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Abstract— The world is getting bigger while devices
are getting smaller. Accelerometers are no exception. This
paper considers the optimization of a singly clamped -
simply supported graphene-based accelerometer. We adapt
and optimize existing theory on doubly clamped graphene
membranes and build a macroscopic model to find a relation
between the tension in the membrane and the corresponding
eigenfrequencies. The macromodel allows us to gain more
information about the singly clamped configuration, i.e. the
behaviour of graphene membranes. The most intriguing
finding is the wrinkling and rippling behaviour, resulting
in a lower fundamental eigenfrequency of the membrane.
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I. INTRODUCTION

Accelerometers have become a key instrument
in our everyday life. From airbag deployment in
automobiles to directional information in smartphones,
accelerometers are an irreplaceable tool in many different
industries. In current smartphones, the difference in
electrical capacity due to inertia is measured with
several comb drives to determine an acceleration.
The size of these electromechanical devices are in
the magnitude of millimeters [1]. Using graphene, a
material with outstanding mechanical, electrical, thermal
and optical properties, accelerometers can be scaled
down to the microscale. These devices are called
graphene nanoelectromechanical systems (GNEMS). An
accelerometer with increased sensitivity can be achieved
with a suspended graphene nanoribbon (GNR) [2].
Graphene can be exfoliated from graphite in which Van
der Waals forces hold together the different layers of
graphene. This single layer of carbon atoms is so thin that
it can be considered as a two-dimensional membrane with
great resonant characteristics. Not only does graphene
have a Young’s modulus of about 1 TPa and can it be
stretched up to 20% without breaking, the resonance
frequency of graphene can be measured electrically,
which promises direct integration in electrical circuits
making it the ideal material for a resonant accelerometer
[3].

A suspended mass is directly connected to the GNR
in an accelerometer. When this mass is subjected to an
acceleration, the tension in the ribbon will change. The in-
or decrease in tension gives a shift in the eigenfrequency
of the membrane which can be measured in order to
determine the acceleration. The eigenfrequency is the
frequency where graphene takes on one of the mode
shapes, i.e. the first mode shape is the fundamental mode.
Besides the tension in the membrane, the eigenfrequency
is also dependent on the geometric parameters of the

GNR. The goal of this paper is to optimize the GNR
for accelerometers by looking at a singly clamped
configuration, instead of a doubly clamped membrane on
which previous research is mostly based. The advantage
of a singly clamped graphene membrane is that the
mass can be chosen freely to change the tension in the
membrane, calibrating it for a certain frequency range.
This differs from using the inertia of graphene itself to
change the tension in the membrane in a doubly clamped
configuration.

Relatively low accelerations that will give large
eigenfrequency shifts, applicable for sensitive
accelerometers, are the main focus of this research. In
order to do so, the different parameters which determine
the resonance frequency are studied. Subsequently,
a macroscopic model is built and compared to the
simulation from COMSOL Multiphysics R©.

II. THEORY

A singly clamped beam with the other end simply
supported is considered, as previously mentioned.
For a resonator under tension T , the fundamental
eigenfrequency f , is given by Eq. 1 [4], [5].

f = A

√
Et2

ρL4
+

T

3.4meL
(1)

The clamping coefficient, denoted by A, is 0.7085 for a
singly clamped beam with the other end simply supported
[6]. E is the Young’s modulus, L is the length of the
beam, ρ is the density of the material, t is the thickness,
which is twice the Van der Waals radius of carbon [7].
me is the effective mass, which is a fraction of the mass
of graphene: me = 0.5492m for a singly clamped beam.
Eq. 1 is compared with a COMSOL model to check if it
is accurate. Although they are not exactly the same, the
formula is accurate within five percent, hence it is a good
estimation.

The standard equation for the natural frequency,
indicated with Eq. 2, can be combined with Eq. 1 which
results in Eq. 3,

f =
1

2π

√
ke
me

(2)

ke = 10.88
Ewt3

L3
+ 5.83

T

L
(3)

where the ke is the effective spring constant and w is
the width of the beam. The spring constant is essential
because it can be used for scaling the microscopic to the
macroscopic model. This will be thoroughly explained in
the next section.
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A. Optimization Theory of the GNR

In order to optimize the performance of the GNR,
the frequency shift must be maximized so that the
corresponding force as a consequence of the acceleration
can be measured more accurately. Following from the
equation for the frequency of the membrane, Eq. 1, the
derivative of frequency over force is introduced, stated by
Eq. 4.

df

dT
=

A

6.8Lme

√
Et2

ρL4
+

T

3.4meL

(4)

The optimal situation is where there is a maximal
frequency shift (df ) for a change in force (dT ). This
results in a maximum value for df /dT , which realizes a
more sensitive accelerometer. To do so, certain conditions
have to be introduced. Firstly, the maximum measurable
frequency of a graphene sheet with the setup available
in the group of Prof. Steeneken is 250 MHz which is
an upper limit for the frequency in the optimization.
Secondly, there is a minimum width in order to support
the force applied to the membrane. The corresponding
relation is Tmax = σ

UT S
wt, where σ

UT S
represents the

ultimate tensile strength. This means that as the applied
force increases, the width has to be larger to make sure
the ultimate tensile strength is not surpassed, as illustrated
in Fig. 1.

Fig. 1: The maximized derivative of the frequency over force while the
frequency does not exceed 250 MHz and the width is large enough to
carry the force. The optimal length and width for different applied forces
on the GNR are indicated with coloured lines. Lower forces result in a
higher df/dT , with values ranging from 5 · 105 - 12 · 107 MHz/N.

When the maximal value for the length (Lmax) is
chosen, it results in a minimal value for the width (wmin)
and vice versa. Fig. 1 shows that the value for Lmax is
approximately 16 µm. This is verified when simplifying
and filling in Eq. 1 with all the known values. Lmax does
not depend on the value of wmin, due to the fact the latter
cancels out when Tmax is inserted in Eq. 1. Since there
is no relevant maximum value for the width, Fig. 1 is cut
off at 20µm.

III. EXPERIMENTATION

To compare the theory through simulations in
COMSOL and calculations with experiments, a
macroscopic model is fabricated. This is a simplified
setup in the form of a single membrane that is easily

measurable. The comparison of real test results and
theory is most likely to show similar behaviour. In this
case, the behaviour of the membrane is described by
the spring constant as expressed in Eq. 3. The spring
constant of the material, in the direction perpendicular to
the membrane, has to remain constant when scaled from
microscopic to macroscopic scale. The left part of Eq. 3
can be assumed negligible because t � L. This causes
the effective spring constant to be only dependent on T
and L.

A. Scaling

To gain appropriate geometric values for the
macromodel, 55% of the ultimate tensile strength
of graphene is used as the force. This percentage is
chosen to be sure that the strain remains in the elastic
region of elongation and such that 0.55σ

UT S
wt ≈ 50

µN [8]. A GNR with a length of 12 µm and width of
2 µm is considered when scaling to the macromodel.
These are geometric values picked from the optimum of
50 µN from Fig. 1. The dimensions of the macromodel
are chosen so the spring constant and thus the behaviour
will remain the same as for the micromodel [9]. The
resonant frequency is also directly dependent on the
tension in the membrane. The tension can be scaled up
in the macroscopic setup. This way they should have the
same mode shapes and show similar behaviour.

B. Setup

The setup for this experiment is displayed in
Fig. 2. Using a PSV-400 Scanning Vibrometer R©, the
eigenfrequencies of different membranes subjected to
various tensile loads are measured. Behind the membrane
an exciter is mounted to a rectangular plate. This exciter
generates a periodic chirp waveform with frequencies in
the range of 0 - 500 Hz which are transferred to the
membrane through air.

Fig. 2: The test setup. (A) The PSV-400 vibrometer. (B) The exciter with
a plate attached to it. (C) The macromodel consisting of the suspended
membrane. (D) The mass attached to the lower end exerting a force on
the membrane.

Since it is impossible to use a graphene membrane for
the macroscopic model, the material graphite was used
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which consists of layers of graphene as mentioned earlier.
The graphite membrane is suspended using 3D-printed
clamps, the upper edge is fixed and the lower side can
move only in the z-direction along the aluminum guide
rails. The lower edge is subjected to various tensile loads
using increasing weights.

C. Frequency Distortion

Since the lower edge of the graphite in the macromodel
can move freely in the z-direction, it is necessary
to investigate if the system encounters effects from
the suspended mass. The suspended mass has an
eigenfrequency, since it can move freely about the z-axis
as well. When the eigenfrequencies of the graphite sheet
and the mass overlap, this can result in distortion in the
measured values. The mass is attached by two ropes which
are connected at the lower clamp of the macromodel.

The spring constant of the ropes can be easily
calculated, using the equation k = AE/L, where A is
the cross section of the rope. The spring constant is circa
5.3 · 105 N/m for one rope.

IV. RESULTS

The output of the vibrometer is the position-dependent
displacement as a function of the actuation frequency. This
results in a frequency range from 0-500 Hz with for each
frequency the magnitude and corresponding modeshape
displayed.

A. Frequency measurements

When only considering the fundamental mode shape,
the frequencies of the macromodel can be plotted as a
function of the force, see Fig. 3. The frequencies obtained
by COMSOL are plotted as well, indicated with a dashed
line. The 250x20 mm membrane, in Fig. 3 indicated with
the blue line, has the same spring constant as the 12x2
µm graphene membrane from section III-A.

Fig. 3: The measured frequencies of the macromodel are indicated with
dots, after which a square root line is fitted to these measurements
with the curve fitting tool in Matlab R©. The error bars are the random
errors in the frequency measured. The frequencies that are obtained
when using the same dimensions in COMSOL are plotted and indicated
with a dashed line. The cyan line is the the calculated frequency of the
mass-coupling

As expected from Eq. 1, the frequencies of the
macromodel increase with a square root function of the
force. The standard deviation for the 100x20 mm, 100x40
mm, 250x20 mm and 250x37 mm membranes with respect
to the fitted lines are 6.5 Hz, 2.1 Hz, 0.9 Hz and

4.8 Hz respectively. It is clear that the frequencies of
the macromodel are lower than the values obtained by
COMSOL, but not with a constant difference.

B. Mass-coupling

With Eq. 2 the frequency as a function of mass can
be plotted as is explained in section III-C. It unveils
certain overlap in the eigenfrequencies. This happens
close to the intersection of the mass coupling line with
the experimental plotted lines of the membrane in Fig.
3. Besides that, the eigenfrequency of the GNR in the
z-direction under the weight of the lower clamp is around
40 Hz. This results in higher errorbars at these frequencies.

The motions in the xz-plane and yz-plane are modeled
as a pendulum with inertia. The frequencies derived from
these calculations are approximately between 1 and 2 Hz
and therefore have no influence on the eigenfrequency
measurements of the graphite sheet.

C. Modeshapes

When observing the fundamental modeshapes in
COMSOL, a different shape is displayed for the 100x40
mm membrane as depicted in Fig. 4. The larger the w/L
ratio, the more the modeshape resembles Fig. 4(b) with
respect to Fig. 4(a). In the 100x40 mm membrane of the
macromodel this behaviour is not observed, as is depicted
in Fig. 4(c).

(a) 100x20 mm (b) 100x40 mm (c) 100x40 mm

Fig. 4: Fundamental modeshapes of graphite membranes with E = 0.61
GPa for the COMSOL model (a) & (b) and macromodel (c).

V. DISCUSSION

As depicted in Fig. 3 the frequencies of the macromodel
are smaller than the frequencies of the COMSOL
model. Furthermore, the relative difference of frequencies
between the macromodel and COMSOL model is not
the same for every dimension. Both can be explained by
several factors which are discussed in this section.

A. Rippling & Wrinkling

The fact that the frequencies calculated in COMSOL
have larger values compared to the frequencies obtained
from the macromodel can be justified by phenomena
called rippling and wrinkling. The rippling and wrinkling
results in wavelike shapes with certain heights. In
free-standing graphene, rippling is caused due to thermal
fluctuations and interatomic interactions that shapes the
graphene sheet in the out-of-plane direction [10]. The
graphite membrane from the macromodel is likely also
prone to ripples. Static wrinkling is probably caused by
uneven stresses near clamped edges of the membrane,
accidentally produced during the fabrication of the
macromodel [11]. The different dimensions which are
tested may vary in the static wrinkling because some are
clamped in with more uneven stresses than others.
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The ripples and wrinkles could cause the effective
length of the membrane to be longer than the geometric
length. The geometric length is the shortest route from
both clamping positions, thus having a straight path. The
effective length follows the wave-like shapes caused by
the ripples and wrinkles, hence being longer. An increased
length gives a lower frequency as can be concluded from
Eq. 1. This validates the results from Fig. 3.

B. Modeshapes

The modeshape behavior obtained by COMSOL that is
depicted in Fig. 4(b) is not observed in the macromodel.
This behaviour can be explained by the fact that the
effective length is larger than the geometric length. This
results in a smaller w/L ratio, and thus a behavior like Fig.
4(a). Another explanation of the difference in modeshapes
is the way the force is simulated in COMSOL and in
the macromodel. In COMSOL, a constant tensile force is
exerted on one edge. In the macromodel, the force exerted
by the mass is not constant during the measurements due
to mass-coupling.

C. Friction

A possible error of the setup is that the force caused
by the masses is not fully exerted on the membrane,
but is partially exerted on the aluminum bars due to
friction, resulting in a lower tension in the membrane and
thus lower frequency. Therefore, the friction is a possible
explanation for the difference between the macromodel
and the COMSOL values.

D. Measurement Errors

1) Systematic Errors: Since the left part of Eq. 1
is negligible, the error in the Young’s Modulus can be
neglected. There are systematic errors which are constant
for all measurements in all membranes, namely ρ, t, ms

and f , where ms is the mass of the suspended load.
There are also systematic errors that differ for different
membranes, but are constant for all measurements, which
are L and w. The standard deviations of these parameters
are estimated by σρ = 40 kg/m3, σt = 0.05 µm, σms

= 0.5 g, σf = 0.3 Hz, σL = 1 mm and σw = 0.5 mm,
respectively. This results in a total maximum systematic
error in the frequency of 2.4%. Defects in the material
can cause a systematic error as well. These defects can
emanate from the fabrication of the material.

2) Random Errors: The random error differ for each
measurement and is caused by inaccuracy of the measured
f . This error is on average much larger than the systematic
errors. This error is depicted in Fig. 3 by the error bars. It
is clear that this error can vary enormously. It is probable
that the large random error is caused by noise during
experimentation.

VI. CONCLUSION & RECOMMENDATIONS

The objective of this research was to design and
optimize a graphene based accelerometer. This resulted
in a singly clamped configuration of the GNR. Existing
theory on doubly clamped membranes was studied, after
which modified equations were obtained to determine the
optimal geometric values of the graphene membrane for

different tensile forces. From this it follows that Lmax
is around 16 µm for every value of wmin. Subsequently,
using the results from the theory, a macroscopic model
was designed and fabricated consisting of a graphite
membrane in order to simulate the GNR. Various
tensile loads were applied to the material, which
resulted in the square root relation between force and
frequency, corresponding to the theory. It is clear that the
macromodel frequencies are significantly lower than the
COMSOL model frequencies. This can be explained by
various factors as discussed. The most promising factor is
the intriguing behaviour of rippling and wrinkling, caused
by interatomic interactions and thermal fluctuations in
the material as well as uneven stresses at the clamping
of the membrane. These phenomena could justify the
difference in the comparison of the macromodel with the
micromodel.

Recommended for further research is using the obtained
results of the theory and translating this to the design of an
actual accelerometer. Also, the effects of mass-coupling
on the frequency measurements can be reduced by
optimizing the macromodel design. This can be done by
applying the force differently on the membrane. Lastly,
the properties of rippling and wrinkling behaviour can be
further examined, since this plays a significant role in the
behaviour of the membrane. Finding the relation between
the geometric and effective length would therefore be a
recommendation for further research.
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