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Abstract—With the increase in usages of drones in the research
on autonomous flight, a need for precise models describing
drone behavior arises. This report presents multiple dynamical
models to describe the motions of the Parrot Bebop 2 commercial
quadrotor in response to input. State space models of different
orders are set up for the drone's input response. Translational
dynamics of the drone are found from a dynamics evaluation,
with resulting drag parameters to be identified. The system
parameters of these models are identified from data recorded by
a motion capture system during 4 separate flight experiments.
The control inputs consist of random binary signals that are
specifically designed to capture the drone’s behaviour. Each data
set results in an identified model. These models are validated
using the 3 other data sets to verify their performance. The
identified models with the highest average fit over the validation
data sets are presented. Average NRMSE fit percentages of
83.5±1.6% for the input response are reached for a third order
state space model. A second order state space model produces
similar results with only marginally lower fit percentage of
82.9±0.6%. Higher order models do not seem to perform better.
The application of the model will most likely dictate whether
complexity or accuracy is more important and thus which order
model is preferable.

I. INTRODUCTION

Because of the unique possibilities that drones offer, mul-
tiple industries are looking into using autonomous drones
for various applications, such as delivery of packages [1]
and ambulance drones [2]. This increase in usages creates a
demand for a way to control autonomous flight. An accurate
model for the dynamics of the drone is required to plan future
inputs and predict the resulting movements from those inputs.
The goal of this research is to derive and identify a model
that describes the dynamics of the Parrot Bebop 2 quadrotor
[3] accurately. In the rest of this paper the Bebop 2 drone is
referred to as quadrotor.

In the dynamics model derived for the quadrotor, multiple
parameters are unknown and have to be estimated. System
identification is a broad field of research and deals with the
modelling of physical systems for control or optimization
purposes. In this branch of research, all approaches can be
roughly categorized into three categories: white, grey and black
box system identification. These three categories are related to
the level of a priori knowledge of the system. In white box
system identification everything is known about the system and
it is thus possible to derive an analytic model describing the
system. The second category is grey box system identification.
In this category there is some information about the system
dynamics, but certain parameters are unknown [4]. In black
box identification nothing is known about the system except
input-output data. This data is used to fit a certain model [5].

Since its introduction, many models describing the dynam-
ics of a quadrotor have been proposed. The most commonly
used model uses the moments in the x-, y- and z-direction
and the total thrust generated by the rotors as inputs [6] [7]
[8]. Another approach is to use the angular speed of the four
rotors as model inputs [9]. Additionally, it is possible to make
a more complex nonlinear dynamics model by incorporating
the aerodynamics of both the rotors and the drone itself into
the model [10]. Lastly, it is an option to use the desired roll
and pitch angles, the angular speed along the body z-axis and
the vertical velocity as inputs of the model [11]. These are the
inputs accepted by the Bebop quadrotor as described in the
API [12]. A form of this model will therefore be used in this
research.

This project contributes to the body of work on system
identification of drones for the purpose of autonomous flight
by providing multiple identified models of different orders and
with varying performances for the Parrot Bebop 2 in particular
as well as establishing a routine for system identification of
drones in general.

The remaining part of this report is organized as follows.
In section II the dynamical model of the Bebop 2 quadrotor
is introduced as well as parameters that need to be identified.
In section III the method to collect the data of the quadrotor’s
behaviour and the preprocessing of the data are discussed.
Section IV presents the method used for the system identifi-
cation and the results of the identification. In section V the
simulation with the identified models is presented. Lastly, the
methods and results are discussed in section VI, followed by
section VII which concludes the report.

For the project multiple MATLAB scripts were used. These
scripts, along with the data sets used, can be found on the
GitHub repository 1.

II. DYNAMICS MODEL

In this section the general dynamics equations for a quadro-
tor are derived. These equations are then particularized for the
Parrot Bebop 2. The resulting set of equations is combined
with an input response model for the accepted control input
commands of the Bebop 2 quadrotor to create a full state space
model describing its dynamics. The full state space model can
be found in appendix B.

A. General rigid body dynamics

As shown in Fig. 1, two Cartesian frames are used. The
world fixed frame is denoted as A and the body fixed frame

1https://github.com/mjvanderboon/bebop-identification
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denoted as B. The body fixed frame is obtained by rotating the
inertial world frame by the Z-X-Y Euler angles. These angles,
pitch, roll and yaw, are denoted by θ, φ, ψ respectively.

Fig. 1: Definition of frames

The combined rotation matrix from the inertial frame A to
the body-fixed frame B is as follows:

ARB = RZ(ψ)RX(φ)RY (θ) (1)

where RZ(ψ), RX(φ), RY (θ) ∈ R3 are rotation matrices.
The vectors pA = [x y z]T and vA = [vx vy vz]

T describe
the position and velocity in the world frame.

The general translational equation of motion is given by Eq.
(2) in the A frame.

mv̇A = −mgA +A RBTB (2)

Where m is the quadrotor’s mass, gA = [0 0 g]T is a vector
for the earth’s gravity and TB = [0 0 T ]T is the thrust
vector of the quadrotor in the B frame located at the center
of mass.

Aerodynamic drag is incorporated in Eq. (3). To simplify
the model, the relation between the drag force and the velocity
is approximated to be linear. This is warranted, because the
velocities of the quadrotor are relatively low, in the range of
0 to 0.5 m/s.

FA
drag =

A RBDvB (3)

This results in the following equation:

mv̇A = −mgA +A RBTB −A RBDvB. (4)

Matrix D is a diagonal matrix containing the body aero-
dynamic drag coefficients kDx and kDy . The drag coefficient
in the z-direction is not taken into account. This is further
elaborated in appendix A.

Since the angles φ and θ are assumed to be fairly small, the
assumption in Eq. (5) is made to reduce computational load
with a presumed small effect. This simplification says that the
drag force components in the world frame are not influenced
by pitch and roll angles of the quadrotor.

FA
drag =

A RBDvB ≈ RZDvB ≈ RZDRZ−1vA (5)

This simplifies Eq. (4) to:

mv̇A = −mgA +A RBTB −RZDRZ−1vA (6)

B. Quadrotor dynamics model
The inputs that can be given to the quadrotor through the

Parrot software development kit (SDK) are contained in the
vector u.

u = [φc θc ψ̇c vzc]
T ∈ R4 (7)

where φc, θc are the commanded roll and pitch angles, vzc is
the commanded vertical velocity in the A frame and ψ̇c is the
commanded yaw rate in the B frame.

The quadrotor’s state in the world frame is denoted by yA.
Here x, y and z are the positions of the quadrotor, vx, vy and
vz are the velocities, φ, θ and ψ the Euler angles with respect
to the world frame.

yA = [x y z vx vy vz φ θ ψ]
T ∈ R9 (8)

1) Translational dynamics: The vertical acceleration is
described by the commanded vertical velocity with an input-
response model as shown in Eq. (9).

v̇z = hvz (vzc, vz) (9)

The thrust can be expressed as a function of the vertical
acceleration and the pitch and roll angels by evaluating Eq.
(6) in the Z-direction, which yields:

T =
m(v̇z + g)

cos(φ) cos(θ)
(10)

With the vertical acceleration being described by one of the
models in section II-C, Eq. (10) can be substituted in Eq. (6)
to obtain the translational dynamics of the quadrotor:

v̇x = k∗Dy sin(ψ)(vy cos(ψ)− vx sin(ψ))
−k∗Dx cos(ψ)(vx cos(ψ) + vy sin(ψ))

+(cos(ψ)
tan(θ)

cos(φ)
+ tan(ϕ) sin(ψ))(v̇z + g)

v̇y = −k∗Dx sin(ψ)(vx cos(ψ) + vy sin(ψ))

−k∗Dy cos(ψ)(vy cos(ψ)− vx sin(ψ))

+(sin(ψ)
tan(θ)

cos(φ)
− cos(ψ) tan(ϕ))(v̇z + g)

(11)

With k∗D... = kD.../m. These equations are also fully derived
in appendix B.

2) Rotational dynamics: All rotations are determined by
the control inputs in u. Therefore the rotational dynamics of
the quadrotor are described by the following input-response
models. Section II-C deals with the forms assumed for these
models.

φ̇ = hφ(φc, φ), (12)

θ̇ = hθ(θc, θ), (13)

ψ̈ = hψ(ψ̇c, ψ̇). (14)

Eq. (9) and Eq. (11) to Eq. (14) constitute the state space
dynamical model of the quadrotor. The full state space models
can also be found in appendix B.
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C. Input response models

To identify the input response models in Eq. (12), (13), and
(14), different models are assumed with varying parameters
to be identified. In this section a first order, a first order plus
time delay, and a general higher order model with and without
time delay are proposed.

1) First order model: The first order input response model
is described by Eq. (15):

φ̇ = 1
τφ
(kφφc − φ)

θ̇ = 1
τθ
(kθθc − θ)

ψ̈ = 1
τψ̇

(kψ̇ψ̇c − ψ̇)
v̇z =

1
τvz

(kvzvzc − vz)

(15)

Here kφ, kθ, kψ̇ and kvz are the steady state gains and
τφ, τθ, τψ̇ and τvz are the time constants. These parameters
are to be identified for this model.

2) First-order-plus-time-delay model: Since the quadrotor
is a physical system to which signals are sent via a computer,
multiple delays may arise between the generating of the
commands, and the quadrotor executing them. Therefore, the
first order model can be extended by adding a time delay
(FOPTD). By incorporating the time delay, the first order
model changes to:

φ̇ = 1
τφ
(kφφc(t− βφ)− φ)

θ̇ = 1
τθ
(kθθc(t− βθ)− θ)

ψ̈ = 1
τψ̇

(kψ̇ψ̇c(t− βψ̇)− ψ̇)
v̇z =

1
τvz

(kvzvzc(t− βvz )− vz)

(16)

Here β is the time delay and it is assumed that
βφ, βθ, βψ̇ and βvz can be different for every input.

3) General higher order model: To get a more expressive
description of the system a higher order model can be used. A
higher order state space model for the input response results
in the following model:

ẋφ = Aφxφ +Bφφc

φ = Cφxφ
ẋθ = Aθxθ +Bθθc

θ = Cθxθ
ẋψ̇ = Aψ̇xψ̇ +Bψ̇ψ̇c

ψ̇ = Cψ̇xψ̇
ẋvz = Avzxvz +Bvzvzc
vz = Cvzxvz

(17)

The state variables xφ, xθ, xvz and xψ̇ are non-physical
variables related to the real measured angles and vertical
velocity through the control matrices C. For a second order
model this results in a [2x2] A matrix, a [2x1] B matrix and
a [1x2] C matrix. The unknown parameters in this model are
the entries in the A, B, and C matrices.
In general this results in 4(n2 + 2n) parameters to be
estimated, where n is the model order, for a model where the

order for all inputs is chosen to be the same. A second order
model has 32 parameters, a third order model 60, etcetera.

4) General order plus time delay model: Just like the
FOPTD model, a time delay can also be added to the higher
order models. This results in the equation given in Eq. (18).

ẋφ(t) = Aφxφ(t) +Bφφc(t− βφ)
φ(t) = Cφxφ(t)
ẋθ(t) = Aθxθ(t) +Bθθc(t− βθ)
θ(t) = Cθxθ(t)
ẋψ̇(t) = Aψ̇xψ̇(t) +Bψ̇ψ̇c(t− βψ̇)
ψ̇(t) = Cψ̇xψ̇(t)
ẋvz (t) = Avzxvz (t) +Bvzvzc(t− βvz )
vz(t) = Cvzxvz (t)

(18)

III. EXPERIMENTAL OVERVIEW

In this section the procedure for data collection and process-
ing is described. First the experimental setup is elaborated on,
followed by the control inputs and data processing.

A. Experimental setup

Fig. 2 provides an overview of the setup used during the
experiments. A laptop is used to send and receive information
to conduct and control the experiments. The type of drone
used for the experiments is the Parrot Bebop 2. During all
experiments the same drone is used in combination with
different batteries. The drone is connected via its own WiFi
network to the control laptop. To track the position and attitude
of the drone a motion capture system, the Mocap Optitrack
[13], is used. Control input commands are sent to the drone
via WiFi using the Robot Operating System (ROS) [14] and
the ROS package bebop autonomy [15]. The full states of the
drone including the velocities and accelerations are estimated
using an unscented Kalman filter. This filter estimates these
states using the position data measured by the Mocap system.
This is also shown in Fig. 2.

The loop running on the control laptop runs at 20 Hz. This
means that the input commands are sent to the quadrotor at 20
Hz. The outputs from the estimator and the Mocap are logged
at 20 Hz as well. A frequency of 20 Hz was chosen, because
the inner control loop of the quadrotor runs at 20 Hz [12]. A
higher frequency results in a longer time delay as elaborated
in appendix D-A.

B. Control inputs

A random binary signal (RBS) was selected as the best input
to estimate a model valid for a wide range of applications
based on a few observations. An RBS signal is a blockwave
signal that is either +1 or -1 (binary) and has a randomly
varying frequency for the blockwave. First of all, using an
RBS makes sure that all relevant frequencies for the system are
excited. The bandwidth of each input signal was determined
separately for the pitch, roll and vertical velocity inputs as
described in appendix D. Exciting a wide range of frequencies
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Fig. 2: Setup data flow for experiments

minimizes unwanted overfitting to the particular data set that
is used for estimation.

Secondly, it can be argued that a binary signal closely
represents a signal that would be used in autonomous flight.
A random Gaussian noise could be suitable for this as well.
However, generating a binary signal ensures that the input
signal is of sufficient amplitude for the measurement of the
state to be significantly different than the amplitude of any
noise in the system.

The generated RBS was limited to a frequency band. The
upper cutoff frequency was calculated from the bandwidth of
the excited input. The lower cutoff was constrained by the
dimensions of the laboratory. The input signal was sent to the
quadrotor at a frequency of 20 Hz. For more information on
the design of the frequency properties of the input signal see
appendix D.

During the experiments all three inputs pitch, roll and ver-
tical velocity, are excited with an RBS signal simultaneously,
but the RBS signal for each input is different. The randomness
of the signals causes different combinations of inputs to be
excited at the same time during the experiment. This is done
to represent the kind of inputs that can be expected during
autonomous flight. Also, there exists no dependency between
inputs, meaning there is no difference between simultaneous
inputs and single input. This is shown in appendix E.

C. Data preprocessing

Before the recorded data can be used for the parameter
estimation, the data needs to be preprocessed.

Firstly, the takeoff and landing of the quadrotor are cut from
the data.

Secondly, the data is filtered to remove the high frequency
measurement noise from the Mocap system. It is approximated
that the system bandwidth is 1.35 ± 0.28 Hz as shown in
appendix D-B. Applying a filter using a cutoff frequency
sufficiently higher than this approximation ensures that system
identification is not influenced by the filtering of the data,

because the system response does not occur in those higher fre-
quencies. Therefore, a low-pass filter with a cutoff frequency
of 2 Hz was chosen.

Lastly, the data is ’deyawed’. In the first phase of the
system identification the yaw rate input is set to zero. However,
the quadrotor does yaw marginally during experiments. This
influences the recorded data, because the position and the
velocities are measured in the world frame by the Mocap
system. This behaviour is identified to be random and is
therefore not modeled. To correct for this the data is rotated
back based on the recorded yaw. This is further discussed in
section VI-A.

IV. SYSTEM IDENTIFICATION

The system identification consists of two parts, the identifi-
cation of the drag coefficients and the identification of the
input response model. First the drag coefficient estimation
method is discussed followed by the results for the drag coef-
ficients. Next the input response model identification method
and results are discussed.

A. Drag coefficients

The drag coefficients are regarded as physical properties
of the quadrotor and are therefore identified differently than
the input response model parameters. For the input data over
which the coefficients are estimated, step inputs for the roll
and pitch are used. The parameters are estimated over the
steady state part of the quadrotor’s step response. Here the drag
coefficients are the only parameters that influence the model.
Furthermore, the orientation of the quadrotor is constant so
the frontal area in the direction of travel is constant as well.
To estimate the parameters grey box model identification is
used. This is further discussed in section IV-B1

Multiple data sets are used for both roll and pitch to
estimate the drag coefficients in x- and y-direction. Because
the drag coefficients are physical properties of the quadrotor,
the results are regarded as measurements and not estimations
of behaviour. The final k∗Dx and k∗Dy are thus the average of
the identified coefficients of each data set.

The estimated values and standard deviations for the drag
coefficients are shown in table I.

Drag (1/s)
k∗Dx 0.25 ± 0.08
k∗Dy 0.33 ± 0.05

TABLE I: Estimated drag coefficients

B. Input response model identification method

The input response model identification consists of multiple
steps. A model is estimated and validated based on the
preprocessed data. The resulting validation is used to select
the best models.
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1) Parameter estimation: To identify a model the parame-
ters of the model need to be estimated.

To estimate the time delay, the MATLAB function
deleyest is used. This function estimates the number of time
steps it takes for the output data to respond to the input data.
To estimate the parameters a non-linear grey-box estimation
is used. The MATLAB function nlgreyest, which is part of
the System Identification Toolbox, is used for the estimation.
Using the input and output data the unknown parameters are
then estimated. The Levenberg-Marquardt method described
in appendix G is used to optimize the least squares fit.

Since it is not known whether this method converges to
a local or a global minimum, multiple initial estimates for
the parameters have to be generated. These initial values are
chosen according to a Central Composite Design [16]. This
generates a number of initial points for every parameter that
needs to be estimated within a certain interval. The Central
Composite Design is often used in the design of experiments
[17]. For the higher order models (above 1st), however, Central
Composite Design is not applied. The higher order models
have a large number of parameters that need to be estimated.
This would result in too many initial sample points that need
to be run for the processing power available. Instead, random
points are generated along the interval, which reduces the
amount of points to be run. More on Central Composite Design
and the design of experiments can be found in appendix H.

2) Model validation: In order to determine how well a
model actually estimates the quadrotor’s real behaviour, the
model is validated by comparing its response to measured data.

To be able to validate the model, the model is simulated for a
given input set using the sim function in MATLAB. This func-
tion solves the differential equations of the identified model
using the Runge-Kutta(4,5) numerical integration method.
Different integration methods were tested. It is concluded that
there is no significant difference observed between the possible
numerical integration methods. More on this can be found in
appendix I. For the validation, the output of this simulation is
compared to measured data from the same input set.

For quantitatively scoring the validation of a particular
model the goodnessOfFit function in MATLAB is used
to compute the normalized-root-mean-square error (NRMSE)
with regards to the measured data. This error is used to
measure the accuracy of the model compared to the measured
data. For each input/output pair (φc/φ, θc/θ & vzc/vz) a fit
percentage is returned which is equal to 1 − NRMSE. The
score of a particular identified model for a particular validation
data set is the average of these three percentages.

For the validation of a model multiple data sets are used.
How the identified models and data sets were used to pick a
final model is further elaborated in the following section.

3) Parameter set selection: For each data set the param-
eters of a model can be estimated as described in section
IV-B1. Multiple experiments and thus multiple data sets result
therefore in multiple identified models of the same type. The
parameter estimation is performed on the data set of each
experiment separately. In order to pick the best identified

model, every model is validated with all the original data sets
except the data set used for the estimation of that model using
the method described in section IV-B2. By taking the average
of these validation scores an overall score for each identified
model is found as well as the standard deviation of the score.
This score approximates how accurate an identified model is
for an arbitrary input set. The overall scores for each model
are compared and the model that has the highest score is the
best model, since it has the highest average fit over all data.
This method is depicted in Fig. 3.

Fig. 3: Method used to select identified model with best fit.

The identified models are validated using all original data
sets because this will minimize the chance of overfitting on
one particular data set. The model that turns out the best with
this method will be the best in estimating the response for
different inputs.

4) Model comparison: After the best model for each type
is identified using the method described in IV-B3 a similar
method can be applied to find the best overall model out of
all different types. The overall fit scores for the best models
of each type are compared. However, in this case the best fit
score does not necessarily mean that this is the best model,
because the complexity of the model needs to be taken into
account as well. The complexity of the model is important
when the application is taken into account. One application
could be the use in a model predictive controller (MPC) which
has to be able to evaluate the model as quickly as possible.
An overly complex model will need too much computational
time and will reduce the speed at which the controller can send
commands to the quadrotor which is an important limitation.

C. Input response model identification results
The resulting overall fit scores of the best model of each

type are given in table II. The fit score used for the comparison
is discussed in IV-B3 and is (1 − NRMSE) · 100%. These
fit percentages are calculated from simulating the response of
the best performing model of every model type over all data
sets except the set the model was identified over, as described
in section IV-B3.

The higher order models with time delay did not give
significant improvements, but the results for these models can
be found in appendix C.
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Model fit (%)
1st 73.4±2.6
1st + TD 76.7± 2.8
2nd 82.9± 0.6
3rd 83.5± 1.6
4th 82.3± 4.5

TABLE II: Average fit of best identified model

The identified models for the first order plus time delay,
second order and third order model are given below.

First order plus time delay model

φ̇(t) =
1

0.1598
(0.9655 · φc(t− 0.05)− φ(t))

θ̇(t) =
1

0.1621
(0.9795 · θc(t− 0.05)− θ(t))

v̇z(t) =
1

0.2599
(1.1635 · vz(t− 0.05)− vz(t))

Second order model

ẋφ =

[
−3.6268 4.5680
−4.2580 −3.8136

]
xφ +

[
3.3057
−1.5443

]
φc

ẋθ =
[
−6.5559 5.4182
−4.8719 −5.1334

]
xθ +

[
−0.2825
−3.9654

]
θc

ẋvz =
[
−4.5702 4.4186
−4.9402 −4.7852

]
xvz +

[
3.3742
0.4442

]
vzc

φ =
[
−0.1337 −1.4979

]
xφ

θ =
[
−2.2622 −0.1050

]
xθ

vz =
[
0.1768 −2.5312

]
xvz

Third order model

ẋφ =

−3.0696 −3.5650 −2.4296
0.0520 −5.4143 −5.9011
3.7089 1.0430 −1.4279

 xφ +

−2.14621.6727
3.5351

φc

ẋθ =

−6.1824 −1.8848 −5.5527
−2.7956 −1.6305 2.0099
2.9196 2.5074 −6.8438

 xθ +

 3.2526
1.1928
−0.7547

 θc

ẋvz =

−4.4829 4.6997 8.1645
−3.2938 −5.6196 2.7175
−7.0201 −1.7885 −3.5407

 xvz+

 1.4509
−3.2656
3.3287

 vzc
φ =

[
−0.5915 −0.8319 0.4358

]
xφ

θ =
[
1.5283 −0.8466 3.8820

]
xθ

vz =
[
0.5327 −2.8051 −2.4470

]
xvz

The input responses of these model are shown in Fig. 4, 5
and 6. For illustration purposes the data set that is used is the
one the model fits best to. Therefore, the average fit percentage
may be higher than the average fitness presented in table II.

Fig. 4: Input response for 1st order plus time delay model

Fig. 5: Input response for 2nd order model

V. SIMULATION

The quadrotor’s movements can be simulated using an
identified model. For this the complete model of the dynamics
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Fig. 6: Input response for 3rd order model

is used which is a combination of the quadrotor dynamics
model and the input response model. This is further elaborated
in appendix B. For the simulation the MATLAB function sim

is used. This function simulates the model with the given
initial states and input with an infinite prediction horizon. The
prediction horizon states the moment that measurement data is
used to correct the simulation. Because there are no modeled
disturbances, the models are of Output-Error structure and thus
there is no difference between simulation and prediction [18].
Therefore only simulation is used.

For an accurate simulation the initial states need to be
known. For the first order models all the states are physical
properties that can be measured, so the initial states are known.
For the initial states of the higher order models this is not the
case, so they need to be estimated. This state estimation is
done using an Extended Kalman Filter. This Kalman Filter is
further discussed in appendix K. Once the state estimation has
converged and the initial states are known, the simulation is
started. This is the reason the simulation of the higher order
models does not start at t = 0 s.

The simulation results for the best identified first order plus
time delay, second order and third order model are given in
Fig. 7, 8 and 9. The simulation results of the other identified
models can be found in appendix L.

VI. DISCUSSION

In this section, possible general sources of error are dis-
cussed to get an understanding of the uncertainties in the
results.

A. Unwanted yaw angles

During the conducted experiments the commanded yaw rate
is kept at zero. This choice is made because the quadrotor

Fig. 7: Simulation results of velocity and position dynamics
for 1st order plus time delay model over best fitting data set

can reach every position in the IR3 space with the roll, pitch
and vertical velocity as inputs. Furthermore, the identification
of the input response models of the other parameters do not
require the yaw to be considered. However, during flying
the quadrotor shows a yaw drift. This yaw drift has an
influence on the system identification because the Mocap
system measures the position of the quadrotor in the world
frame. A consequence of this is that a pure pitch will result
in both a change of X- and Y -direction instead of merely a
change in X-direction. To correct for this the data is deyawed,
as mentioned in section III-C. The direction of the yaw drift
seems to be random, as shown in Fig. 10. Also, it was observed
that the battery might have an influence on the yaw drift. The
yaw drift and deyawing of the data are further elaborated in
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Fig. 8: Simulation results of velocity and position dynamics
for 2nd order model over best fitting data set

appendix F.
Despite not experimenting with the yaw, a yaw input-

response model is added to the complete state space model of
the quadrotor dynamics. In further research this model could
be identified using the same methods as discussed in this report
and added to the models that have already been identified. This
yaw identification is briefly discussed in appendix J.

B. Low-pass filter

To filter out unwanted high frequency noise, a low pass
filter is used. This could filter out real dynamics which could
in terms influence the model accuracy. To prevent this, the
cutoff frequency is chosen well above the system bandwidth

Fig. 9: Simulation results of velocity and position dynamics
for 3rd order model over best fitting data set

as shown in appendix D-B. It could, however, be that this
filtering does still influence some of the system dynamics.

C. Drag coefficients

The results obtained for k∗Dx and k∗Dy presented in section
IV-A are different from the results obtained in [19]. Since the
mass of the drone is about 0.5 kg, the real kDx and kDx lie
around 0.125 and 0.1515 respectively. This is a factor 2 lower
then the values used in [19], which are around 0.28. This
could be due to the fact that these values are obtained through
system identification, and in [19] the values are obtained from
literature. A possibility is thus that the inputs used to determine
the drag coefficients are not sufficient. It could also be that
the turning of the rotors and the thrust generated results in the

8



Fig. 10: Drift in yaw occurring during long experiments
without input

difference in the drag coefficient, since this is not taken into
account in [19].

Since the standard deviation of the drag coefficients is quite
high, around 30%, it could also be that the drag coefficients
do not have a very big impact on the equations for v̇x and
v̇y . This could result in this high standard deviation, because
the drag coefficient will be varied a lot in the optimization
process.

The model also assumes a linear relation between the
drag force and the velocity. In reality, this is a quadratic
relationship. This could also be a reason for the large deviation.
In future research a quadratic relationship between the drag
force and the velocity could be used to improve the estimates
for the drag coefficients.

D. Model identification

In table II the average fit scores are given for multiple
models. It is shown that the fit percentages for the 2nd, 3rd and
4th order seem to have converged since the difference between
the models is less then 5%. There is no significant difference
between these models. However, the difference between the
1st, 1st + TD and 2nd models is significant.

It can also be seen that these percentages are lower then
the percentages obtained by N. Podhar in [19]. This deviation
could be due to various reasons.

1) Initial samples: To be able to know with certainty that
the optimization algorithm has converged to a global minimum
(within a set range), multiple initial samples for the estimation
parameters have to be tried.However, there is no absolute
certainty that the optimization has converged to a global
minimum. If more time is available in future research the
Central Composite Design method could be applied to ensure
that the found models are indeed a global minimum.

2) Time delay resolution: In the code used, sending com-
mands and measuring data happens in the same loop. This
results in measurement data with a frequency of 20 Hz. The

time delay estimation method discussed in IV-B1 can only
estimate the delay as n ∗ dT where n is an integer and dT is
the sample time. The resolution for the time delay estimation
is therefore the same as the input frequency. By decoupling the
measurement from the input, this resolution can be increased
and a better estimation of the time delay can be achieved.

3) System inputs: The inputs that are given to the quadrotor
as described in section III-B might not be able to excite the
entire system dynamics bandwidth. It is shown, however, that
the inputs used in this report are more complex and excite
more frequencies then the inputs used in [19]. This is likely
one of the reasons the fit percentages presented in table II
differ so much from the fit percentages presented in [19].

4) Estimation data sets: To generate different models of
the same type, multiple data sets are used. These data sets all
have an RBS on every input except the yaw rate. Since these
data sets are random, more accurate results could be obtained
by lengthening the inputs. This would increase the accuracy
of the individual identified models since the parameters would
converge to the true value. It is, however, not possible to give
an infinitely long input due to the limited space in the lab.

It could also be that a model generated on a specific
estimation data set is over fitted to this type of input, and will
perform less on different inputs. This is minimized by using
an RBS signal as input, but can of course not completely be
excluded.

5) Thrust saturation: Since the amount of thrust that can be
produced per motor is limited, it can occur that a motor cannot
produce enough thrust to carry out one or more commands
at the same time. If the vertical velocity and the pitch for
example are excited at the same time, it could happen that the
thrust required from the rear motors exceeds the maximum
thrust. This could cause non-linearities in the measured data.
In appendix M it is shown, however, that this does not occur
during the experiments. Nonetheless, thrust saturation might
occur when the quadrotor is flown under other conditions such
as higher velocities and the model does not model the resulting
behaviour.

6) Number of data sets: For the identification and vali-
dation of the models a total of four data sets were used. It
would be beneficial for the results if more data sets had been
available.

For this research the emphasis was the validation of the
model. Only one data set was therefore used for estimation per
model and three for validation. However, it can be seen that
the standard deviation in the fit percentages is still quite large.
To decrease the standard deviation in the validation scores in
table II more validation data sets can be used.

Secondly, another approach that could be tried in further
research is using multiple data sets for the estimation of the
model. This would most likely decrease the overfitting and
thus decrease the standard deviation in the fit scores. With
more data sets available there would still be enough data sets
left to validate the model over.
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E. Simulation

When looking at the simulation result, it stands out that
the fit percentages for the input response models are a lot
higher then for the dynamics models. This can be seen when
comparing the response for φ, θ and vz in Fig. 9 to the
response in vx and vy in Fig. 6. Since the dynamics models
are derived analytically, this difference is probably a result of
the assumption that the aerodynamic drag is linear with the
velocity.

VII. CONCLUSION

In the introduction, the research goal is stated as: Derive
a model that describes the dynamics of the Bebop 2 drone
accurately. In this report a first order model, a first order model
plus time delay, a second order model, a third order model
and a fourth order model have been derived and estimated.
The third order model is the most accurate with a NRMSE
fit percentage of 83.5±1.6%. However, the difference in the
fit percentage between the second and third order model is
only 0.6 percentage point. Since the accuracy is comparable,
the complexity of the model will most likely be decisive for
which model is preferable for a specific application.

Although the goal of this research has been achieved, there
are some aspects that could be improved upon and added in
further research.

First of all, to decrease the variance in the estimated pa-
rameters, longer inputs can be used for each data set. Another
option is to record more data sets.

Secondly, a central composite design could be conducted
for the second and higher order models to minimize the
chances of converging to a local minimum when performing
the parameter estimation.

Lastly, to improve the model further research on the yaw
identification could be done.
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APPENDIX A
ESTIMATION OF kDz

The drag coefficient in the z-direction is not taken into account in the quadrotor dynamics equations in section II-B. This
is due to several reasons:

Firstly, the dynamics in the z-direction are directly controlled by the internal attitude controller. This can be seen in the
input vector u where vz is an input for the quadrotor. The drag in the z-direction is thus modelled by the proposed model for
the vertical velocity.

Secondly, the vertical velocity term in vx and vy is hard to determine. This can be seen by evaluating Eq. (4) assuming the
drag coefficient in the z-direction is taken into account in Eq. (19).


v̇x = k∗Dy sin(ψ)(vy cos(ψ)− vx sin(ψ))− k

∗
Dx

cos(ψ)(vx cos(ψ) + vy sin(ψ)) + (cos(ψ) tan(θ)cos(φ) + tan(ϕ) sin(ψ))(v̇z + g + k∗Dzvz)

v̇y = −k∗Dx sin(ψ)(vx cos(ψ) + vy sin(ψ))− k∗Dy cos(ψ)(vy cos(ψ)− vx sin(ψ))(sin(ψ)
tan(θ)
cos(φ) − cos(ψ) tan(ϕ))(v̇z + g + k∗Dzvz)

(19)
It is shown that a kDz term is added at the end of v̇x and v̇y equations. This reveals the relationship between the horizontal

accelerations and the vertical velocity. The kDz only has an effect on v̇x and v̇y when there is a vz present. This makes it very
hard to determine, since it requires simultaneous inputs in the x-, y- and z-direction.
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APPENDIX B
FULL DYNAMICS MODELS

The full dynamics model of the drone is the result of solving the equation of motion of the system for the x and y components
in the world frame. Since the vertical velocity is an input of the quadrotor, it is a known quantity. The equation of motion is
given by Eq. (20).

mv̇A = −mgA +A RB
BT−RZDRZ−1vA (20)

Evaluating the thrust as described in II-B yields:

T =
m(v̇z + g)

cos (ϕ) cos (θ)
(21)

Substituting this result in Eq. (20) gives the x and y components of the acceleration in the world frame.


v̇x = k∗Dy sin(ψ)(vy cos(ψ)− vx sin(ψ))− k

∗
Dx

cos(ψ)(vx cos(ψ) + vy sin(ψ)) + (cos(ψ) tan(θ)cos(φ) + tan(ϕ) sin(ψ))(v̇z + g)

v̇y = −k∗Dx sin(ψ)(vx cos(ψ) + vy sin(ψ))− k∗Dy cos(ψ)(vy cos(ψ)− vx sin(ψ)) + (sin(ψ) tan(θ)cos(φ) − cos(ψ) tan(ϕ))(v̇z + g)
(22)

With k∗D... = kD.../m.

For the simulation of the quadrotor a full state space describing the dynamics is used. This state space differs per order
model, so the models for a first order and general order model are given. For a model with time delay, the only change is a
shift input, as illustrated in Eq. (16) and Eq. (18).

A. Full first order model

x =
[
x y z vx vy vz φ θ ψ ψ̇

]T

ẋ =



vx
vy
vz
v̇x
v̇y

1
τvz

(kvzvzc − vz)
1
τφ
(kφφc − φ)

1
τθ
(kθθc − θ)

ψ̇
1
τψ̇

(kψ̇ψ̇c − ψ̇)


y =

[
x y z vx vy vz φ θ ψ

]T
12



B. General order full model

x =
[
x y z vx vy xvz xφ xθ xψ̇ ψ

]T

ẋ =



vx
vy

Cvzxvz
v̇x
v̇y

Avzxvz +Bvzvzc
Aφxφ +Bφφc
Aθxθ +Bθθc
Aψ̇xψ̇ +Bψ̇ψ̇c

Cψ̇xψ̇



y =



x
y
z
vx
vy

Cvzxvz
Cφxφ
Cθxθ
ψ
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APPENDIX C
TIME DELAY

In figure 11, a step response on the pitch angle θ is plotted. The red dots represent the input, while the green and the
blue line represent the first order and the first order plus time delay model. The grey line represents the measured data. The
measured data indicates a present delay in the response of the drone. The percentage in the title gives the NRMSE fit for the
models compared to the measured data. It is shown that the first order plus time delay estimates the measured data better then
the model without time delay with an increase of 5% in the fit.

Fig. 11: Step response plot for the first order model with and without time-delay.
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APPENDIX D
INPUT DESIGN

Designing input signals to use for system identification is a broad topic. There have been papers published on this topic
finding different methods to generate input signals which would lead to optimal results according to certain criteria such as the
variance of the parameter estimates [20]. However, because currently the real system of the quadrotor is only approximated by
the model, designing input that excites the relevant frequency band suffices for the purposes of estimating an accurate motion
model, as argued in [21].

A. Command frequency

A choice to be made in the designing of the input signal is at what frequency the command signal is to be send to the drone.
In the SDK of the quadrotor it was found the inner control loop of the quadrotor runs at 20 Hz [12]. Therefore it is expected
that there is no difference between sending commands at a lower rate than 20 Hz. However, sending commands faster than 20
Hz might be problematic because the quadrotor cannot process the commands that quickly and may buffer the execution. This
was verified using a pitch step input signal. The input signal was send at different frequencies ranging from 5 Hz to 100 Hz.

If the quadrotor buffers commands that are sent at higher frequencies than its inner control loop, it is expected that for those
command frequencies there is a longer delay, since the drone is still executing the zero input commands sent before the step
input.

As shown in figure 12 the behaviour seems in line with this hypothesis. It can be seen that there is a larger delay in the
response of the quadrotor when the commands are send at a frequency of higher than 20 Hz. Frequencies below 20 Hz produce
nearly identical results. The data for each line is the average of three separate step response experiments at that frequency.

Fig. 12: Step response for different command frequencies

Because of these results all further experiments were conducted using a command frequency of 20 Hz. This also means that
Mocap data is recorded at 20 Hz, since recording of the data happens in the same loop as sending the input commands.

B. System bandwidth

As mentioned before the input signal is to be designed to have the majority of its frequency spectrum within the system
bandwidth. In order to calculate a reasonable bandwidth of the input signal, the system bandwidth is approximated from the
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step response rise time. The system bandwidth approximately relates to the step response rise time by the following equation:
[22]

bandwidth(Hz) =
0.35

risetime(s)
(23)

To determine the rise time multiple experiments were conducted with step input signal on the pitch, roll and vertical velocity
input channels separately. The inputs given were 12◦ for pitch and roll and 0.5 m/s for vertical velocity. The rise time was
taken as the time it takes for the response to go from 10% to 90% of the steady state value. The results are shown in table III.

Rise time step responses (s)
θ φ vz
0.301 0.350 0.300
0.300 0.400 0.303
0.200 0.450 0.300
0.300 0.450 0.350
0.200 0.398 -

avg ± σ 0.260 ±0.055 0.410±0.0424 0.313±0.025

TABLE III: Rise time of step change of inputs

From the averages of these measured rise times the bandwidths of the responses for pitch, roll, and vertical velocity inputs
were calculated. The standard deviations for the bandwidth are calculated using the standard formula for error propagation. 2

The upper cutoff frequency of the input signal is set to the system bandwidth for every input. It is to be noted that the
resulting system bandwidths are only approximations using Eq. (23) and only serve the purpose of being initial guesses towards
the actual system bandwidth values.

The lower cutoff frequency follows from dimensions of the laboratory and was determined experimentally by trial and error.
A lower cutoff frequency excites more frequencies but results in signals that are steady for longer periods of time which means
the drone will eventually run out of space to move, after which an emergency stop must be activated. Table IV shows the
cutoff frequencies for the different inputs. Figure 13 shows an example of the designed input for the pitch.

Input Lower cutoff frequency (Hz) Higher cutoff frequency (Hz)
θ .30 1.35± 0.28
φ .40 0.85± 0.08
vz .10 1.12± 0.09

TABLE IV: Cutoff frequencies for inputs

Fig. 13: Input example of RBS signal for pitch input

2σbw =
√

( ∂bw
∂rt

)2 · σ2
rt =

0.35
rt2

· σrt
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APPENDIX E
INPUT DEPENDENCY

Models can be constructed in different ways. Firstly, it is possible to combine the results of single-input experiments into
one model. During these experiments only one of the three inputs is excited with an RBS signal. For each input two of these
experiments were conducted and the best model for that input was selected based on the validation. The estimated parameters
for the three selected models are then used in one model.
Secondly, it is possible to estimate the model at once by using data from experiments where three inputs were excited with
an RBS signal simultaneously3. Four of these experiments were conducted. For each experiment a model was estimated and
validated using all four the data sets, resulting in a best all-input model.
Finally, the combined single-input model was also validated using the four all-input data sets and compared to the all-input
model score.

To test whether there exists an input dependency, the model constructed with three single-input and the model constructed
with the simultaneous input can be compared. Table V shows the fit percentages for these models of first order and first order
plus time delay. It can be concluded that the percentages are sufficiently similar that there exists no dependency between inputs.

All-input model Single-input Model
1st (%) 73.4±2.6 73.7±2.5
1st +TD (%) 76.7±2.8 76.5±2.9

TABLE V: Lack of input dependency

3The signal for each input is not the same
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APPENDIX F
YAW DRIFT

Figure 14 shows the drift noticed in the yaw direction when keeping the yaw rate input for the quadrotor at zero. With a
zero input it is to be expected that the yaw angle does not change significantly because the quadrotor should remain stationary.
However, it is clearly visible that during these experiments, the yaw drifts randomly before it converges to a steady state. The
yawing happens mainly during and right after takeoff. All experiments were conducted with the same initial configuration and
with the quadrotor being placed stationary on the ground.

Fig. 14: Drift in yaw occurring during long experiments without input

Because of the randomness in the resulting yaw angle it was decided to derotate all data recorded in world frame, which
includes the quadrotor’s position and velocities, with the measured yaw angle. Performing this operation for experiments where
the yaw input was kept at zero makes sure that any randomness in yaw angle is not considered in the system identification
and thus does not influence that validity of the identified model.
Figure 15 shows the result of this derotation. In this particular experiment a step input was given to the pitch angle. This
should only result in a velocity in the X-direction, assuming the quadrotor is placed sufficiently aligned with the world axes.
However, it can be seen that a velocity in Y -direction also occurs, because the quadrotor yaws. Derotating the measured
velocity minimizes this effect.
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Fig. 15: Effect of derotating by yaw angle on irrelevant velocity. During this experiment, a step input on the pitch angle, only
a velocity in X-direction is expected. Because of a drift in yaw a velocity in Y occurs as well. Derotating by the measured
yaw angle minimizes this velocity component.

A possible explanation for this random drift before converging to steady state may have to do with the startup time of the
individual rotors. If the rotor startup is not precisely controlled equally for each rotor yawing could occur when one rotor
reaches a final velocity quicker than another rotor. In steady state the difference in added angular momentum would cancel
out which would explain the converging of the yaw angle in steady state. It was noted during experiments that battery level
may have an influence on the magnitude of yaw drifting occurring. However, investigating this effect is not within the scope
of this research.
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APPENDIX G
SYSTEM IDENTIFICATION

The level of system identification that is used is grey box system identification. This level is basically the fitting of a
predetermined model to measured data by optimizing certain model parameters.
For this optimization, an objective function (Eq. (24)) is created. This function is the square of the difference between the
measured and predicted data by the model (as shown in [23], [24] and [25]).

χ =

n∑
i=0

(yi − ŷi)2 (24)

In this equation y is the measured value of the output at data point i, and ŷ the estimated value of the output. To be
able to produce the best fit of the model to the measured data, this function has to be minimized. To find the minimum of
this function, several numerical optimization methods are available. The three most popular methods are the steepest descent
(gradient descent) method, the Gauss-Newton method and the Levenberg-Marquardt method. Since the Levenberg-Marquardt
method converges quickly and is likely to converge to a minimum, this is the preferred method for optimization of the
objective function χ. This algorithm combines the gradient descent method and the Gauss-Newton method [24]. These
methods itself are not derived here, but can be found in [26] and [24]. This combination is made by adaptively switching
between the gradient descent method and the Gauss-Newton method for the parameter updates. To determine this switching,
a ’damping factor’ λ is created. This λ is increased when an iteration results in an increase in the objective function χ. When
an iteration results in a decrease in χ, λ is decreased. Small λ will result in the use of the Gauss-Newton method, which
converged fairly fast, but can also converge to a local maximum instead of the desired minimum. Therefore, large values for λ
result in the use of the gradient-descent method, which converges a lot slower, but will always converge to a local minimum.
The result is a fairly quick minimization algorithm which will almost always converge to a minimum.
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APPENDIX H
DESIGN OF EXPERIMENTS

For the optimization, a set of initial guesses has to be defined to reduce the chance of converging to a local instead of global
minimum. This is done according to the Circumferential Central Composite Design. Figure 16 gives a graphical overview of
this initial parameter choice for 3 parameters. The Central Composite Design generates 5 different evaluations per parameter
(2 star points, 2 cube points and a center point). This spread is well suited for the fitting of models with quadratic behaviour
according to Minitab [27]. Since it is not known what the least squares function will look like, this is a good first guess. The
amount of points to be tried is given by the following formula:

NPoints = 2k + 2 ∗ k +Nc

where k is the amount of parameters that have to be estimated, and Nc is the number of center points. For the first order
model described in section II-C1, there are 8 parameters which have to be estimated. Since a full black box response surface
is not set up, the midpoint does not have to be evaluated multiple times. This results in NPoints = 273 for the first order
model. The second order model described in section II-C3 has 26 parameters that have to be estimated. This would result in
67,108,917 initial points. Trying all these points would take up too much computational time.

Fig. 16: Visual representation of central composite design

For higher order models, a random initial sample set is used. This is done by generating a random value for every parameter
using rand. This thus generates a uniform distribution of points across a certain interval. If more time is available in future
research the CCD method could be applied to ensure that the found models are indeed a global minimum.
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APPENDIX I
INTEGRATION METHODS

To simulate the model response, the differential equations of the dynamics have to be solved. To do this, multiple numerical
integration methods have to be solved. The idnlgrey model allows the following numerical integration methods according
to the documentation [28]:

• ode45
Runge-Kutta(4,5) solver.

• ode23
Runge-Kutta(2,3) solver.

• ode113
Adams-Bashforth-Moulton solver.

• ode15s
Numerical differential formula solver.

• ode23s
Modified Rosenbrock solver

• ode23t
Trapezoidal solver

• ode23tb
Implicit Runge-Kutta solver

To compare these methods, the same model is simulated using all these methods. The results can be seen in figure 17. Here,
the response for the x position of a first order model is plotted. It can clearly be seen that the different integration methods
have very little effect on the result. Since most methods lie within the range of less then centimeters for the x position, they
are assumed almost equal.

Fig. 17: Comparison between different integration methods.
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APPENDIX J
YAW IDENTIFICATION

This section considers the yaw identification of the quadrotor. To complement the system identification a model is added to
provide for the yaw identification. The yaw input differs from the pitch and roll input, since the yaw input consist of the yaw
rate, rather then an absolute yaw angle. This is due to the fact that the yaw does not have a clear reference like the pitch and
roll do. The model compares both the yaw rate input and output using the non-linear greybox model. The output is estimated
with a Kalman filter as mentioned before.

The dynamics equation of a first order model plus time delay are shown. Furthermore in figure 18 the result of the
identification is shown.

It must be noted that these results are computed with a data set that was not obtained in this research but provided by a
third person. The results as shown are therefore only meant as example what the method would look like rather then results
presented by the research.

ψ̇(t) =
1

1.3542
(1.5979 · ψc(t− 0.15)− ψ(t))

Fig. 18: Input response of first order plus time delay model for yaw
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APPENDIX K
EXTENDED KALMAN FILTER

The states of the higher order models are not physical properties anymore (see Eq. (17)). Therefore, to perform the simulation
the states need to be estimated. An Extended Kalman Filter (EKF) is used for this purpose. In order for an EKF to converge
the system needs to be observable [29]. The observability matrix is thus as follows:

O =


C
CA
CA2

CA3

CA4

CA5


Where A and C are block diagonal matrices consisting of the identified dynamics and control matrices for φ, θ and vz . For
the system to be observable, the rank of O must be equal to the number of state variables. As an example, for the second
order model the number of state variables of the input response model is 6. When matrix O is computed in MATLAB for
the identified second order models and using the function rank this is true. For the EKF a state transition function and a
measurement function are needed. The state transition function returns the state at t = k given the state at t = k − 1 and is
given by:

x[k] = x[k − 1] + (Ax[k − 1] +Bu[k − 1])dT

Where dT is the sample time. The measurement function returns the output measurement at t = k given the state at t = k
and is given by:

y[k] = Cx[k]

The Matlab functions extendeKalmanfilter, correct and predict are used to estimate the states. For each time step, first
correct is used followed by predict. correct uses x̂[k|k− 1] (the estimated state at t = k using outputs up to t = k− 1)
to return x̂[k|k], this is the estimated state on t = k using outputs up to t = k. predict uses x̂[k|k] to return x̂[k+1|k] which
is then used by correct again for the next time step. Fig. 19 shows an example of how the state estimation for φ converges
to measured angle for a measured data set. By adding data equal to the initial φ, the state estimation has converged before the
start of the data, enabling the simulation to start there as well. Because the filter works well enough for the desired purpose a
Unscented Kalman Filter was not used.

Fig. 19: State estimation for the roll angle using an Extended Kalman Filter
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APPENDIX L
MODEL IDENTIFICATION RESULTS

In this section the results of the model identification for each type of model will be shown. The input response and the
simulation of the drone are shown as well as the dynamics equation of the model. For all plots the input that is used is the
input that the model fits best, but is not the data set the model was estimated on. Table VI shows the average fit percentages
of all models. Adding a time delay to higher order models does not result in an improvement in the fit percentage.

Model order 1st 1st + TD 2nd 2nd + TD 3rd 3rd + TD 4th 4th + TD
fit (%) 73.4±2.6 77.8±2.8 82.9± 0.6 76.0± 0.7 83.5± 1.6 76.5± 0.8 82.3± 4.5 75.0± 2.8

TABLE VI: Fit scores for the best model of each type

A. First order model

The input response model for the best first order model is:

φ̇ =
1

0.2368
(1.126 · φc − φ)

θ̇ =
1

0.2318
(1.1075 · θc − θ)

v̇z =
1

0.3367
(1.2270 · vz − vz)

The resulting plots and simulation are given in figures 20, 21 and 22.
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Fig. 20: Simulation results of input response for 1st order model over best fitting data set
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Fig. 21: Simulation results of velocity dynamics for 1st order model over best fitting data set

Fig. 22: Simulation results of position dynamics for 1st order model over best fitting data set
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B. First order plus time delay model

The input response model for the best first order plus time delay model is:

φ̇(t) =
1

0.1598
(0.9655 · φc(t− 0.05)− φ(t))

θ̇(t) =
1

0.1621
(0.9795 · θc(t− 0.05)− θ(t))

v̇z(t) =
1

0.2599
(1.1635 · vz(t− 0.05)− vz(t))

The resulting plots and simulation are given in figures 23, 24 and 25.

Fig. 23: Simulation results of input response for 1st order + TD model over best fitting data set
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Fig. 24: Simulation results of velocity dynamics for 1st order + TD model over best fitting data set

Fig. 25: Simulation results of position dynamics for 1st order + TD model over best fitting data set
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C. Second order model

ẋφ =

[
−3.6268 4.5680
−4.2580 −3.8136

]
xφ +

[
3.3057
−1.5443

]
φc

ẋθ =
[
−6.5559 5.4182
−4.8719 −5.1334

]
xθ +

[
−0.2825
−3.9654

]
θc

ẋvz =
[
−4.5702 4.4186
−4.9402 −4.7852

]
xvz +

[
3.3742
0.4442

]
vzc

φ =
[
−0.1337 −1.4979

]
xφ

θ =
[
−2.2622 −0.1050

]
xθ

vz =
[
0.1768 −2.5312

]
xvz

Fig. 26: Simulation results of input response for 2nd order model over best fitting data set
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Fig. 27: Simulation results of velocity dynamics for 2nd order model over best fitting data set

Fig. 28: Simulation results of position dynamics for 2nd order model over best fitting data set
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D. Third order model

ẋφ =

−3.0696 −3.5650 −2.4296
0.0520 −5.4143 −5.9011
3.7089 1.0430 −1.4279

 xφ +

−2.14621.6727
3.5351

φc

ẋθ =

−6.1824 −1.8848 −5.5527
−2.7956 −1.6305 2.0099
2.9196 2.5074 −6.8438

 xθ +

 3.2526
1.1928
−0.7547

 θc

ẋvz =

−4.4829 4.6997 8.1645
−3.2938 −5.6196 2.7175
−7.0201 −1.7885 −3.5407

 xvz +

 1.4509
−3.2656
3.3287

 vzc
φ =

[
−0.5915 −0.8319 0.4358

]
xφ

θ =
[
1.5283 −0.8466 3.8820

]
xθ

vz =
[
0.5327 −2.8051 −2.4470

]
xvz

Fig. 29: Simulation results of input response for 3rd order model over best fitting data set
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Fig. 30: Simulation results of velocity dynamics for 3rd order model over best fitting data set

Fig. 31: Simulation results of position dynamics for 3rd order model over best fitting data set
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E. Fourth order model

ẋφ =


−3.1466 −2.2934 7.1880 −1.5322
2.3268 −4.8436 −4.1068 2.6630
−8.2756 3.8846 −2.7173 −5.1454
0.3868 −5.3830 3.6690 −0.8870

 xφ +


−0.8863
−1.8831
−2.0874
−2.6259

φc

ẋθ =


−1.6003 −1.6104 2.5787 0.8336
0.5943 −1.7293 1.4047 2.9910
−2.1009 4.1525 −4.5706 −3.7690
0.4700 −3.0666 5.0265 −0.7570

 xθ +


0.5930
1.3859
−3.3685
−0.0717

 θc

ẋvz =


−4.2459 5.8245 3.0821 2.5406
−7.6343 −2.7824 1.5316 1.5558
−2.1061 −4.1226 −2.7998 2.0276
−0.8159 −1.0617 1.3522 −7.2796

 xvz +


−2.5545
−0.3099
−3.5680
−2.7811

 vzc
φ =

[
2.8228 0.0985 −0.0256 −2.3801

]
xφ

θ =
[
1.2238 0.4942 −0.2987 −1.6873

]
xθ

vz =
[
0.2513 2.2975 1.6506 −3.1097

]
xvz

Fig. 32: Simulation results of input response for 4th order model over best fitting data set
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Fig. 33: Simulation results of velocity dynamics for 4th order model over best fitting data set

Fig. 34: Simulation results of position dynamics for 4th order model over best fitting data set
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APPENDIX M
THRUST SATURATION

During flight it may occur that a combination of input commands requires a total thrust magnitude that is larger than can
be delivered with the 4 available rotors. The maximum thrust that can be generated is physically limited by the specifications
of the rotors.
If this occurs when the drone is given a single input, such as a commanded vertical velocity, a saturation of the thrust may
result in a lower vertical velocity than commanded. When the drone is given multiple inputs, such as a pitch angle and a
desired vertical velocity, the internal control loop may choose to satisfy one input over the other.
Identifying this possible behaviour is not in the scope of this research, but the thrust during experiments was analyzed to see
if a maximum was reached during flight patterns used for system identification. The thrust is given by the following equation.

T =
m(g + v̇z)

cos(φ) cos(θ)

In figure 35 it can be seen that the thrust does not reach a constant maximum value.

Fig. 35: Thrust level during experiment with concurrent sinusoidal inputs for roll, pitch and vertical velocity of amplitude 12
degrees and 1 m

s . It can be seen that the magnitude of the thrust does not reach a steady maximum value.
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