
vx, vy and ωz of a simple robot vehicle in a simulation
using Active Inference?: Research was done whether the
brain could succeed in controlling the velocities vx, and
ωz of the Jackal separately. For the priors

(
vx vy ωz

)T
equal to

(
0.5 0 0

)T
and

(
0 0 0.5

)T
the theory was

implemented successfully as both the prediction as well as
the measured Jackal velocities converge towards the priors.
Important to observe that the prior of

(
0 0 0.5

)T
showed

oscillations in vy direction, proving the Jackal skid steers
when having an angular velocity. Results for controlling
velocity vy separately were negative, more on this in the
next paragraph.

2) Is it possible to make the algorithm prioritize one of
the velocities vx, vy and ωz separately?: Consecutively,
research was done to overcome the problem that the Jackal is
physically unable to move in the sideways vy direction when
the other priors where given a value of 0. The solution to this
problem consist of prioritizing the vy prior. This was done
by changing the Πz matrix which gave far better results than
the default setup. Also successful changes to the A matrix
were made to maintain the brains capabilities of controlling
vy whilst vx and ωz were zero. However, results are still far

from optimal and a large amount of potential research could
be done in this field.

3) Does the algorithm filter out noise as the theory
promises, or is it limited to a perfect world?: In order to
test whether Active Inference can indeed deal with noise as
well as is claimed to be, Gaussian white noise was added
to the measurements. It can be concluded that the brain can
indeed filter noise, with reasonable standard deviations, in
a desirable way. The brain is able to correctly achieve the
desired priors.

4) How do different learning rates within the algorithm
affect the stability of the system?: Lastly, the stability of the
system with varying learning rates ρ and κ was studied. The
results showed the system becomes unstable when ρ reaches
a value of 10.000, whereas κ does not inherently seem to
influence the stability. The reason for instability for high ρ is
still unclear. Pole-zero plots of the system were also studied
from the Python code, but relevant results were not found.

All the sub questions considered, it can be concluded that
it is at least possible to use a controller based on Active
Inference. Whether it is feasible, can not yet be answered,
as this study only explored the capabilities of controlling the
velocities of a Jackal in a ROS simulation. More study needs
to be done on Active Inference in robotics, to fully discover
the benefits of Active Inference in robotics.

B. Recommendations for future studies

As this study is only the first to implement Active In-
ference in robotics, plenty of further future research can be
done on this subject. In this section we present the four most
interesting topics for further research.

Firstly, more research could be done on the prioritization
of prior vy . This study made some alterations to the matrices
A and Πz in order to try to prioritize this slip velocity and
acquired some interesting results, but the behaviour has not
been explained yet. It would be interesting to study this
behaviour and find a way to accurately prioritize the slip
velocity in a way that the Jackal can move with constant
slip.

A second study could be done on the addition of different
noise types. As Friston [3] claims that Active Inference is
able to cope with noise with exceptional effectiveness, it
would be interesting to further explore this. This study has
made the first step by adding Gaussian white noise to the
measurement and the systems seems to be able to deal with
it very well. Next research topics can include the addition
noise in different ways:
• Instead of just adding noise to the measurements, noise

can also be added to the steering signal. This would be
a more accurate model of the real world as an action
will not perfectly alter the states of the world.

• Another type of noise can be added to the measure-
ments. In this study Gaussian white noise is used, but
modelling other types of disturbances, like dependent

11

noise, could give interesting results on how the system
would react to realistic, noisy scenarios.

• An irregular surface terrain can be included. This study
uses a flat and homogeneous terrain, but to simulating
a more accurate world-like terrain would be more real-
istic. Hills, bumps and different types of terrain could
be implemented to investigate how the system reacts to
irregularities in the environment.

• The most realistic way of adding noise is by implement-
ing this setup in a real Jackal and use top view cameras
to measure the velocities. It would be interesting to
investigate whether the Jackal will still be capable of
controlling its velocities in a real environment. Eventu-
ally, even more noise could be added by measuring the
velocities with GPS or with on board cameras.

Thirdly, more research can be done on the stability of
the system. This study made a beginning on investigating
the effect of the learning rates κ and ρ on the stability of
the system, but no satisfying conclusions have been made
yet. More research can be done on how the learning rates
influence the zeros and poles and the stability of the system.
Besides, investigating which other parameters significantly
influence the stability could give more insight in how Active
Inference operates and would therefore be very interesting.

Lastly, the A matrix of the state-space of the Jackal needs
to be studied thoroughly and improved. Out of curiosity more
exploratory research was done by adjusting the values vx0

and ωz0 in the A matrix. This had some major effects on
reaching prior of vy . Using trial and error, improved result of
reaching the prior of the slip velocity were found. A graph
of this more desired behaviour can be found in Appendix
III, Fig. 29. Further improvements of the A matrix could be
found through:
• More exploratory research using trial and error can be

conducted in order to further optimize the A matrix and
the behaviour of the Jackal robot.

• A detailed dynamical analysis, using techniques such as
Taylor expansions, can be carried out to find out which
values are correct and give optimal results.

• Making the A matrix self-taught instead of predefined.
Currently, the most obvious method of doing this is by
introducing machine learning through a concept called
’expectation maximization’ [3]. This could circumvent
the whole issue of having to dive into dynamical theory
in order to improve the brain.

ACKNOWLEDGEMENTS

This project has been commissioned by the department
of Cognitive Robotics under supervision of Prof. dr. ir. M.
Wisse. We would like to express our appreciation to him for
his valuable and constructive suggestions during the planning
and development of this research work. His willingness to
give his time so generously has been very much appreciated.

REFERENCES

[1] K. J. Friston, J. Daunizeau, J. Kilner, and S. J. Kiebel, “Action and
behaviour: a free-energy formulation,” Biological cybernetics, vol. 102,
no. 3, pp. 227–260, 2010.

[2] K. J. Friston, “The free-energy principle: a unified brain theory?” Nature
Reviews Neuroscience, vol. 11, no. 2, pp. 127–138, 2010.

[3] K. J. Friston, N. Trujillo-Barreto, and J. Daunizeau, “Dem: A variational
treatment of dynamic systems,” NeuroImage, vol. 41, no. 3, pp. 127–
138, 2008.

[4] C. L. Buckley et al., “The free energy principle for action and per-
ception: A mathematical review,” Journal of Mathematical Psychology,
vol. 81, pp. 55–79, 2017.

[5] S. S. Grimbergen, “A state space formulation of active inference,” in
preperation.

12

VII. APPENDIX

APPENDIX I
GRAPHS REGARDING NOISE

Fig. 16. Velocity plot of default setup with noise (σ = 0.005). Plotted are the measurements recorded without added noise. It shows the desired velocities
are reached at 5 seconds, top left plot. Note the y-scale on the other two plots is very small.

Fig. 17. Velocity plot of default setup with noise (σ = 0.05). Plotted are the measurements recorded without added noise. It shows the desired velocities
are reached at 4 seconds, top left plot. Note the y-scale on the other two plots is very small.

13

Fig. 18. Velocity plot of default setup with noise (σ = 0.5). Plotted are the measurements recorded without added noise. It shows the desired velocities
are reached at 5 seconds, top left plot, however are not as stable as previous figures. Note the y-scale on the other two plots is very small.

Fig. 19. Velocity plot of default setup with noise (σ = 0.005). Note these are the exact same tests as the figures above, and in sectionResults, with
corresponding σ. Only the measurements are recorded with the added noise.

Fig. 20. Velocity plot of default setup with noise (σ = 0.01). Note these are the exact same tests as the figures above, and in sectionResults, with
corresponding σ. Only the measurements are recorded with the added noise.

14

Fig. 21. Velocity plot of default setup with noise (σ = 0.05). Note these are the exact same tests as the figures above, and in sectionResults, with
corresponding σ. Only the measurements are recorded with the added noise.

Fig. 22. Velocity plot of default setup with noise (σ = 0.1). Note these are the exact same tests as the figures above, and in sectionResults, with
corresponding σ. Only the measurements are recorded with the added noise.

Fig. 23. Velocity plot of default setup with noise (σ = 0.5). Note these are the exact same tests as the figures above, and in sectionResults, with
corresponding σ. Only the measurements are recorded with the added noise.

15

Fig. 24. Velocity plot of default setup with noise (σ = 1). Note these are the exact same tests as the figures above, and in sectionResults, with corresponding
σ. Only the measurements are recorded with the added noise.

16

APPENDIX II
GRAPHS REGARDING STABILITY

Fig. 25. Velocity plot of default setup with ρ = 10000, zoomed out. Note that the action line, top left plot, goes to minus infinity and the values of the
angular action are very big, bottom left plot.

Fig. 26. Zoomed-in versions of zero plots can be viewed on the left-hand side, and pole plots on the right-hand side. It is plotted with default values
with ρ varying between 50 and 5.000.000. The size of ρ is multiplied by 4 every plot, and are all plotted within the same figure. Red dots represent poles
and zeros resulting from default values, blue dots with approximately the first unstable value of ρ = 10.000 and black every other zero and pole.

17

Fig. 27. Zoomed-in versions of zero plots can be viewed on the left-hand side, and pole plots on the right-hand side. It is plotted with default values
with κ varying between 1 and 1.000.000. Step size is constant and equal to 50.000. Red dots represent default values. Note all poles remain in the left
half plane.

Fig. 28. Zoomed-in versions of zero plots can be viewed on the left-hand side, and pole plots on the right-hand side. It is plotted with default values
with ρ and κ having varying values. Step size of both learning rates are constant. Red dots represent default values. Note all poles remain in the left half
plane.

18

APPENDIX III
GRAPHS REGARDING PRIORITIZATION

Fig. 29. Default setup where spots [1,2] and [1,0] in the A matrix are filled with 0.1 and 1.5 respectively, changing the impact of vx and ωz on vy ,
resulting in improved slip behaviour.

19

APPENDIX IV
PYTHON CODES

Main Active Inference code.
-*- coding: utf-8 -*-
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
from scipy import linalg
from setupBrain import setupBrain
from staticPrior import staticPrior
from setupCL import setupCL
from IFE import IFE
State Space Active Inference: One Dimensional S stem
#
The user can specify a desired state space model in the indicated section.
Also the hyperparameters of the algorithm can be tuned in the indicated
section. Don't make any other changes unless you want to adapt the inner
workings of the algorithm.
#
Several assumptions/simplifications have been adopted in this first
version to make simulation more convenient or for other reasons. These are:
#
1) The prior variable 'xi' is constant (static reference)
2) The model parameters are known exactly, no learning

State space model
m = np.matrix([17]) # mass in kg
d= 0.8*m # damping coefficient in x direction
length = np.matrix([0.420]) # length of the Jackal in m
a = 0.5*length # half length for multiplication
width = np.matrix([0.27]) # width of the Jackal in m
b = 0.5*width # half width for multiplication
Ic = 0.4485 # Moment of Inertia around center of mass
R = np.matrix([0.098]) # wheel radius

x_eq = np.r_[0.5,0,0]

A = np.zeros((3,3))
A[0,0] = -4*d/m
A[1,1] = -4*d/m
A[2,2] = -(a**2+b**2)*d/Ic
A[1,2] = -x_eq[0]
A[1,0] = x_eq[2]

B = np.zeros((3,2))
B[0,:] = 2*d/m
B[2,0] = -2*d*b/Ic
B[2,1] = 2*d*b/Ic

C = np.identity(3)

Tuning parameters

rho = 50 # control learning rate (default: 2e8)
kappa = 1 # estimation learning rate (default: 1e2)
p = 0 # number of generalized states (default: 6)
varw = np.matrix([10.0]) # uncertainty in states (variance)
varz = np.matrix([10.0]) # uncertainty in outputs (variance)
s = 0.1 # smoothness of (all) noises

Preprocessing:
Time:

T_end = 10
dt = 0.001
t = np.arange(0, dt+T_end, dt)
N = np.size(t,0)

Dimensions:
n = np.size(A,1) # state eval
m = np.size(B,1) # input

20

q = np.size(C,0) # output

Put matrices in state space structure:
process = signal.StateSpace(A,B,C)

Setup AI variables:
brain = setupBrain(process,p,kappa,rho,varw,varz,s)

Construct prior signal:
The prior is now assumed to be a desired (static) state.

brain.xi = staticPrior(brain.A,x_eq,p)

Retrieve closed loop state space representation:
Note: the state of this system is [x mu u]

[Yss,MUss,AIss] = setupCL(process,brain)

Simulate Active Inference
Construct input signals:

xi = brain.xi # retrieve prior (constant in this version)

Simulations:
x0 = np.hstack([np.zeros(n),np.zeros(n*(p+1)+m)]) # Initial closed loop state [x mu u];

Constructing exponential matrixes
n_states = AIss.A.shape[0]
n_inputs = AIss.B.shape[1]
M = np.vstack([np.hstack([AIss.A * dt, AIss.B * dt]),

np.zeros((n_inputs, n_states + n_inputs))])
expMT = linalg.expm(M.transpose())
Ad = expMT[:n_states, :n_states]
Bd = expMT[n_states:, :n_states]

n_states = MUss.A.shape[0]
n_inputs = MUss.B.shape[1]
M = np.vstack([np.hstack([MUss.A * dt, MUss.B * dt]),

np.zeros((n_inputs, n_states + n_inputs))])

expMT = linalg.expm(M.transpose())
Abrain = expMT[:n_states, :n_states]
Bbrain = expMT[n_states:, :n_states]

n_states = Yss.A.shape[0]
n_inputs = Yss.B.shape[1]
M = np.vstack([np.hstack([Yss.A * dt, Yss.B * dt]),

np.zeros((n_inputs, n_states + n_inputs))])
expMT = linalg.expm(M.transpose())
Aworld = expMT[:n_states, :n_states]
Bworld = expMT[n_states:, :n_states]

For-loop Simulation
yAI=np.zeros((N,AIss.A.shape[0]))
mu=np.zeros((N,MUss.A.shape[0]))
y=np.zeros((N,Yss.A.shape[0]))
yAI[0,:]=x0
y[0] = x0[0:n]

for i in range(0,N-1):
yAI[i+1] = np.dot(yAI[i], Ad) + np.dot(xi, Bd)

mu[i+1] = np.dot(mu[i], Abrain) + np.dot(np.hstack([np.matrix([y[i]]),np.matrix([xi])]), Bbrain)
y[i+1] = np.dot(y[i],Aworld) + np.dot(mu[i,n*(p+1):mu.shape[1]],Bworld)

Extract states from the results:
xAI = yAI[:,0:n].transpose()
muAI = yAI[:,n:n*(p+2)].transpose()
uAI = yAI[:,n*(p+2):yAI.shape[1]].transpose()

Calculate IFE for whole trajectory:
F = IFE(muAI,np.dot(C,xAI),brain)
FE = IFE(mu[:,0:n*(p+1)].transpose(),np.dot(C,y.transpose()),brain)
Plot results:
plt.close("all")
plt.figure(1)
plt.subplot(221)

21

plt.grid(True)
plt.plot(t,x_eq[0]*np.ones(np.size(t)),'r:',label='x_{eq}')
plt.plot(t,xAI[0,:].transpose(),'--',label='x')
plt.plot(t,muAI[0,:],label='μ_x')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,

ncol=2, mode="expand", borderaxespad=0.)

plt.xlabel('Time $[s]$')
plt.ylabel('State $[m/s]$')

plt.subplot(222)
plt.plot(t,uAI[0,:])
plt.grid(True)

plt.xlabel('Time $[s]$')
plt.ylabel('Action / Force $[N]$')

plt.subplot(223)

plt.plot(t,F[0]);
plt.grid(True)
plt.xlabel('Time $[s]$')
plt.ylabel('Free Energy')

plt.figure(2)
plt.subplot(221)

plt.grid(True)
plt.plot(t,x_eq[0]*np.ones(np.size(t)),'r:',label='x_{eq}')
plt.plot(t,y[:,0],'--',label='y')
plt.plot(t,mu[:,0],label='μ_x')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,

ncol=2, mode="expand", borderaxespad=0.)

plt.xlabel('Time $[s]$')
plt.ylabel('State $[rad/s]$')

plt.subplot(222)
plt.plot(t,mu[:,n*(p+1):mu.shape[1]])
plt.grid(True)

plt.xlabel('Time $[s]$')
plt.ylabel('Action / Force $[N]$')

plt.subplot(223)

plt.plot(t,FE[0]);
plt.grid(True)
plt.xlabel('Time $[s]$')
plt.ylabel('Free Energy')

%matplotlib qt

Forward model code.
-*- coding: utf-8 -*-
def forwardModel(process):

import numpy as np
Construct the forward model for given state space process
#
INPUTS:
process = State space model (continuous or discrete)

Unpack the process:
A = process.A
B = process.B
C = process.C
D = process.D

n = np.size(A,1)

Define forward model (adopting steady state gain assumption):
if process.dt is None:

Ghat= np.dot(np.dot(C,(-np.linalg.inv(A))),B)+D

22

else: # if discrete system
Ghat= np.dot(np.dot(C,np.linalg.inv(np.identity(n)-A)),B) + D

return Ghat

Generalized statespace code.
-*- coding: utf-8 -*-
def generalizeStateSpace(process,p):

import numpy as np
Construct a generalized state space model
INPUTS:
process = State space model of generative process. Can be either
continuous or discrete time model.
p = Desired number of generalized coordinates (>=0)
genmeas = Optional boolean, indicating availability of generalized
measurements.
#
OUTPUTS:
Atilde = A matrix of generatized model
Btilde = B matrix of generalized model
Ctilde = C matrix of generalized model
Dtilde = D matrix of generalized model

Pre-processing:
A = process.A
B = process.B
C = process.C
D = process.D

n = np.size(A,1) # state dimension
m = np.size(B,1)
q = np.size(C,0) # output dimension

Generalize the model:
p = 0 -> no generalization desired.
p = 1 -> adds one derivative, etc. etc.

Ip = np.identity((p+1))

Atilde = np.kron(Ip,A)
Btilde = np.kron(Ip,B)
Ctilde = np.hstack([C,np.zeros((n,n*p))])
Dtilde = np.hstack([D,np.zeros((n,n*p))])

return [Atilde,Btilde,Ctilde,Dtilde]

Informational Free Energy code.
-*- coding: utf-8 -*-

def IFE(muAI,xAI,brain):
import numpy as np

Evaluate current Informational Free Energy (IFE)
#
INPUTS:
mu = Current generalized state estimation mu(k)
y = Current measurement, this is the new data
brain = Structure containing all variables of the robot brain
#
OUTPUTS:
F = Current value of the free energy

Extract required variables

n = np.size(xAI,0)
N = np.size(xAI,1) # number of timepoints
#M = np.size(y,0)
F=np.zeros((n,N)) # initialize vector

for j in range(0,n):

23

Atilde = brain.A[j::n,j::n]
Ctilde = brain.C[0,0::n]
D = brain.D[0,0]
Piz = brain.Piz[0,0]
Piw = brain.Piw[j::n,j::n]
xi = brain.xi[j::n]
mu = muAI[j::n,:]
y = np.matrix([np.dot(Ctilde[0],xAI[j,:])])

Calculate the Free Energy

for i in range(0,N):
F[j,i] = 0.5*(

(y[:,i]-np.dot(Ctilde,mu[:,i]))*Piz*(y[:,i]
- np.dot(Ctilde,mu[:,i])).transpose()
+ np.dot((np.dot(D,mu[:,i])-np.dot(Atilde,mu[:,i])-xi),np.dot(Piw,(np.dot(D,mu[:,i])
- np.dot(Atilde,mu[:,i])-xi)).transpose())
)

return F

Setup brain code.
-*- coding: utf-8 -*-
def setupBrain(process,p1,kappa,rho,varw,varz,s):

#from generalizeMeasurement import generalizeMeasurement
from generalizeStateSpace import generalizeStateSpace
from forwardModel import forwardModel

from scipy.linalg import toeplitz
import numpy as np
from scipy import signal

##Construct a structure containing the generative model variables
INPUTS:
process = State space model of generative process (assuming agent
knows the exact process dynamics). Can be either continuous
or discrete time model.
p = Desired number or generalized coordinates (>=0)
kappa = Learning rate for perception cycle (>0)
rho = Learning rate for action cycle (>0)
varw = Variance of the state noises
varz = Variance of the output noises
s = Smoothness of the noises (same for all)

OUTPUTS:
brain.A = A matrix of generative model
brian.B = B matrix of generative model
brain.C = C matrix of generative model
brain.G = Forward Model of agent
brain.D = Derivative operator matrix
brain.p = Number of generalized states
brain.Piz = Precision matrix output noise
brain.Piw = Precision matrix state noise
brain.kappa = Perception learning rate
brain.rho = Action learning rate
brain.s = Smoothness of the noises

Brain model options:
A = process.A
B = process.B
C = process.C

Pre-processing:
kappa1 = kappa
rho1 = rho
s1 = s

Dimension variables:
n = np.size(A,1); # state dimension

Identity matrices for quick construction:
===
x=[]
for i in range(p1+1):

24

x.append(s*0*(1/(i+1)))
x.append(s*1/(i+1))
x.append(s*0/(i+1))
Ip = np.diag(x)
===

Ip = np.identity(n*(p1+1))

In = np.identity(n)

Model Construction:
Set up generative model (assuming process is known):
Ahat = A
Bhat = B
Chat = C
model = signal.StateSpace(Ahat,Bhat,Chat)

Generalize the model:
[Atilde,Btilde,Ctilde,Dtilde] = generalizeStateSpace(model,p1)

Construct forward model:
Ghat = forwardModel(model)

Construct D-matrix (derivative operator!):
if p1 is 0:

D1 = np.zeros((n,n))
else:

T = toeplitz(np.zeros(p1+1),np.r_[0, 1, np.zeros(p1-1)])
D1 = np.kron(T,In)

Set up generalized precision (inverse covariance) matrices:
Piz_tilde = np.kron(Ip,np.diag(1/varz))

Piw_tilde = np.kron(Ip,np.diag(1/varw))

Generate the output structure:
class brain:

A = Atilde
B = Btilde
C = Ctilde
D = Dtilde
G = Ghat
Do = D1
p = p1
Piz = Piz_tilde
Piw = Piw_tilde
kappa = kappa1
rho = rho1
s = s1

return brain

Setup closed loop code.
-*- coding: utf-8 -*-
def setupCL(GenProc, brain):

from scipy import signal
import numpy as np

FUNCTION DESCRIPTION:
This function constructs the closed loop state space model
INPUTS:
GenProc = Generative Process (State Space Model)
brain = Generative Model (Structure):

GenMod.A = A matrix of generative model
GenMod.C = C matrix of generative model
GenMod.G = Forward Model of agent
GenMod.xi = Prior functional (static for now)
GenMod.Piz = Precision matrix output noise
GenMod.Piw = Precision matrix state noise
GenMod.kappa = Perception learning rate
GenMod.rho = Action learning rate

OUTPUTS:

25

AIss = State Space Model of the closed loop system

Pre-processing
Extract process matrices:
A = GenProc.A
B = GenProc.B
C = GenProc.C

Unpack generative model:
Atilde = brain.A
Btilde = brain.B
Ctilde = brain.C
Dtilde = brain.D
D = brain.Do
Ghat = brain.G
p = brain.p
rho = brain.rho
kappa = brain.kappa
Piz = brain.Piz
Piw = brain.Piw

Dimensions:
n = np.shape(A) # state
m = np.shape(B) # input
q = np.shape(Ctilde) # output

Processing:
M = D - kappa*np.dot(np.dot((D-Atilde).transpose(),Piw),(D-Atilde)) - kappa*np.dot(Ctilde.transpose(),Ctilde)*Piz
l=np.shape(M)

Q= -rho*np.dot(np.dot(Ghat.transpose(),Piz[0:n[0],0:n[1]]),C)
R= np.dot(np.dot(rho*Ghat.transpose(),Piz[0:n[0]]),Ctilde.transpose())

The state of the model is [x mu u], hence the 3x3 partitioning of Acl:
Amu = np.zeros((l[0] + R.shape[0], l[1] + m[1]))
x=0;y=0
Amu[x:x+l[0],y:y+l[1]] = M
x=x+l[0]
Amu[x:x+R.shape[0],y:y+R.shape[1]] = R

Acl = np.zeros(((n[0]+l[0]+Q.shape[0]),(n[1]+l[1]+m[1])))
r=np.shape(Acl)
x=0;y=0;
Acl[x:x+n[0],y:y+n[1]]=A
Acl[x:x+m[0],r[1]-m[1]:r[1]]=B
x=x+n[0]
Acl[x:x+q[1],y:y+q[0]]= np.dot(np.dot(kappa*Ctilde,Piz).transpose(),C)
y=y+n[1]
Acl[x:x+l[0],y:y+l[1]]=M
x=x+q[1]; y=0
Acl[x:r[0],y:y+n[1]]=Q
y=y+Q.shape[1]
Acl[x:r[0],y:y+n[1]]=R

"""
Acl = [A zeros(n,n*(p+1)) B;...

kappa*Ctilde.'*Piz*C M zeros(n*(p+1),m);...
-rho*Ghat*Piz*C rho*Ghat*Piz*Ctilde zeros(m,m)];

"""

The inputs are [xi w z], hence the 3x3 partitioning of Bcl:
Bmu = np.zeros((l[0] + R.shape[0], l[1] + R.shape[1]))
x=0;y=0
Bmu[x:x+l[0],y:y+n[1]] = kappa*np.dot(Ctilde,Piz).transpose()
x=x+l[0]
Bmu[x:x+Q.shape[0],y:y+n[1]]= -rho*np.dot(Ghat.transpose(),Piz[0:n[0],0:n[1]])
x=0;y=y+n[1]
Bmu[x:x+l[0],y:y+l[1]] = kappa*np.dot((D-Atilde).transpose(),Piw)

Bcl = np.zeros(((n[0]+l[0]+R.shape[0]),(l[1])))
x=0+n[0];y=0
Bcl[x:x+D.shape[0],y:y+D.shape[1]]= kappa*np.dot((D-Atilde).transpose(),Piw)

"""
Bcl = [zeros(n,n*(p+1)) eye(n) zeros(n,q);...

26

kappa*(D-Atilde).'*Piw zeros(n*(p+1),n) kappa*Ctilde.'*Piz;...
zeros(m,n*(p+1)) zeros(m,n) -rho*Ghat*Piz];

"""

For inspection purposes, we choose to measure all signals:
Cmu = np.zeros((np.size(B,1),np.size(Amu,1)))
x=0;y=0+l[1]
Cmu[x:x+B.shape[1],y:y+B.shape[1]] = np.identity(B.shape[1])
#Cmu = np.eye(Amu.shape[0],Amu.shape[1])

Ccl = np.eye(1,Acl.shape[1])

There is no direct feedthrough of any signal:
Dmu = np.zeros((Cmu.shape[0],Bmu.shape[1]))

Dcl = np.zeros((Ccl.shape[0],Bcl.shape[1]))

Put the four matrices in a state space sturcture (continuous):
Yss = signal.StateSpace(A,B,C)
MUss = signal.StateSpace(Amu,Bmu,Cmu)
AIss = signal.StateSpace(Acl,Bcl,Ccl)

return (Yss,MUss,AIss)

Static prior code.
-*- coding: utf-8 -*-
def staticPrior(Atilde,x_eq,p):

import numpy as np
Construct the static part of a prior
INPUTS:
Atilde = Belief of the agent about the generative process
x_eq = Desired equilibrium state of generative process
p = Number of generalized states
#
OUTPUTS:
xi = Reference value that will steer the estimation dynamics
#
Pre-processing:

n = np.size(x_eq,0)

Construct the prior signal:
x_gen_eq = np.hstack([x_eq,np.zeros(n*p)]) # Equilibrium in generalized coordinates

Ades = 0 # Desired process dynamics (not functional yet)

xi = -np.dot((Atilde+Ades),x_gen_eq) # static prior variable
return xi

Pole-zero plot code for varying values of ρ

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Created on Thu Dec 20 17:27:41 2018

@author: Stijn
"""
-*- coding: utf-8 -*-
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
from scipy import linalg
from control import *
import sys

from setupBrain import setupBrain
from staticPrior import staticPrior
from setupCL import setupCL
from IFE import IFE

rho = []
x = 50

27

for i in range(100):
rho.append(x)
x *= 2
if x == 51200:

x = 50000
if x >= 5e6:

break

rho.reverse()
kappa = 1
desired_rho = 50000

for i in range(len(rho)):

'''
Put in code from main_simple.py and remove kappa and rho variables
'''

plt.figure(1)
#plt.suptitle('Pole-Zero Plot for Varying Rho Values', fontsize=25)
if i == len(rho)-1:

plt.subplot(321)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 10, 'r')
plt.xlabel('Zeros, real')
plt.ylabel('imag')

plt.subplot(322)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 10, 'r')
plt.xlim(-4, 0)

plt.subplot(323)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 5, 'r')
plt.xlabel('Zeros, real')
plt.ylabel('imag')
plt.xlim(-4,0)
plt.ylim(-30,30)

plt.subplot(324)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 5, 'r')
plt.xlabel('Poles, real')
plt.xlim(-4, 0)
plt.ylim(-25,25)

plt.subplot(325)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 5, 'r')
plt.xlabel('Zeros, real')
plt.ylabel('imag')
plt.xlim(-0.25e1,0.05e1)
plt.ylim(-1.5,1.5)

plt.subplot(326)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 5, 'r')
plt.xlabel('Poles, real')
plt.xlim(-4, 0)
plt.ylim(-2.7,2.7)

elif i == 6:
plt.subplot(321)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 10, 'b')

plt.subplot(322)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 10, 'b')

plt.subplot(323)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 10, 'b')

plt.subplot(324)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 10, 'b')

plt.subplot(325)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 10, 'b')

plt.subplot(326)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 10, 'b')

28

else:
plt.subplot(321)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 2, 'y')
plt.subplot(322)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 2, 'y')

plt.subplot(323)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 2, 'y')
plt.subplot(324)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 2, 'y')
plt.subplot(325)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 2, 'y')
plt.subplot(326)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 2, 'y')

Pole-zero plot code for varying values of κ

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Created on Fri Dec 21 10:06:18 2018

@author: Stijn
"""

kappa = []
for i in range(0,100):

x = 1 + 1e4*i
kappa.append(x)

kappa.reverse()
rho = 50

for i in range(len(kappa)):

'''
Put in code from main_simple.py and remove kappa and rho variables
'''

fig = plt.figure(2)
#plt.suptitle('Pole-Zero Plot for Varying Kappa Values', fontsize=25)

if i == len(kappa)-1:

zero = plt.subplot(321)
zero.set_title("Zero-plots")
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 10, 'r')
plt.xlabel('Zeros, real')
plt.ylabel('imag')

pole = plt.subplot(322)
pole.set_title("Pole-plots")
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 10, 'r')
plt.xlabel('Poles, real')

plt.subplot(323)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 10, 'r')
plt.xlabel('Zeros, real')
plt.ylabel('imag')
plt.xlim(-4,0)
plt.ylim(-30,30)
#plt.ylim(-30,30)

plt.subplot(324)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 10, 'r')
plt.xlabel('Poles, real')
plt.xlim(-5, 1)
plt.ylim(-25,25)

29

plt.subplot(325)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 10, 'r')
plt.xlabel('Zeros, real')
plt.ylabel('imag')
plt.xlim(-0.25e1,0.05e1)
plt.ylim(-1.5,1.5)

plt.subplot(326)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 10, 'r')
plt.xlabel('Poles, real')
plt.xlim(-5,1)
plt.ylim(-2,2)

else:
plt.subplot(321)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 1, 'b')
plt.subplot(322)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 1, 'b')

plt.subplot(323)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 1, 'b')
plt.subplot(324)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 1, 'b')
plt.subplot(325)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 1, 'b')
plt.subplot(326)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 1, 'b')

Pole-zero plot code for varying values of ρ and κ

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Created on Thu Dec 20 17:30:10 2018

@author: Stijn
"""

kappa = []
rho = []

for i in range(0,100):
x = 1 + 1e4*i
kappa.append(x)

for i in range(0,100):
x = 50 + 50000*i
rho.append(x)

rho.reverse()
kappa.reverse()

for i in range(len(kappa)):

'''
Put in code from main_simple.py and remove kappa and rho variables
'''

if i == len(kappa)-1:

zero = plt.subplot(321)
zero.set_title("Zero-plots")
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 10, 'r')
plt.xlabel('Zeros, real')
plt.ylabel('imag')

pole = plt.subplot(322)
pole.set_title("Pole-plots")
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 10, 'r')
plt.xlabel('Poles, real')

plt.subplot(323)

30

plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 10, 'r')
plt.xlabel('Zeros, real')
plt.ylabel('imag')
plt.xlim(-4,0)
plt.ylim(-30,30)
#plt.ylim(-30,30)

plt.subplot(324)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 10, 'r')
plt.xlabel('Poles, real')
plt.xlim(-50, 10)
plt.ylim(-6000,6000)

plt.subplot(325)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 10, 'r')
plt.xlabel('Zeros, real')
plt.ylabel('imag')
plt.xlim(-2,0.05e1)
plt.ylim(-1.5,1.5)

plt.subplot(326)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 10, 'r')
plt.xlabel('Poles, real')
plt.xlim(-4,1)
plt.ylim(-1.5,1.5)

else:
plt.subplot(321)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 1, 'b')
plt.subplot(322)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 1, 'b')

plt.subplot(323)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 1, 'b')
plt.subplot(324)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 1, 'b')
plt.subplot(325)
plt.scatter(AIzpg.zeros.real,AIzpg.zeros.imag, 1, 'b')
plt.subplot(326)
plt.scatter(AIzpg.poles.real,AIzpg.poles.imag, 1, 'b')

31

APPENDIX V
MATLAB CODES

Code to generate plots from rosbag files
%script for plotting results from rosbag files
clear all
close all

%bag names
prediction_bag = "pr10000.bag";
measurement_bag= "mr10000.bag";
action_bag = "sr10000.bag";

%Open the rosbag log files and get content information
bagpred = rosbag(prediction_bag);
bagmeas = rosbag(measurement_bag);
bagact = rosbag(action_bag);

%data measurements
datameas = readMessages(bagmeas,"DataFormat",'struct');

%data prediction
datapred = readMessages(bagpred,"DataFormat",'struct');

%data prediction
dataact = readMessages(bagact,"DataFormat",'struct');

%velocties measurements
xmeas = cellfun(@(m) double(m.XVelocity), datameas);
ymeas = cellfun(@(m) double(m.YVelocity), datameas);
angmeas = cellfun(@(m) double(m.AngularVelocity), datameas);

%velocities prediction
MuX = cellfun(@(m) double(m.MuX), datapred);
MuY = cellfun(@(m) double(m.MuY), datapred);
MuW = cellfun(@(m) double(m.MuW), datapred);

%velocities action
xact = cellfun(@(m) double(m.Linear.X), dataact);
angact = cellfun(@(m) double(m.Angular.Z), dataact);

%Time vectors
Timemeas = bagmeas.MessageList.Time;
Timemeas = Timemeas-min(Timemeas);

Timepred = bagpred.MessageList.Time;
Timepred = Timepred-min(Timepred);

Timeact = bagact.MessageList.Time;
Timeact = Timeact-min(Timeact);

%plots
subplot(2,2,1)
plot(Timemeas,xmeas,"b","LineWidth",1)
hold on
plot(Timepred,MuX,"r",'LineWidth',1)
hold on
plot(Timeact,xact,"g",'LineWidth',1)
title("v_x (Forward)")
xlabel("Time [s]")
ylabel("Velocity [m/s]")
grid on

subplot(2,2,2)
plot(Timemeas,ymeas,"b",'LineWidth',1)
hold on
plot(Timepred,MuY,"r",'LineWidth',1)
title("v_y (Slip)")
xlabel("Time [s]")
ylabel("Velocity [m/s]")
grid on

32

subplot(2,2,3)
plot(Timemeas,angmeas,"b",'LineWidth',1)
hold on
plot(Timepred,MuW,"r",'LineWidth',1)
hold on
plot(Timeact,angact,"g",'LineWidth',1)
title("\omega_z (Angular)")
xlabel("Time [s]")
ylabel("Velocity [rad/s]")
grid on
legend({'meas [y]','pred [\mu]','action [u]'},'Location','southeast','FontSize',11)

33

APPENDIX VI
ROS NODE CODES

Brain node
#! /usr/bin/env python
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
from scipy import linalg
from scipy.linalg import toeplitz
from jackal_msgs.msg import JackalCoords
from jackal_msgs.msg import Measurements
from jackal_msgs.msg import Brain
from setupBrain import setupBrain
from staticPrior import staticPrior
from setupCL import setupCL
from IFE import IFE
import rospy

def AICallback (JackalCoords, pub):

x_vel = JackalCoords.x_velocity
y_vel = JackalCoords.y_velocity
ang_vel = JackalCoords.angular_velocity

y = np.hstack([x_vel, y_vel, ang_vel])

global mu_old
mu_new = np.dot(mu_old, Abrain) + np.dot(np.hstack([np.matrix([y]),np.matrix([xi])]), Bbrain)

#print "new", mu_new

Steering_Signal = Brain()
Steering_Signal.left = mu_old[0,-2]
Steering_Signal.right = mu_old[0,-1]
Steering_Signal.angular = (Steering_Signal.right*0.098-Steering_Signal.left*0.098)/0.27
Steering_Signal.forward = (Steering_Signal.left+Steering_Signal.right)/2

Steering_Signal.mu_x = mu_new[0,0]
Steering_Signal.mu_y = mu_new[0,1]
Steering_Signal.mu_w = mu_new[0,2]

mu_old = mu_new

pub.publish(Steering_Signal)

#OPEN SPACE FOR FREE ENERGY

if __name__ == '__main__':
rospy.init_node('AI_controller')

#AI MAIN

m = np.matrix([17]) # mass in kg
d= 0.8*m # damping coefficient in x direction
length = np.matrix([0.420]) # length of the Jackal in m
a = 0.5*length # half length for multiplication
width = np.matrix([0.27]) # width of the Jackal in m
b = 0.5*width # half width for multiplication
Ic = 0.4485 # Moment of Inertia around center of mass
R = np.matrix([0.098]) # wheel radius

Desired equilibrium (x = 40m/s)
x_eq1 = np.r_[0.5,0,0]
x_eq = np.ma.masked_array(x_eq1, x_eq1 == 1)

A = np.zeros((3,3))
A[0,0] = -4*d/m
A[1,1] = -4*d/m
A[2,2] = -(a**2+b**2)*d/Ic
A[1,2] = -x_eq1[0]
A[1,0] = x_eq1[2]

34

#A[0,1] = -0.5
#A[1,0] = 0.5

B = np.zeros((3,2))
B[0,:] = 2*d/m #forward
B[2,0] = -2*d*b/Ic
B[2,1] = 2*d*b/Ic

C = np.identity(3) # measure the state directly

Tuning parameters
CHOOSE YOUR OWN HYPERPARAMETERS HERE

rho = 50 # control learning rate (default: 2e8)
kappa = 1 # estimation learning rate (default: 1e2)
p = 6 # number of generalized states (default: 6)
varw = np.matrix([10.0]) # uncertainty in states (variance)
varz = np.matrix([10.0]) # uncertainty in outputs (variance)
s = np.matrix([0.1]) # smoothness of (all) noises

Preprocessing:
Time:
T_end = 20
dt = 0.001
t = np.arange(0, dt+T_end, dt)
N = np.size(t,0)

Dimensions:
n = np.size(A,1) # state eval
m = np.size(B,1) # input
q = np.size(C,0) # output

Put matrices in state space structure:
process = signal.StateSpace(A,B,C)

Setup AI variables:
brain = setupBrain(process,p,kappa,rho,varw,varz,s)

Construct prior signal:
The prior is now assumed to be a desired (static) state.
brain.xi = staticPrior(brain.A,x_eq,p)

Retrieve closed loop state space representation:
Note: the state of this system is [x mu u]
[Yss,MUss,AIss] = setupCL(process,brain)

Simulate Active Inference
Construct input signals:
xi = brain.xi # retrieve prior (constant in this version)
#u = np.repeat(xi, N, 0) # prior signal

Simulations:
#x0 = np.hstack([np.zeros(n),np.zeros(n*(p+1)+m)]) # Initial closed loop state [x mu u];

Constructing exponential matrixes
n_states = MUss.A.shape[0]
n_inputs = MUss.B.shape[1]
M = np.vstack([np.hstack([MUss.A * dt, MUss.B * dt]), np.zeros((n_inputs, n_states + n_inputs))])

expMT = linalg.expm(M.transpose())
Abrain = expMT[:n_states, :n_states]
Bbrain = expMT[n_states:, :n_states]

For-loop Simulation
mu_old = np.zeros((1,MUss.A.shape[0]))
#y = np.zeros(Yss.A.shape[0])

pub = rospy.Publisher('Steering_Signal', Brain, queue_size = 1)
rospy.Subscriber('Measurements_Jackal', Measurements, AICallback, pub)
rospy.spin()

35

Brain node with noise
#! /usr/bin/env python
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
from scipy import linalg
from scipy.linalg import toeplitz
from jackal_msgs.msg import JackalCoords
from jackal_msgs.msg import Measurements
from jackal_msgs.msg import Brain
from setupBrain import setupBrain
from staticPrior import staticPrior
from setupCL import setupCL
from IFE import IFE
import rospy

def AICallback (JackalCoords, pub):

x_vel = JackalCoords.x_velocity
y_vel = JackalCoords.y_velocity
ang_vel = JackalCoords.angular_velocity

y = np.hstack([x_vel, y_vel, ang_vel])

global mu_old
mu_new = np.dot(mu_old, Abrain) + np.dot(np.hstack([np.matrix([y]),np.matrix([xi])]), Bbrain)

#print "new", mu_new

Steering_Signal = Brain()
Steering_Signal.left = mu_old[0,-2]
Steering_Signal.right = mu_old[0,-1]
Steering_Signal.angular = (Steering_Signal.right*0.098-Steering_Signal.left*0.098)/0.27
Steering_Signal.forward = (Steering_Signal.left+Steering_Signal.right)/2

Steering_Signal.mu_x = mu_new[0,0]
Steering_Signal.mu_y = mu_new[0,1]
Steering_Signal.mu_w = mu_new[0,2]

mu_old = mu_new

pub.publish(Steering_Signal)

#OPEN SPACE FOR FREE ENERGY

if __name__ == '__main__':
rospy.init_node('AI_controller')

#AI MAIN

m = np.matrix([17]) # mass in kg
d= 0.8*m # damping coefficient in x direction
length = np.matrix([0.420]) # length of the Jackal in m
a = 0.5*length # half length for multiplication
width = np.matrix([0.27]) # width of the Jackal in m
b = 0.5*width # half width for multiplication
Ic = 0.4485 # Moment of Inertia around center of mass
R = np.matrix([0.098]) # wheel radius

Desired equilibrium (x = 40m/s)
x_eq1 = np.r_[0.5,0,0]
x_eq = np.ma.masked_array(x_eq1, x_eq1 == 1)

A = np.zeros((3,3))
A[0,0] = -4*d/m
A[1,1] = -4*d/m
A[2,2] = -(a**2+b**2)*d/Ic
A[1,2] = -x_eq1[0]
A[1,0] = x_eq1[2]

36

#A[0,1] = -0.5
#A[1,0] = 0.5

B = np.zeros((3,2))
B[0,:] = 2*d/m #forward
B[2,0] = -2*d*b/Ic
B[2,1] = 2*d*b/Ic

C = np.identity(3) # measure the state directly

Tuning parameters
CHOOSE YOUR OWN HYPERPARAMETERS HERE

rho = 50 # control learning rate (default: 2e8)
kappa = 1 # estimation learning rate (default: 1e2)
p = 6 # number of generalized states (default: 6)
varw = np.matrix([10.0]) # uncertainty in states (variance)
varz = np.matrix([10.0]) # uncertainty in outputs (variance)
s = np.matrix([0.1]) # smoothness of (all) noises

Preprocessing:
Time:
T_end = 20
dt = 0.001
t = np.arange(0, dt+T_end, dt)
N = np.size(t,0)

Dimensions:
n = np.size(A,1) # state eval
m = np.size(B,1) # input
q = np.size(C,0) # output

Put matrices in state space structure:
process = signal.StateSpace(A,B,C)

Setup AI variables:
brain = setupBrain(process,p,kappa,rho,varw,varz,s)

Construct prior signal:
The prior is now assumed to be a desired (static) state.
brain.xi = staticPrior(brain.A,x_eq,p)

Retrieve closed loop state space representation:
Note: the state of this system is [x mu u]
[Yss,MUss,AIss] = setupCL(process,brain)

Simulate Active Inference
Construct input signals:
xi = brain.xi # retrieve prior (constant in this version)
#u = np.repeat(xi, N, 0) # prior signal

Simulations:
#x0 = np.hstack([np.zeros(n),np.zeros(n*(p+1)+m)]) # Initial closed loop state [x mu u];

Constructing exponential matrixes
n_states = MUss.A.shape[0]
n_inputs = MUss.B.shape[1]
M = np.vstack([np.hstack([MUss.A * dt, MUss.B * dt]), np.zeros((n_inputs, n_states + n_inputs))])

expMT = linalg.expm(M.transpose())
Abrain = expMT[:n_states, :n_states]
Bbrain = expMT[n_states:, :n_states]

For-loop Simulation
mu_old = np.zeros((1,MUss.A.shape[0]))
#y = np.zeros(Yss.A.shape[0])

pub = rospy.Publisher('Steering_Signal', Brain, queue_size = 1)
rospy.Subscriber('Measurements_Noise', Measurements, AICallback, pub)
rospy.spin()

37

Frame converter node
#! /usr/bin/env python
import rospy
import math
from gazebo_msgs.msg import ModelStates
from tf.transformations import euler_from_quaternion
from jackal_msgs.msg import JackalCoords

def callback(ModelStates, pub):
#Quaternion coordinates in world frame
x_ori = ModelStates.pose[-1].orientation.x
y_ori = ModelStates.pose[-1].orientation.y
z_ori = ModelStates.pose[-1].orientation.z
w_ori = ModelStates.pose[-1].orientation.w
quaternion = (x_ori, y_ori, z_ori, w_ori)

#Euler coordinates from quaternion coordinates in world frame
(roll, pitch, yaw) = euler_from_quaternion(quaternion)
theta = yaw #yaw in radians

ang_vel = ModelStates.twist[-1].angular.z
x_vel_world = ModelStates.twist[-1].linear.x
y_vel_world = ModelStates.twist[-1].linear.y
abs_vel = math.sqrt(x_vel_world**2 + y_vel_world**2)

#Euler coordinates in jackal frame
x_vel_jackal = y_vel_world * math.cos(math.pi * 0.5 - theta) + x_vel_world * math.cos(theta)
y_vel_jackal = y_vel_world * math.cos(theta) - x_vel_world * math.cos(math.pi*0.5 - theta)

print "----------------------------"
print "X velocity is:", x_vel_jackal
print "Y velocity is:", y_vel_jackal
print "Angular velocity is:", ang_vel
print "----------------------------"
print ""

coordinates = JackalCoords()
coordinates.x_velocity = x_vel_jackal
coordinates.y_velocity = y_vel_jackal
coordinates.angular_velocity = ang_vel

pub.publish(coordinates)

if __name__ == '__main__':
rospy.init_node('Frame_Converter')
pub = rospy.Publisher('Measurements_Jackal', JackalCoords, queue_size = 1)
rospy.Subscriber('/gazebo/model_states', ModelStates, callback, pub)
rospy.loginfo("The real-time velocities from the Jackal are:")
rospy.spin()

Frame converter node with noise
#! /usr/bin/env python
import rospy
import math
from gazebo_msgs.msg import ModelStates
from tf.transformations import euler_from_quaternion
from jackal_msgs.msg import JackalCoords

def callback(ModelStates, pub):
#Quaternion coordinates in world frame
x_ori = ModelStates.pose[-1].orientation.x
y_ori = ModelStates.pose[-1].orientation.y
z_ori = ModelStates.pose[-1].orientation.z
w_ori = ModelStates.pose[-1].orientation.w
quaternion = (x_ori, y_ori, z_ori, w_ori)

#Euler coordinates from quaternion coordinates in world frame
(roll, pitch, yaw) = euler_from_quaternion(quaternion)

38

theta = yaw #yaw in radians

ang_vel = ModelStates.twist[-1].angular.z
x_vel_world = ModelStates.twist[-1].linear.x
y_vel_world = ModelStates.twist[-1].linear.y
abs_vel = math.sqrt(x_vel_world**2 + y_vel_world**2)

#Euler coordinates in jackal frame
x_vel_jackal = y_vel_world * math.cos(math.pi * 0.5 - theta) + x_vel_world * math.cos(theta)
y_vel_jackal = y_vel_world * math.cos(theta) - x_vel_world * math.cos(math.pi*0.5 - theta)

print "----------------------------"
print "X velocity is:", x_vel_jackal
print "Y velocity is:", y_vel_jackal
print "Angular velocity is:", ang_vel
print "----------------------------"
print ""

coordinates = JackalCoords()
coordinates.x_velocity = x_vel_jackal
coordinates.y_velocity = y_vel_jackal
coordinates.angular_velocity = ang_vel

pub.publish(coordinates)

if __name__ == '__main__':
rospy.init_node('Frame_Converter')
pub = rospy.Publisher('Measurements_Jackal', JackalCoords, queue_size = 1)
rospy.Subscriber('/gazebo/model_states', ModelStates, callback, pub)
rospy.loginfo("The real-time velocities from the Jackal are:")
rospy.spin()

Noise generator node
#! /usr/bin/env python
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
from scipy import linalg
from scipy.linalg import toeplitz
from jackal_msgs.msg import JackalCoords
from jackal_msgs.msg import Measurements
from jackal_msgs.msg import Brain
from setupBrain import setupBrain
from staticPrior import staticPrior
from setupCL import setupCL
from IFE import IFE
import rospy

def NoiseCallback(JackalCoords, pub):

std = 1
num_samples = 1

mean_X = JackalCoords.x_velocity
mean_Y = JackalCoords.y_velocity
mean_Angular = JackalCoords.angular_velocity

Noise_X = np.random.normal(mean_X, std, size=num_samples)
Noise_Y = np.random.normal(mean_Y, std, size=num_samples)
Noise_Angular = np.random.normal(mean_Angular, std, size=num_samples)

Measurements_Noise = Measurements()
Measurements_Noise.x_velocity = Noise_X
Measurements_Noise.y_velocity = Noise_Y
Measurements_Noise.angular_velocity = Noise_Angular

pub.publish(Measurements_Noise)

if __name__ == '__main__':
rospy.init_node('Noise_Generator')
pub=rospy.Publisher('Measurements_Noise', Measurements, queue_size = 1)
rospy.Subscriber('Measurements_Jackal',JackalCoords, NoiseCallback, pub)

39

rospy.spin()

Steering signal node
#! /usr/bin/env python

import rospy
from geometry_msgs.msg import Twist
from rosgraph_msgs.msg import Clock
from jackal_msgs.msg import Brain

def callback(Brain, pub):
seconds = rospy.get_time()
print Brain.forward
move.linear.x = Brain.forward
move.angular.z = Brain.angular
'''
if int(seconds) % 6 == 0:

move.linear.x = 0.5
move.angular.z = 0.5

elif int(seconds+2) % 6 == 0:
move.linear.x = 0
move.angular.z = 0.5

elif int(seconds+4) % 6 == 0:
move.linear.x = 0
move.angular.z = 0.5

'''
pub.publish(move)

if __name__ == '__main__':
rospy.init_node('Steering_Signal_Converter')
pub = rospy.Publisher('/jackal_velocity_controller/cmd_vel', Twist, queue_size=1)
rospy.Subscriber('/Steering_Signal', Brain, callback, pub)
move = Twist()
rospy.spin()

Steering signal node with noise
#! /usr/bin/env python

import rospy
from geometry_msgs.msg import Twist
from rosgraph_msgs.msg import Clock
from jackal_msgs.msg import Brain

def callback(Brain, pub):
seconds = rospy.get_time()
print Brain.forward
move.linear.x = Brain.forward
move.angular.z = Brain.angular
'''
if int(seconds) % 6 == 0:

move.linear.x = 0.5
move.angular.z = 0.5

elif int(seconds+2) % 6 == 0:
move.linear.x = 0
move.angular.z = 0.5

elif int(seconds+4) % 6 == 0:
move.linear.x = 0
move.angular.z = 0.5

'''
pub.publish(move)

if __name__ == '__main__':
rospy.init_node('Steering_Signal_Converter')
pub = rospy.Publisher('/jackal_velocity_controller/cmd_vel', Twist, queue_size=1)
rospy.Subscriber('/Steering_Signal', Brain, callback, pub)
move = Twist()
rospy.spin()

40

APPENDIX VII
ROS LAUNCH CODES

Launch file of all nodes without noise
<launch>

<node pkg ="bep" type="Steering_Signal_Converter.py" name="Steering_Signal_Converter">
</node>

<node pkg ="bep" type="Frame_Converter.py" name="Frame_Converter">
</node>

<node pkg ="bep" type="Brain.py" name="Brain" output="screen">
</node>

<node pkg ="rosbag" type="record" name="meas_record" args="record -O /home/sebastiaan/meas --duration=60
/Measurements_Jackal">

</node>

<node pkg="rosbag" type="record" name="pred_record" args="record -O /home/sebastiaan/pred --duration=60
/Steering_Signal">

</node>

<node pkg="rosbag" type="record" name="steer_record" args="record -O /home/sebastiaan/steer --duration=60
/jackal_velocity_controller/cmd_vel">

</node>
</launch>

Launch file of all nodes with noise
<launch>

<node pkg ="bep" type="Steering_Signal_Converter_N.py" name="Steering_Signal_Converter">
</node>

<node pkg ="bep" type="Frame_Converter_N.py" name="Frame_Converter">
</node>

<node pkg ="bep" type="Brain_N.py" name="Brain" output="screen">
</node>

<node pkg ="bep" type="Noise_Generator_N.py" name="Noise_Generator" output="screen">
</node>

<node pkg ="rosbag" type="record" name="meas_record" args="record -O /home/sebastiaan/measN --duration=30
/Measurements_Jackal">

</node>

<node pkg="rosbag" type="record" name="pred_record" args="record -O /home/sebastiaan/predN --duration=30
/Steering_Signal">

</node>

<node pkg="rosbag" type="record" name="steer_record" args="record -O /home/sebastiaan/steerN --duration=30
/jackal_velocity_controller/cmd_vel">

</node>
</launch>

41

	Introduction
	Theory
	Methods
	Startup decisions
	Theoretical setup
	Implementation in Python
	ROS setup
	Measurement and processing of data
	Does the system succeed in controlling the velocities vx, vy and z of a simple robot vehicle in a simulation using Active Inference?
	Is it possible to make the algorithm prioritize one of the velocities vx, vy and z separately?
	Does the algorithm filter out noise as the theory promises, or is it limited to a perfect world?
	How do different learning rates within the algorithm affect the stability of the system?

	Results
	Does the system succeed in controlling the velocities vx, vy and z of a simple robot vehicle in a simulation using Active Inference?
	Is it possible to make the algorithm prioritize one of the velocities vx, vy and z separately?
	Does the algorithm filter out noise as it promises, or is it limited to a rather perfect world?
	How do different learning rates within the algorithm affect the stability of the system?

	Discussion
	Error analysis

	Conclusions and recommendations
	Summary of results and conclusions
	Does the system succeed in controlling the velocities vx, vy and z of a simple robot vehicle in a simulation using Active Inference?
	Is it possible to make the algorithm prioritize one of the velocities vx, vy and z separately?
	Does the algorithm filter out noise as the theory promises, or is it limited to a perfect world?
	How do different learning rates within the algorithm affect the stability of the system?

	Recommendations for future studies

	References
	APPENDIX
	Appendix I: Graphs Regarding Noise
	Appendix II: Graphs Regarding Stability
	Appendix III: Graphs Regarding Prioritization
	Appendix IV: Python Codes
	Appendix V: Matlab Codes
	Appendix VI: ROS Node Codes
	Appendix VII: ROS Launch Codes

