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Abstract— Active Inference provides a framework for
perception, action and learning, where the optimization is
done by minimizing the Free-Energy of a system. This paper
explores whether active inference can be used for closed-loop
control of a 1 degree of freedom robot arm. This is done
by implementing variational message passing on Forney-style
factor graphs; a probabilistic programming framework.
By comparing the created active inference controller to a
PID-controller, we show that an active inference controller
with variational message passing can perform state estimation
and control at the same time, without loss of performance.
The active inference controller outperforms the PID-controller
in handling impulse disturbances, inaccurate system models
and observations with major noise. With the use of variational
message passing, computation time is sufficiently small to
reach high controller frequencies.

Keywords: Forney-style factor graphs, free-energy principle,
active inference, closed-loop control, variational message pass-
ing

I. INTRODUCTION

The Free Energy Principle (FEP) has been proposed to
provide a unified theory of the brain [1], providing an expla-
nation for how cognitive functions such as perception, action
and model learning are achieved [2] [3] [4]. It claims that
in order for an intelligent agent to persist in a time-varying
environment, it must minimize ’surprise’ (the atypicality of
an event). This is done by minimizing an upper bound
called ’Free Energy’, as organisms can not directly minimize
surprisal.

Active Inference, corollary to the FEP, states that bi-
ological agents act to fulfill prior beliefs about preferred
future observations. Desired behaviour is then achieved by
minimizing Free Energy with respect to a generative model
of the environment [5]. This generative model is an internal
model of the environment that is used to produce actions and
estimate posterior states.

Recently, Active Inference has been shown to be suc-
cessful in computational and systems neuroscience [6]. It is
argued that the framework could be adopted in robotics. This
would provide a unified framework for robot state estimation
(perception), action selection (control) and model learning
[7]. However, there are no implementations of the full active
inference construct for online control at the moment. So the
benefit of perception, control and model learning combined
remain unproven.

There have been several attempts of implementing active
inference in robot control. In [8], a PR2 robot, simulated
in ROS, is controlled by open-loop Active Inference. It
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is used to display arm behaviour previously obtained in
a simplified human arm simulation in [9]. Lanillos et al.
[10] use concepts from Active Inference for sensor data
fusion for an interactive robot. Additionally, challenges in
computational time of generation of control actions have
been reported in [11].

The main contribution of this paper is to provide an online
Active Inference implementation for control of a 1 degree
of freedom (DoF) robot arm. The system is modeled as a
stochastic State-Space Model implemented as Forney-Style
Factor Graphs (FFG) [12].

In order to verify the validity of our Active Inference
controller (AIC), it is tested to deal with sensor noise, force
disturbances, incorrect initial beliefs and changes in the
environment variables. A comparison to a PID controller is
made to benchmark the AIC.

This paper is structured as follows. Section II contains
the necessary background on the Free Energy Principle,
Active Inference and Forney-Style Factor graphs. Section III
introduces the implementation of the AIC on the simulated
robot arm. Section IV provides the results of the Active
Inference based control sequence compared to other, more
conventional control strategies. Section IV provides the re-
sults of performance tests on the controller. In section V,
the results are analysed and suggestions for future work are
provided. Lastly, in section VI conclusions about the AIC
are drawn.

II. ACTIVE INFERENCE AND FACTOR GRAPHS

This section offers a short technical recap of Active
Inference and Factor graphs. The concepts will be introduced
with the application, provided in III, in mind: a torque
controlled robot arm equipped with proprioceptive sensors.

A. Variational free energy

The Free Energy Principle postulates that well-adapted
biological agents maintain a probabilistic model of their
typical environment (including their bodies). In order then to
persist in a time-varying environment, these agents attempt
to minimize the occurrence of events which are atypical in
such an environment as estimated by their internal model.
The atypicality of an event can be quantified by the negative
logarithm of the probability of its sensory data P (x), also
known as ’surprise’. It is argued in the FEP that organisms
can not minimize surprisal directly [13]. Instead they achieve
this by minimizing an upper bound called the ’Free Energy’.
In order not to confuse this with thermodynamic free energy,
this quantity will be referred to as the Variational Free
Energy, as done in [13].



To see this into practice, let us consider a robot arm which
receives sensor data x about the value of its state and it tries
to infer its actual hidden state z. This could be formulated
by Bayes’ theorem as:

p(z|x) =
p(z)p(x|z)
p(x)

(1)

In equation 1, p(x|z) is the sensory consequence of being
in a physical state z and p(z) is the prior belief of the
environmental states. The marginalization of the likelihood
over all the possible states is computationally tough. In this
case, we can apply Variational Free Energy approximation
[13] [14]. The core idea is to minimize Kullback-Leibler
(KL) divergence between a distribution q(z) that is encoded
in the agent and the true posterior p(z|x). Meaning, the
true posterior distribution (p(z|x)) is often intractable for all
different values so it is approximated with a distribution q(z)
that has a standard shape (for example a normal distribution).

KL(q(z), p(z|x)) =

∫
q(z) ln

q(z)

p(z|x)
dz

=

∫
q(z)(ln q(z)− ln p(z, x))dz

+ ln p(x)

= F + ln p(x)

(2)

The Kullback-Leibler is in essence a measure for dissimi-
larity between two distributions. Note that if q(z) and p(z|x)
were identical their ratio would be 1 and its logarithm would
be 0. This would mean the integral evaluates to 0 and thus
there is no dissimilarity.

From equation 2, it is noted that minimizing F directly
reduces KL since the term ln p(x) does not depend on
q(z). Instead of approximating p(z|x) with the whole q(z)
distribution, the agent model is a delta distribution δ(z − s)
that makes s the mean of the approximating density as done
in section 3 of [5]. So z is the actual physical state of the
robot and s is the estimation of this physical state which is
encoded in the brain dynamics. Thus, we can remove the
integrals simplifying the Variational Free Energy equation
to:

F = − ln p(s, x) = − ln p(x|s)− ln p(s) (3)

For further reading and full derivations see [5], [10], [13],
[11].

B. Active Inference

The minimization of VFE does not just account for
perceptual inference but also for actions within the same
framework. This means that while the beliefs are updated
to better predict sensory data, actions are simultaneously
executed on the environment to alter the sensory input and
make these coincide with the sensory predictions [13]. This
would mean that the true posterior p(z|x) is extended to
p(z, u|x) where u are the actions. Subsequently, q(z) is
extended to q(z, u).

This process can be represented by the schematic in
figure 1. The agent and the environment are two statistically
separated nodes, shown in blue and red respectively. These
can interact with each other through a Markov Blanket
[15]. A Markov blanket only contains the variables that a
node uses to interact with the outside world, isolating the
dynamics within that node from the outside. In our case,
the agent represents the Active Inference controller and
the environment represents the robot and corresponding
environmental physics.

Instead of knowing the dynamics of the environment
and its states exactly, the agent estimates the states and
dynamics using an internal recognition model q. The agent
furthermore observes the state output y from the environment
imprecisely to some extent in the triangular node. Secondly,
the control signal u and the environmental action a are linked
in the square node. This control signal and the corresponding
environmental action are generated by the agent, using
observations of the states. To obtain this control signal, the
calculation of the Variational Free Energy is done based on
the sensory data and the generative model as explained in
the previous paragraph.

Fig. 1: Schematic of agent-environment interaction

C. Factor graphs
A Factor Graph is essentially a bipartite graph used

to represent the factorization of a probability distribution
function. It shares similarities with other methods such as
Bayesian networks [15] and Markov random fields [16] and
have similar notations. However, in this paper we utilize
Forney-Style Factor Graphs (FFG) [17] because it is well-
suited for representing dynamical models [18] and better
suited for inference [19].

A FFG is built using two components, factors (represented
as nodes in the graphs) and variables (represented as edges).
A FFG can be used for stochastic models. For instance,
let X be a real-valued random variable and let Y and Z
be two independent real-valued noisy observations of X.
These variables are randomly chosen for this example and
are not related to the variables used in the method. This
could resemble a robot trying to estimate its position based
on information coming from two sensors. With factors ’f’



corresponding to probability distributions, the factorized joint
probability density of these variables is (with factors ’f’
corresponding to probability distributions):

f(x, y, z) = fa(x)fb(x|y)fc(x|z) (4)

Now equation 4 can represented by the FFG in Figure 2a.

(a) (b) with clamped variables

Fig. 2: Forney-style Factor Graph representing equation 4

In this example the node fa is only connected to the
variable x since it is only dependent on x. The = resembles
an equality node, meaning all edges connected to that node
correspond to the same variable, in this case x. Finally, both
fb and fc are connected to two variables since their factors
depend on both, as seen in equation 4.

Now assume we observe y = ŷ and z = ẑ, and are
interested in computing a posterior distribution for x. The
previous two observations impose two additional constraints
δ(y−ŷ) and δ(z−ẑ) on the model, which clamp this variables
to their observed values. Following [20] and [21], we indicate
observations by a small solid node, see Figure 2b.

Computing the posterior distribution involves solving sev-
eral integrals, see Equation 5. Solving this equation could
be tedious and error-prone (examples shown in [18] and
[21]). Using well-known message passing algorithms such
as belief propagation [17] and variational message passing
(VMP) [22] this problem could be solved.

f(x|y = ŷ, z = ẑ)

∝
∫∫

f(x, y, z)δ(y − ŷ)δ(z − ẑ)dydz

= fa(x)

∫∫
fb(x|y)δ(y − ŷ)fc(x|z)δ(z − ẑ)dydz

(5)

For our application, ForneyLab [23] is used. ForneyLab
is a tool for automated derivation of message passing algo-
rithms. It supports exible specications of factorized prob-
abilistic dynamic models and generates high-performance

inference algorithms on these models. It is implemented
in Julia, a programming language designed to have the
compiling speed of C, with the open-source libraries similar
to Python [24].

III. METHOD

To research the feasibility of closed-loop AIC with FFG,
a simulation of a 1 DoF robotic arm is set up. The robotic
arm that is simulated can be seen in figure 3.

Fig. 3: Schematic of simulated robotic arm

The link can move relative to the fixed world in point
A. Point B marks the end-effector position. The state of the
robotic arm can be changed by the motor in A with torque
τ . The sensor used is a proprioceptive sensor in A. The
proprioceptive sensor outputs measurements of the angle and
angular velocity between the robot arm and the horizontal
axis (φ, φ̇). φ and φ̇ are sensor data that are captured in a
probability function p(xt|st). Be aware that φ and φ̇ are not
necessarily identical to the real angle and angular velocity
(θ, θ̇), as they include sensor noise. All the variables used in
this paper are summarized in table I.

TABLE I: Mathematical objects used in this paper

Symbol Name
z Hidden environment state
y Output vector of environment, containing θ and θ̇
s Estimated environment state
x Observe vector, containing φ and φ̇
τ Motor torque
a Action caused by control signal
u Control signal
s0 Mean prior state
p(x, s, u) Generative probabilistic model, estimate of

environmental dynamics
q(x, s, u) Local version of the generative probabilistic

model p(x, s, u)
F (p(x|s), p(s)) Variational Free Energy (VFE)
Γ State transition variance
α Observation variance
s0 State prior
T Lookahead

Since previous work listed challenges in computational
time of generation of control actions [11], initially a rela-
tively low control frequency was chosen (5 Hz). For further
elaboration, see the paragraph on computation time in sub-
section IV-B.

A. Environment setup

The robotic arm operates in the horizontal plane, there-
fore the gravitational force has no influence on the motion



dynamics. Friction is assumed to be negligible and thus has
no influence on the motion dynamics as well. To simulate
the saturation of the motor, the torque applied to the robot
arm is limited to 10 Nm in both directions, for all possible
control signals by equation 6.

τ(at) = 10 ∗ tanh(at) (6)

The environment is updated by Euler integration, as in
equation 7. Equation 7b is the short vector notation of 7a.[

θ̇t
θt

]
=

[
1 0
dt 1

] [
θ̇t−1

θt−1

]
+

[
τ(at)∗dt
IA
0

]
(7a)

zt = g ∗ zt−1 + h(at) (7b)

Where IA is the mass moment of inertia around point A.
To simulate the sensor data used in the AIC, Gaussian white
noise is added to the real robot state values, with standard
deviations σθ, σθ̇. The output vector yt will contain the real
(hidden) angle and angular velocity values θ, θ̇ similar to
figure 1. The torque τ is given as a function of the action at.
The control signal ut from the agent generates these actions.

B. Internal (agent) model
In order to estimate the posterior states, the agent uses a

stochastic state-space model. The execution of the generative
model pt is done with a factor graph represented in figure
4. The factorization of this factor graph is given by:

pt(x, s,u) ∝

p(st−1)

t+T∏
n=t

p(xn|sn)︸ ︷︷ ︸
observation

p(sn|sn−1, un︸ ︷︷ ︸
state transition

p(un)︸ ︷︷ ︸
control

p̃(xn)︸ ︷︷ ︸
target

(8)

Where the probability functions represent the model for
the observation, state transition, control and target; which
will be explained one by one. Note that now n is used to
indicate a specific timestep, all variables that vary for each
timestep will therefore be denoted with an n as subscript.

Fig. 4: Schematic of agent-environment interaction

The agent’s target state is defined as xref = (θref ,θ̇ref )
= (2.0, 0.0). T is the number of steps that the algorithm will
look ahead (”lookahead” parameter), so the factor graph will
be generated for T timesteps in the future on each iteration.
The target prior is defined as a normal distribution, marked
as p̃(xn), to clearly distinguish it from the observation model
notation. For timesteps before the first lookahead, this target
prior has a large variance of 1012 to make a change in
state have almost no effect on the Free Energy, allowing for
unrestricted state changes, because the controller is not yet
expected to have reached xref . For t > Tdt, The target prior
is set to xref , with a small variance, 10−4 in this case, to
make sure the robot arm reaches this state with high precision
(equation 9).

p̃(xn) =

{
N (xn|0, 1012) if t < Tdt

N (xn|xref , 10−4) otherwise
(9)

Furthermore, the agent has a transition model that captures
the state dynamics for the estimated robot states s. The AIC
uses this transition model, as defined in equation 10 to infer
the environmental dynamics.

p(sn|sn−1, un) = N (sn|p(sn−1, un),Γ) (10)

Here Γ is the state transition variance. The value for Γ
is chosen according to the belief of the accuracy of the
generative model p(s,x, u). For instance if a non-linear
system is approximated by a linear model, you would resort
to a higher variance. For the presented results, Γ was chosen
to be 10−4.

The generative model is represented by p(sn−1, un) and
closely resembles the environmental dynamics. This is indi-
cated in figure 6 within the dashed box. In this case g and
h are the same functions as in 7b.
The internal model uses an observation model, defined in
equation 11, to predict the sensory outputs.

p(xn|sn) = N (xn|sn, α) (11)

Here, α is the observation variance. The value of the obser-
vation variance is encoded in the agent, which resembles its
belief about how noisy the observations of the environment
are. Like Γ, the effect of α is elaborated in section IV-B.6.
For the results presented in this paper, α was set to 10−4.

Finally, the internal model has a state prior and control
prior as defined in equations 12a and 12b respectively.

p(s0) = N (s0|(0.0, 0.0), σ2
s0) (12a)

p(un) = N (un|0.0, 1012) (12b)

Where σ2
s0 is defined dependent on how well the initial

state of the robot arm is known. In our experiments, the
AIC is given the assumption that the brain state perfectly
matches the initial hidden state (i.e. the initial state is
known), so the variance is small: σ2

s0 = 10−12. The control
prior is given a large variance of 1012 to allow the controller
to conduct a large range of control signals.



Fig. 5: Factor graph showing the slide function of the algorithm. The infer function is indicated with a 4.

C. Control loop

The algorithm loops through the functions act, execute,
observe, infer and slide respectively, similar to [21], assum-
ing we start at step n and simulate T timesteps, as in fig. 5.
These functions are defined as follows:

1) Act: The act-function simply converts the control sig-
nal u, generated by the agent, into the action a, making
their values equivalent. This action a will be applied to the
environment. This is illustrated in figure 6 by the label 1.

2) Execute: Next up, the action a is used to calculate a
certain torque, which will move the robot arm. The angle
and angular speed of the robot are updated as described
in equation 7. This way, the action is used to change the
environment. So Execute happens in the environment as
labelled by 2 in figure 6.

3) Observe: As the environment changes in the execute
step, the angle and angular speed of the robot arm change.
These new angles will be observed by the sensors as x. This
value is clamped as indicated by 3 in figure 6.

4) Infer: In the infer-function, VMP is used to calculate
a new control signal u by minimizing VFE. The input for
the VMP is the action a and observed x, generated in the
steps before. Subsequently, the next state and control action
are inferred. This is shown in figure 5 by 4.

5) Slide: The last part of the algorithm is to remove the
first time step from the factor graph, and to add one time
step at n+ t+ 1. This is shown in figure 5, where the first
step (encircled) is removed and the last step is added.

Fig. 6: Factor graph showing one timestep of the algorithm.
The clamp block of the action is indicated with 1, the execute
step is indicated with 2 and the controller observes the robot
state with its sensors at 3.

IV. EXPERIMENTAL RESULTS

The AIC is tested for its performance and robustness by
a number of experiments. All experiments are executed with
the same parameters and the same environment, unless stated
otherwise. One by one, the parameters are changed and their
influence is observed. Keep in mind that the agent can not
directly observe the (real) environment. Sensor deviations
will disturb this observation. However, the torque function
h(at) is know by the agent. To analyze the AIC performance,
a PID-controller is made for the same manipulator and is
used as a benchmark. In other words: the environment is the
same for both controllers.

A. Tuning the lookahead parameter

Before presenting the controller performance, we analyze
the lookahead parameter. The lookahead (T ) is a measure
for the number of timesteps that the algorithm computes in
advance on each iteration. As the lookahead is increased,
the algorithm takes significantly longer to execute, which
is evinced in subsection IV-B. For the experiments that are
introduced later in this paper, there was no direct significant
benefit to a high lookahead. The lookahead nonetheless needs
to be large enough to initialize the algorithm appropriately,
which requires an absolute minimum lookahead of 3. For
lower lookahead, no control signal is generated in ForneyLab.
The lookahead was set to 5 timesteps for this controller since
higher values showed little to no improvement at the cost



of significant compromises in computation. This value was
chosen as it displayed good results at a computation speed
comparable to lower lookahead values. In other cases plan-
ning further ahead may be required, such as the Mountain
Car problem [25]. This problem is solved using ForneyLab
in [21], where a lookahead of 20 is minimally required.

B. Controller performance

To observe the performance of the AIC, a number of
experiments were conducted. To measure the general per-
formance of the controller and show a proof of concept,
the controller was instructed to go from an initial state
to a target state, in this case from θstart = 0 rad to
θref = 2 rad. Secondly, noise was added to the sensors. In
a third experiment, angular velocity is changed suddenly to
measure the influence of impulse force disturbances. Next,
the response was observed when the initial beliefs of the
agent did not match the starting position. In all experiments
listed below, a timestep of 0.2 seconds and a lookahead of
5 timesteps are used.
To be able to draw conclusions about the level of per-
formance of the AIC, a comparison to a benchmark PID
controller is made for each experiment. To enable a fair
comparison between the controllers, they are both tuned to a
similar settling time and zero overshoot. Other performance
qualities are then analyzed.

1) No noise: In figure 7, it can be seen that the controller
is able to converge smoothly towards its target state. The
results show that the rise time and settling time of the
controller are both approximately 15 seconds for an error
band of 5 %. Those are equal in this case, as the controller
does not have any overshoot with the current settings. This
response is used as a benchmark to test the effect of noise
and disturbances.
Figure 8 shows output of the PID controller when it is tuned
to similar performance as the AIC (similar rise time and
settling time). The maximum used torque for the AIC is
higher than the maximum torque output of the PID.

Fig. 7: Performance of the AIC with the standard settings
and without any noise.

Fig. 8: Performance of the PID, tuned to performance similar
to the AIC, without any noise.

2) With noise: Figures 9 and 10 show the controllers’
response with Gaussian white noise on the sensors. The
minor noise experiment is done with Gaussian white noise
with a variance σ2

θ = 0.02 rad. The major noise experiment
is done with a variance of σ2

θ = 0.5 rad. The response
shows that the AIC is robust enough to withstand quite
heavy noise. The rise time and overshoot are comparable to
the no-noise experiment. The required input torque is quite
acceptable which we will benchmark with the PID controller.
The controller manages to create a remarkably smooth and
steady trajectory for the robot arm from the noisy output of
the sensors.

Figure 11 shows output of the PID controller when noise
is added to the sensor output. The added white noise had
the same variance as described before for the AIC; σ2

θ =
0.02 rad and σ2

θ = 0.5 rad respectively. Where there were
hardly any differences observed for no noise performance,
adding Gaussian white noise with variance σ2

θ = 0.02 rad
causes an increase in torque oscillations up to 1.5 Nm for the
PID. This undesired behaviour increases the motor load. The
oscillations for AIC are significantly smaller, as can be seen
in figure 9. As noise with variance σ2

θ = 0.5 rad is added,
similar to the major noise that was applied to the AIC, the
oscillations in PID torque increase, as can be seen in fig. 12.
Also the oscillations in theta around the reference value are
increased with respect to the minor noise plot.

Fig. 9: Performance of the AIC with minor Gaussian white
noise (σ2

θ = 0.02) on the sensors.



Fig. 10: Performance of the AIC with major Gaussian white
noise (σ2

θ = 0.5) on the sensors.

Fig. 11: Performance of the PID with minor Gaussian white
noise (σ2

θ = 0.02 rad) on the sensors.

Fig. 12: Performance of the PID with major Gaussian white
noise (σ2

θ = 0.5 rad) on the sensors.

3) Impulse Disturbance: Figure 13 contains a plot of the
response of the AIC to disturbance impulse forces put on
the robot arm at t = 20 s and t = 40 s. These are modelled
by a sudden velocity change of 0.6 rad/s downwards and
1.0 rad/s upwards respectively. The results show steady and
predictable response to the disturbances. The robot moves
back to the desired position in a similar manner as its initial
response to a change in target position.
In figure 14 the response is shown when adding the same
disturbances to the PID. Both controllers are able to return
the robot arm to the target state. However, the AIC does this
in significantly less time than the PID.

Fig. 13: Response of the AIC to impulse disturbances at
t = 20 s and t = 40 s.

Fig. 14: Response of the PID to impulse disturbances at t =
20 s and t = 40 s.

4) Wrong initial beliefs: As stated before in section II,
an active inference controller will minimize VFE by simul-
taneously adjusting its beliefs about the environment (state
estimation) and the action on the environment (control). An
incorrect internal belief would be rectified to a correct belief
in order to minimize VFE. In figure 15, the response of the
AIC is shown for a wrong initial belief. While the robot
starts at θ = 0 rad, the initial belief for the agent is set
on φ = 4 rad, so the robot should initially move down in
order to achieve its desired position, given this wrong belief.
The figure shows that the robot moves down for a very short
time, before converging to the correct value.

Fig. 15: Response of the AIC, starting with an incorrect
initial belief

5) Changing environment model parameters: Both the
AIC and the PID controller are tuned to act on a certain
environment, in our case a robot arm with model parameters
length and mass. To measure the robustness to a changing en-
vironment, the performance of both controllers was observed
when different environmental variables were applied, while
keeping the controllers tuned for the default model parameter
values. This way, the performance of both controllers can be



compared, when a wrong internal model is used. Decreasing
the mass moment of inertia results in instability for both
controllers, but this is mainly due to the discretization of the
simulation with a large timestep of dt = 0.2s. An increase in
moment of inertia results in a slower response for the PID.
The AIC responds slower for large increases in the moment
of inertia (e.g. factor of 50 or higher). For lower factors
however, the rise time remains comparable, but the response
shows some overshoot, as the robot arm decelerates slower
than the AIC predicts in its internal model. This response
is superior to the PID, as the system settles quicker and the
overshoot is lower. This is visualized in 16 and 17, where
the response of both controllers is shown when the moment
of inertia is increased by a factor of 10.

Fig. 16: Performance of the AIC when the mass moment of
inertia is increased by a factor 10

Fig. 17: Performance of the PID when the mass moment of
inertia is increased by a factor 10

6) Adjusting agent model parameters: As discussed in
section III, the state transition variance is chosen according
to the agent’s belief of the accuracy of generative model.
This means that if the agent believes it has a proper model,
a lower variance is chosen, which will cause the system to
predict the next steps with a higher accuracy, resulting in
faster responses.

Figure 18 shows a system with an accurate generative
model and a transition variance set to 10−8 instead of
10−4. The systems has a much faster response compared
to previous results. However, if the generative model differs
too much from the real dynamics, a low transition variance
may cause the system to become unstable or fail to reach
the target position. Note the minimal deviations for the
angle and angular velocity even under noisy measurements.
Additionally, the torque output settles for a value of 0 without
oscillations.

Fig. 18: System response in case of a correct generative
model and a high state transition variance.

Additionally, the observation variance resembles the
agent’s belief about how noisy its measurements are. So a
larger variance (10−1 instead of 10−4) is required to perform
well major noises (σ2

θ = 0.5). Figure 19 demonstrates this
property.

Fig. 19: System response in case of a correct generative
model and a high observation variance.

7) Computation time: To determine the maximum con-
troller frequency at which the AIC can work reliably, com-
putation time for each iteration of the loop is measured. This
test has been done with different values for the lookahead
parameter (T). Results are shown in figure 20.

Fig. 20: Computation time per timestep for different T

These tests were conducted in Jupyter Notebook. The
results show that the AIC can achieve high controller



frequencies (1/dt), close to 1 kHz for T = 3. This is
a significantly higher frequency than the initially used 5
Hz to obtain the results presented. The computation time
per timestep increases significantly as the lookahead T is
increased. This is caused by the fact that as the lookahead
increases, the factor graph to be computed on each iteration
becomes larger. The initialization of the algorithm also takes
substantially longer as the lookahead is increased, but this
does not directly affect the maximum controller frequency
of the AIC.

V. DISCUSSION

In this section, the results will be evaluated to get a
better understanding of the meaning of the research done.
Thereafter, the limitations of the controller are presented.
Insights that are not fully understood are stated. Lastly, future
work is proposed.

A. Benefits of the AIC

The controller presented in this paper shows to perform
well in the experiments that were conducted. Despite the
presented noise, impulse disturbances and initial belief im-
perfections, the controller behaves sufficiently for basic robot
control. Moreover, the AIC is more robust to noise than
the PID-contoller. Another benefit of the AIC is that the
torque needed to control the arm is lower for the AIC
than the PID when noise is introduced. This induces energy
savings. Despite the computational challenges stated earlier,
the controller executes the algorithm sufficiently fast. The
behaviour of the controller is already good for a timestep of
dt = 0.2 s, i.e. a control frequency of 5 Hz, as can be seen
in 20. Under certain conditions the controller is able to reach
a control frequency close to 1kHz. The limit of this control
frequency is not investigated.

The AIC deals better with model imperfections than the
PID as well. The PID-response becomes significantly slower,
when the mass moment of inertia is increased. The AIC
handles the increased mass moment of inertia better. The
overshoot of the AIC increases, but the rise time is compa-
rable to the response of the AIC for an environmental model
that perfectly resembles the real environment. Furthermore,
the settling time is quicker and the overshoot is lower for
the AIC than for the PID.

Overall, the AIC shows more robust responses and re-
quires less torque compared to the PID.

B. Limitations

Although this Active Inference controller is quite robust in
the results obtained in this paper, the controller still has some
limitations. The AIC has difficulties to deal with constant
forces and the lookahead parameter has turned out to cause
some issues, which will be further discussed below.

1) Lookahead: The AIC waits for a few timesteps before
acting on its environment. This is due to the fact that the
controller initializes a certain amount of time steps to build
a factor graph and sets the mean prior input for those steps to
zero. Changing the target after the robot arm has converged

does not obviate this problem. It was tried to set the mean
prior input for the first timesteps equal the desired state, but
this can only be done for the first target state, keeping the
same response for a change in target. Future work should be
done to find ways to diminish the this behaviour of the AIC
during the first timesteps.

2) Constant force (gravity): Attempts on dealing with a
constant force; or gravity, have been only partially successful.
The AIC is able to solve the inverted pendulum problem
for equilibrium points, but no consistent tuning method
was found to solve this problem for different environments.
Solving these problems was simply done by adjusting pa-
rameters through trial-and-error. The controller seems to
want to converge to a position where no torque is needed
to hold that position. Since torque is needed to hold a
non-equilibrium position, the Variational Free Energy is not
minimized entirely and thus the controller will not converge
to that position.
This could be solved by implementing prioritization in the
controller, as proposed in [26]. This way the target state
could be made more important to create a global Variational
Free Energy minimum at that target. We tried to implement
this prioritization by changing the variance on the target
prior and the control prior. By doing so, the Variational
Free Energy distribution is adjusted to allow for different
controller response. An increased variance on the target prior
turned out to allow the controller to solve a larger set of
inverted pendulum problems (e.g. for larger mass), but this
is limited to small values for the constant force. Different
approaches might be needed to solve this. Methods to allow
the controller to converge to a position with unknown, non-
zero torque are yet to be contrived. This is pushed forward
for future work.

C. Future work

In addition to further investigating the current limitations,
additional future work to understand the potential of active
inference based on variational message passing for control
have been identified.

1) Model learning: Our current controller does not in-
clude generative model learning. The agent updates its beliefs
about the environmental states, but uses an accurate internal
model to realize this. It is unknown if the model learning
is possible simultaneously with the perception and action
updating in the ForneyLab library. However, we believe this
is achievable in future work.

2) Scaling up to more degrees of freedom: Scaling the
current controller to control a 2 degree of freedom robot
arm has been attempted, but did not yet succeed. As the
ForneyLab library is not specifically built to use for robot
control, the implementation of higher order systems proves to
be difficult. The inference of data of higher dimensions often
induces errors. With more time and better understanding of
the functions in the ForneyLab library, it should be possible
to implement an AIC for a multiple degree of freedom robot
arm in the future.



3) Tuning: To obtain stable and robust behaviour in the
experiments, we tuned the AIC as described in section IV-
A. Many predefined variances and parameters can be altered
to increase the performance of the controller. In short, the
method we used was based on trial and error. However, more
tuning methods and more structured tuning may be possible
to further improve the performance, mainly to decrease the
rise time. This is subject for future work.

VI. CONCLUSIONS

In this paper we have presented a closed-loop Active
Inference controlled (AIC) robot simulation, using a Factor
Graph implementation. This controller is able to simul-
taneously update its beliefs about its state and perform
actions on this environment, based on sensory input. It uses
Free Energy minimization to calculate the control signals.
The AIC was used to control a 1DoF robot arm in the
horizontal plane. The results have shown that the controller
is able to steer the robot arm to an arbitrary target position.
The controller shows the ability to reach and maintain the
desired position when Gaussian white noise and impulse
disturbances are applied. Incorrect initial beliefs did not
affect the rise time substantially. In the experiments, a control
frequency of 5 Hz was used, which was sufficient to obtain
the desired results. This frequency can be increased up to
nearly 1 kHz to improve performance. A PID controller is
presented as a benchmark, that is tuned to perform similar
to our AIC for the simplest case. This results in similar
behaviour in more complicated cases: adding disturbance
forces and slightly changing the environmental variables.
The results show that the AIC is able to handle sensor
data with heavy noise, in contrast to the PID, which shows
increased oscillatory behaviour for equal levels of noise. In
addition, the response of the AIC deteriorates significantly
less with model imperfections compared to the response of
the PID. However, an implementation with more complicated
disturbances such as gravitational forces has not yet been
successful. Further research into the tuning methods for
the AIC is required to fully understand and improve this
control method. Another recommendation for future work
is to fully implement online model learning. Altogether, we
can conclude that the proposed Active Inference controller
provides a way to control a robot that is robust to various
disturbances and, with some extensions, shows promise for
the future of robot control.
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