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Abstract—Metastructures form a versatile family of 

mechanical structures with unique properties. This paper 

discusses metastructures consisting of bistable unit cells and their 

snap-through behaviour. The main scope is on changing structural 

stable-state properties of gradient-stiffness metastructures. 

Numerical and FEA models, as well as a physical test setup are 

made. The FEA model gives an accurate prediction of the force-

displacement curve of a single unit cell, while the numerical 

metastructure model represents the F-d curve characteristics for 

metastructures, for different actuation points. Furthermore, the 

metastructure model is expanded to predict the behaviour of 

structures that are scaled versions of the physical test samples. 
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I.  INTRODUCTION 

Metastructures are structures where the properties rely not 

solely on material properties, but also on structure design and 

configuration [1]. Within the scope of metastructures, this paper 

focuses on metastructures that exist of several bistable unit 

cells. These unit cells contain an internal spring that exhibits 

snap-through behaviour when a force is applied perpendicular 

to the spring. Combining these unit cells in a structure will lead 

to multistable behaviour. 
Series-orientation (stacking horizontal layers) can lead to 

multistable behaviour, but the resulting force-displacement 

characteristics of the structure between two stable states do not 

differ much from individual unit cells. Furthermore, the order 

of snap-through behaviour of the different layers cannot be 

predicted [2]. This order can both be predicted and even 

modified by changing the properties of the unit cells per layer 

[1]. Changing the stiffness per horizontal layer results in a 

predictable order of snap-through behaviour, but this does not 

change the type of multistability of the structure. Different 

stable states are ones where the layers of unit cells differ only 

in being fully collapsed or not. This means the multistability of 

the structure is unidirectional, so only in the direction of the 

applied force. 
From [3] it became clear that a parallel-configuration of unit 

cells also has multistable behaviour, but not unidirectional like 

in [1] and [2]. Instead, this physical model could rotate as well, 

and showed that multistability of the metastructure depends on 

the location of actuation on the structure.  

Fig 1: Different snap-through behaviour under force 

When considering a one-dimensional metastructure of 

identical bistable unit cells, placed in parallel orientation, it is 

expected that one of three stable outcomes are possible when 

subjected to a force (see figure 1). 
This figure also shows that it is expected that actuation 

within a certain region results in global snap-through behaviour. 

When adjusting the individual stiffness of unit cells, this region 

is expected to change position and size. These expectations 

result in the following research question: 
How does variation of stiffnesses in a one-dimensional 

metastructure, consisting of bistable unit cells, influence the 

range of actuation points that trigger global snap-through 

behaviour of the structure? 
A test setup is made to test both the individual cells and one-

dimensional metastructures. A design of a unit cell as well as a 

jig for several cells in a larger structure is made, while allowing 

a variation in stiffness. Numerical and FEA models are used to 

predict the behaviour of unit cells, as well as metastructures that 

consist of these cells. To validate these models, physical tests 

are performed. The models are used to answer the research 

question for versatile configurations of the metastructure 

design, even for structures that are larger than those that were 

tested physically. 

II. DESIGN AND EXPERIMENTAL SETUP 

In this chapter, a short overview of the design specifications 

and testing methodology is given. 

A. Design 

 A CAD model (figure 2) is built to make a setup for testing 

in a tensile tester. The design comprises five unit cells. Each unit 

cell consists of a 3D printed frame and two interconnected spring 

steel crosses, which are constrained parallel to the xy-plane by 

six bolts. These crosses form the beams that give the unit cell its 

bistable properties. Constraining the centres of the crosses to the 

bottom plate prevents the bistable beams to buckle in the second 

mode, hence it only buckles in first and third mode (see figure 

3). Since the five unit cells are positioned parallel to each other, 

the model forms a one-dimensional structure. To prohibit 

rotation of the structure around the x-axis, the structure consists 

of two rows of springs instead of a single row. 

 

Fig 2: CAD model of the design 

The cells are rigidly connected to a stiff top plate, which is 

attached to the actuator coupling that forms the connection 

between the test sample and the tensile testing machine. The 

actuator coupling uses two ball bearings to allow rotation of the 

sample with respect to the tensile tester machine. This rotation 
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causes a small translation in the x-direction, but its influence is 

deemed negligible. 
 Variation of unit cell stiffness is achieved by using 0.05 mm, 

0.1 mm and 0.2 mm thick spring steel beams (alloy 1.4310) with 

stiffness k1, k2 and k3 respectively. All the frames are 3D printed 

PLA with 20% infill. All other components are made of 

aluminium. 

B. Methodology 

 As soon as the tensile testing machine has been calibrated 

such that it gives repeatable results, each test is done three times. 

The average from these three tests is used to get a force-

displacement (F-d) curve. First, each unit cell is tested 

separately. Then F-d curves are obtained for three reference 

structures of five unit cells with uniform stiffness: k1, k2 and k3. 

Finally, several structures with gradient stiffness are tested. 

When the structures are being tested, the actuation point is 

varied. 

III. NUMERICAL MODELS 

This chapter explains how the different models are set up. 

A. Analytical Model of a single cell 

The F-d curve of a single unit cell is determined by an 

approximation of the contribution of the different mode shapes. 

The model that is used contains the Euler-Bernoulli equation for 

a beam as described in [4] and [5]. The deflection of the beam is 

given by a summation of buckling modes 1 and 3 for a clamped-

clamped beam, which is given by: 

 
𝑦(𝑥) =  𝑎1 ∗ (1 − cos (

2 ∗ 𝜋 ∗ 𝑥

𝐿
)) 

(1) 
 

           + 𝑎3 ∗ (1 − cos (
4 ∗ 𝜋 ∗ 𝑥

𝐿
)) 

 Where y(x) is the deflection of the beam at distance x from 

one end of the beam and L is the compressed beam length. The 

first buckling mode, which is represented by coefficient a1, is 

used for the static stability of the beam and defines the starting 

position. The third buckling mode, which is represented by 

coefficient a3, is used to transfer the beam from one stable state 

to the other. It lowers the energy needed for the displacement of 

the beam through vertical motion.  

 To solve for a1 and a3, the energy equations for a compressed 

beam must be taken into account. These equations consist of the 

externally applied energy, as well as the internal energy of the 

system. The bending energy is approximated by: 

 𝑈𝑏 =  
𝐸 ∗ 𝐼𝑥

2
∗ ∫ 𝑦′′(𝑥)2

𝐿

0

𝑑𝑥 (2) 

 Where E is the Young’s modulus and Ix is the area moment 

of inertia. The compression energy is calculated by using 

Hooke’s law which is given by:  

 𝑈𝑐 =
𝐴 ∗ 𝐸 ∗ [2 ∗ (𝐿 − 𝐿0) + ∫ 𝑦′(𝑥)2𝑑𝑥

𝐿

0
]

2

8 ∗ 𝐿0
2  (3) 

 Here A is the cross-section area of the beam and L0 is the 

initial beam length. The energy resulting from the external force 

is the opposite of the work, which results in:  

 𝑈𝑓 = −𝐹 ∗ 𝑦(𝑥) (4) 

F is the force applied perpendicular to the beam. The total 

energy of the system is the sum of all these energies: 

 𝑈𝑡𝑜𝑡 = 𝑈𝑏 + 𝑈𝑐 + 𝑈𝑓 (5) 

The next step is to obtain the equilibrium solution for the 

system by using the minimal energy of equation 5. That is when 

the following two equations are solved simultaneously for a 

given force: 

 {
𝜕𝑈𝑡𝑜𝑡

𝜕𝑎1

= 0,
𝜕𝑈𝑡𝑜𝑡

𝜕𝑎3

= 0} (6) 

This system has two third order polynomial equations and 

multiple solutions, hence it is solved by using numerical solvers 

[6] and [7]. This results in 5 different combinations for a1 and a2. 

Two of these solutions are stable (S1, S2), one is unstable (U) and 

two are undefined (D1, D2) as shown in figure 3. Therefore, the 

right solutions need to be filtered out by inserting these values 

into equation 1 and plotting them against the force that they are 

solved for. The result is shown in figure 5 where the black line 

represents the theoretical model. 

Fig. 3: Equilibrium modes for a buckled beam. The lines D1 and D2 

represent the third mode buckling and lines S1 and S2 represent the first 

mode buckling. 

B. FEM Model of a single cell 

To validate the numerical model, a finite element method 

solver has been used [8]. The same parameters are used in the 

solver as in the theoretical model. The mesh is tetrahedral at the 

curved edges of the beam and hexagonal on the non-curved 

geometry, it is also a minimum of two elements thick. This all 

is used to reduce solver time and increase the accuracy of the 

result. The solution is obtained using a 3-step static study and 

the nonlinear solver. The first step introduces an instability, the 

second step introduces the compression force and the third step 

presses the beam from one stable state to the other. In the third 

step a damping factor of 10-4 is applied, as the system would 

otherwise vibrate and become unstable. 

C. Metastructure Model 

The numerical model for different metastructures is made 

with the use of numerical solvers [6] and [7]. It is based on a 

model for n number of unit cells, which are connected to an 

infinitely stiff top plate (see figure 4). The stiffnesses of the unit 

cells are taken from the test data, but with the assumptions that 

it behaves linearly between the maximum and minimum values 

of the curve (see figure 5). To calculate the displacement of each 

cell, a static force- and moment-equilibrium and goniometric 

formulas (7-9) are used. Fapp is the applied force, yi is the 

displacement of cell i, ki is the stiffness of cell i, xi is the distance 

between cell i and the actuation point and yp is the displacement 

of the actuation point. The input for the model is the point of 

actuation and the given configuration. The output is an F-d 

curve. 

    ∑ 𝑦𝑖𝑘𝑖 − 𝐹𝑎𝑝𝑝 = 0

𝑛

𝑖=1

 (7) 

    ∑ 𝑦𝑖𝑘𝑖𝑥𝑖 = 0

𝑛

𝑖=1

 (8) 

     𝑦𝑖 = 𝑦𝑝 + 𝑥𝑖

𝑦1 − 𝑦𝑝

𝑥1

 (9) 
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Fig 4: A graphical overview of the model 

IV. RESULTS 

A. Single unit cell 

All the results of the simulations are for a beam with length 

L = 81.5 mm, uncompressed length L0 = 84.76 mm, width b = 10 

mm, thickness t = 0.01 mm and elastic modulus E = 185 GPa. 

The system is investigated at an actuation location at the centre 

of the beam (L/2) in a clamped-clamped position where the 

second mode buckling is constrained. The results are shown in 

figure 5. 

Fig 5: Simulation results with the experimental results 

B. Metastructure  

Figures 6 and 7 display the F-d curves of the test results and 

the numerical model. The tested metastructure has a uniform 

distribution of cells with stiffness k2 and one cell on cell position 

1 (see figure 4) with a stiffness of k3. In figure 6 the actuation 

point is on the first unit cell and in figure 7 it is on the second 

cell. The red curves represent the mean of three tests and the 

black curves represent the numerical model. Graphical 

representations of the metastructures position, as calculated by 

the numerical model, are shown next to the graphs. At point 3 in 

figure 7 the structure is observed to be in an angled stable state. 

Tests with application points at positions right from the second 

unit cell show the presence of an angled stable state, just like 

figure 7.  

Fig 6: F-d curve of the sample with actuation on first cell (the green 

line is the unit cell with stiffness k3 and the blue lines are unit cells with 

stiffness k2) 

Fig 7: F-d curve of the sample with actuation on second cell 

V. DISCUSSION 

 In this chapter the results will be discussed. First, aspects 

that may have influenced the results will be reviewed, after 

which results for the single-cell model and metastructure 

model will be discussed.  

A. Manufacturing errors 

A heavy influencer of the results was the large variation in 

F-d curves between cells of the same stiffness, this was mostly 

caused by manufacturing errors. The laser cutter did not cut at 

a high enough accuracy, resulting in holes which were offset up 

to 2 mm, beam widths that varied between 6 mm and 8 mm, 

while the width of the beam should have been 7 mm. The 

characteristics of the system are mostly dependent on the initial 

beam length, which is determined by the locations of the holes. 

This, along with other influences, resulted in the following 

means (μ) and standard deviations (σ) between the F-d curves 

of unit cells with stiffness k2: 

 μ σ 

Maximum Force 0.615 N 0.0293 N 

Minimum Force -0.5978 N 0.0608 N 

Actuation Distance 20.3 mm 2.0 mm 

Table 1: Means and standard deviations from the tested unit cells with 

stiffness k2 

This variation in unit cell characteristics has a large negative 

influence on the applicability of the reference structures (see 

paragraph II.B), which is why these are not represented in the 

results. 

B. Single cell models 

Figure 5 shows that the FEA model has a high degree of 

accuracy for the F-d curve and the theoretical model has a large 

error compared to the test results. The theoretical model is a 

linear approximation of the curve. This is due to the fact that 

the ratio of total displacement over thickness (Q = h/t) is very 

large, as described in [9]. With our parameters the value for Q 

is 208, which results in the linear behaviour of the F-d curve. 

As the theoretical model describes how the system works, it 

does not include the irregularities like the fillets in the middle 

of the beam and the holes on the outer edge. The FEA 

simulation gives better results for the beam. 

C. Metastructure model 

Figure 6 shows that the numerical model and the test data 

are correlated, but show some differences. These differences 

can be attributed to the assumption of linearity in the model and 

the imperfections in production. Furthermore, the graphical 

representations 1, 2 and 4 in figure 6 were also observed during 

testing. At point ‘a’ in figure 7 the red curve shows a sudden 
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steep slope. This is caused by the free motion of the plate with 

respect to the location of the actuation point, as this point is 

constrained in the z-direction by the machine. The point where 

the actuation point is attached cannot collapse, but the other end 

is free to move and can thus collapse. This effect is amplified 

by the weight of the top plate and the momentum of the 

structure at that instance. Therefore, the graphical 

representation at point 3 is not representative for what was 

observed during the tests.  

In figure 7, the numerical model is less representative for 

the test data compared to figure 6, but they are still correlated. 

The differences between the model and the test are caused by 

free motion of a part of the structure, as already mentioned. This 

leads to movement of the structure, which is not taken into 

account in the numerical model. At position 3 the structure has 

an angled stable state, which was also observed during testing. 

At that point a force needs to be added to the system to get the 

system to another position. During hand testing it was not 

possible to achieve this result, because of human errors. Also, 

when pushing by hand there is a dynamic actuation, but during 

the test any input from the machine is quasi-static. Furthermore, 

it was observed that actuation on the side where unit cells have 

stiffness k2 results in an angled stable state of the structure. 

When these results are compared to a metastructure with 

uniform stiffness, as shown in [3], there is a change in the region 

of actuation points that result in global snap-through behaviour. 

Actuation on the leftmost (first) unit cell of the gradient-

stiffness structure resulted in global snap-through behaviour 

and actuation on the second unit cell and further to the right 

resulted in an angled stable state. Global snap-through 

behaviour of a metastructure with uniform stiffness is achieved 

by actuation in the middle of the structure. An angled stable 

state is the result of actuation on the sides of the structure [3].  

D. Scaling 

Since the numerical model and test data are correlated, it is 

interesting to see how a scaled metastructure would behave. In 

figure 8 the black line shows the F-d curve used in figure 7 and 

the green line represents a 10x2 metastructure with scaled 

characteristics; the first two cells have stiffness k3, the other 

eight have stiffness k2. The actuation point is between cells 3 

and 4, as it is scaled as well. The blue line is a 15x2 

metastructure, which is three times the size of the 5x2 structure. 

Figure 8 shows that the two larger structures follow the same 

trend line as the 5x2 structure at a displacement of around 4 

mm. For the 5x2 structure, this indicated that there was an 

angled stable state, so it is likely that this is also the case for the 

larger structures. 

Fig 8: F-d curve of a scaled metastructure 

VI. CONCLUSION 

The research goal was to find out what happens to the snap-

through behaviour when there are different stiffnesses in a 

metastructure. After all the tests and the results from the model 

it can be concluded that, with a variation in stiffness per unit 

cell, the actuation region where the metastructure will have a 

certain stable state (global or angled) will change. The position 

of moment equilibrium determines each regions location. 

Placing a stiff cell on the edge of a structure allows for a global 

snap-through actuation point that is closer to this edge. 
Furthermore, it can be shown that the FEA model results in 

a more accurate prediction of mechanical behaviour of single 

unit cells compared to the numerical model, although this 

provides less insight in the working principles of snap-buckling 

behaviour. The numerical metastructure model predicts trends 

in the structure’s behaviour, but cannot provide a precise result. 

VII. FUTURE RECOMMENDATIONS 

Right now, the numerical metastructure model is a linear 

approximation, which only gives an indication of how a 

structure may behave. A first step might be to make a nonlinear 

model and take into account dynamical behaviour. While the 

numerical single cell model gives insight in how the system 

works, it does not provide accurate results, hence solely using an 

FEA model may provide better results, as well as a stress 

distribution. This method, however, provides little insight in the 

actual working principles of snap-buckling. Finally, if a new 

numerical model is built, it should be built to be easily scalable, 

so scaled structures can be evaluated.  
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