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Abstract— Pumps utilizing the displacement of a ferrofluid
drop are relatively new. Pumps utilizing the displacement of
multiple ferrofluid drops have not been designed yet and the
question that arises is what traits do they have and what are
the possibilities for these pumps? An advantage would be the
absence of shear stress and rough wall contact, making it suitable
for biological fluids since these fluids are extremely vulnerable
to these properties. In this paper the working principle of
a multiple drop ferrofluid pump is tested, this is done with
physical experiments. By measuring the pressure differences over
multiple drops the following conclusions were drawn: the total
pressure difference over a channel is equal to fixed pressure
difference over a drop times the amount of drops, the influence
of magnets on each other has a large impact on the maximum
pressure differences over drops and there are three distinct drop
behaviours. The eventual goal is to gain knowledge to design an
initial multiple drop ferrofluid pump.

I. INTRODUCTION

A ferrofluid is a fluid that can be manipulated by magnetic
fields, which leads to various applications, one of them is
to pump other fluids. Pumps using a single ferrofluid drop
actuated by an external magnetic field are found in [1], [2],
[3] and a typical single drop pump is depicted in figure 1.
Ferrofluids are dielectric (non conducting) and the resulting
magnetic behaviour is (super)paramagnetic.[4]

A ferrofluid pump could be useful for pumping biological
fluids. These biological fluids are vulnerable to shear stresses
and rough wall contact [5], [6], [7], [8], two properties that
decrease with a pump which uses ferrofluid drops to push the
biological fluid [2], [3].

Using a single ferrofluid drop, the maximum pressure that
can be achieved is the pressure difference that one drop
can withstand. Thus, when using multiple drops, a higher
maximum pressure should be reachable. This theory has not
yet been tested in literature and will be the topic of this paper.

The hypothesis is the maximum pressure difference
∆Pd,max over a single drop will lead to a maximum total
pressure difference over a channel of ∆Ptot = ∆Pd,maxN
over N drops. For this to be true, the drops should open up
when ∆Pd > ∆Pd,max and let some fluid pass, thus the drop
can recover as ∆Pd lowers again. This working principle is
visualized in figure 3. The hypothesis is the main principle for
a multiple drop ferrofluid pump.

Two other principles must be tested to sufficiently design a
pump, namely:

• ∆Pd,max increases if the maximum distance between
drop and magnet decreases.

• The width of the test channel has no influence on
∆Pd,max if the magnet is much wider then the channel.
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Fig. 1. A typical sin-
gle drop pump modeled af-
ter [2]. A stationary mag-
net keeps a drop plug in
place (B). A moving mag-
net displaces a ferrofluid
which in turn actuates an-
other fluid(A). The moving
drop can pass the seal, the
pumped fluid cannot.
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Fig. 2. A multiple drop pump, with
magnets attached to a rotating disk
which holds the ferrofluid drops (A).
The rotating disk moves the drops and
by this build up the pressure. The sta-
tionary drops (B), which create a plug,
make sure the pressure difference is
contained, because the ferrofluid drops
can pass this plug but the air cannot.
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Fig. 3. Single drop pumping principle (a): When pressure is build, the air
flow has to be hold by the single drop (1). Multiple drop pumping principle
(b): If the pressure gets to high, drop 1 slightly opens and thus allowing air to
flow to drop 2. This causes the pressure difference over drop 1 to be limited
and drop 1 will form back sealing the channel again. This process repeats
itself until the pressure between drop 1 and 2 is to high for drop 2 to hold.
Then air starts to flow to drop 3.

In the theoretical section a physical model is developed
showing the effect of magnetic fields on the pressure differ-
ences over drops. Test setups are made to validate this model.
In the section for the results the data of these test setups is
presented. With the test setup the two essential components of
a pump can be tested, the plug with stationary drops, depicted
as (B) in figure 2 and the rotating disk with moving drops,
depicted as (A) in figure 2.

The tests will be conducted in a stationary situation, due to
the eventual pump moving slow enough to consider it as sta-
tionary. The method section describes the test setup consisting
of a closed channel with several drops, a pressure regulator and
a manometer. Multiple measurements with different number of
drops and varying channel heights are conducted. Using linear
least squares regression the data is analysed.

II. THEORETICAL MODEL OF FERROFLUID DROP

For a better understanding of the test setup design - and the
physics behind the working principle - it is useful to consider
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a simple model of a single ferrofluid drop. To this end, a part
of the Rosensweig model shall be applied [4] in the form
formulated by Nochetto et al [9]. For a full formulation of the
model and its assumptions the reader is referred to the book
and the paper. This paper only considers the most important
assumptions, part of the conservation of linear momentum,
and the solution to this partial differential equation. With the
model, critical assumptions and conditions are defined, which
give insight into proper construction of a stationary test setup
and provide an inital step towards a useful pump design.

To start consider a mass of homogeneous, imcompressible
colloidal ferrofluid contained in a bounded simply connected
domain Ω ⊂ R3. Now initially assume that: the ferro- or
ferrimagnetic particles are spherical; have same size and mass;
are distributed homegeneous; have no interaction among each
other; linear- and angular velocity of the drop is 0; the
magnetic field is homogeneous and fluid effects like surface
tension and viscosity etc. are limited. Now define the magnetic
field properties using the maxwell equations and applying
magnetostatic conditions to obtain:

divB = 0, curlH = 0 inR3 (1)

Here the induced magnetic field is:

B = µ0(H + M) (2)

With units of T ; the permeability of free space is µ0 =
4π × 10−7 · Hm−1 and M is the magnetization field of the
ferrofluid, its units are Am−1. The maximum magnetization
of the fluid is called the magnetic saturation ||M|| = Ms

and it is a scalar. The magnetic field H = Hext + Hd is
composed of the externally applied magnetic field Hext and
the demagnetization field Hd. Here Hd = −DM, D is the
demagnetization factor which is less then unity.

An important assumption is made to simplify the com-
plicated magnetic field. In this experiment and for practical
applications, ||H|| dominates over Ms and thus also over Hd.
To put it precisely consider -the from now on called critical
assumption-:

• Ms << min||H||Ω, this leads to H ≈ Hext and the fluid
having no influence on the externally applied field.

The assumption will be validated in the methods section.
There are no analytic solutions for strongly magnetized fluid
with a resulting effect of Hd [10] and only Nochetto et al.
(2016) [9] created a stable numerical scheme incorporating
these effects.

With this exact description of the magnetic field a stationary
version of the conservation of linear momentum as given in
[4] is introduced, this version uses gradients of magnitude of
the vector fields. The equation is introduced and immediately
simplified with the assumptions to:

∇P = µ0M∇H
= µ0Ms∇Hext

(3)

∇P is the pressure gradient, ∇Hext the gradient of the
external magnetic field magnitude, M is the magnitude of
the magnetization, here a constant Ms. To explore this partial
differential equation the domain Ω is now put in a test setup
channel which has a rectangular cross-section as depicted
in figure 4. An Cartesian coordinate system is introduced.
Equation 3 is now expanded to:

P1 P0

Hext,1 Hext,0
x

y

z
Ω

M

Fig. 4. Schematic view of the drop Ω in a channel with rectangular cross-
section in the xy-plane. As demonstrated in equation 6 the drop surface will
follow the contours of isomagnetic strength. Here P1 is equal to P0.
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The largest pressure gradient inside the Ω is along the
channel, in the direction of the x-axis, so the magnetic field
should be optimized such that the ∂Hext

∂x dominates. This
condition will from now on be called the anisotropy condition.
A well functioning test setup or pumping device should adhere
to this principle.

A second critical condition to adhere to follows from
solving equation 3. Start by substituting equation 2 into 1 and
use the critical assumption to obtain:

divHext = 0, curlHext = 0 inR3 (5)

Thus Hext satisfies the Laplace equation. The solution
of Laplace equations are harmonic functions, they have the
property of being twice continuously differentiable. A gradient
of the magnitude, Hext, is also continuously differentiable.
Now the fundamental theorem of line integrals can be applied
to equation 3, integrating to the boundaries of the drop giving:∫

C

∇P · dr = µ0Ms

∫
C

∇Hext · dr

P1 − P0 = µ0Ms(Hext,1 −Hext,0)

∆Pd = µ0Ms∆Hext

(6)

Equation 6 will be called the isomagnetic condition. Bound-
aries of the drop tend to line out on curves of equal magnetic
field magnitude. This has two important implementations.
First, when depositing a drop in a channel, ∆Pd,max is
obtainable when a drop has a volume that maximizes ∆Hext.
Secondly, the orientation and location of the magnet relative
to the drop should be so that Hext,1 can be maximized, to
augment the upper limit of ∆Pd,max.

III. METHOD

Fig. 5. 3D view of the test setup Fig. 6. 4 ferrofluid drops above 4
magnets

The test setup is shown in figure 5. PMMA sheets were laser
cut into samples with different geometries -with a precision
of 0.1 mm - and glued together with acetone. These were
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Fig. 7. Schematic cut-out of the test setup, looking into the channel. Ω
represents the ferrofluid drop. The maximum pressure difference a drop can
withstand, depicted as Pcrit, is determined by the maximum distance from
magnet to drop, hseperation + hchannel.

attached to an aluminum plate, which was used to connect a
manometer and a pressure regulator to these PMMA samples.
Between the PMMA samples and the aluminum plate a layer
of plastic foil was applied to prevent leakages. A test setup
cut-out is depicted in figure 7.

The samples have 3 to 8 cut-outs for bar magnets, a pressure
chamber for the pneumatics and a channel from the pressure
chamber to the atmosphere, which is to be sealed by ferrofluid
drops. A Wika Econosto Feinmeß manometer was used to
measure the pressure in the chamber and a Festo LR-1/4-S-
B pressure regulator was used to control the pressure. The
magnets are HKCM Magnet-Cuboid Q12x03x03Ni-N52 type
(B = 1.43 T ). A needle was used to inject the Ferrotec EFH1
ferrofluid into the channel.

A hseparation = 0.4 mm was found sufficient enough to
prevent leakage between the channel and the magnets. The
width of the channels is 3 or 4 mm and the magnets are 12
mm long to ensure a homogeneous field across the channel,
thus ensuring ∂Hext

∂z ≈ 0. The magnets are oriented with their
poles parallel to the channel, because the direction of the
strongest magnetic field is orthogonal to the surface of the
poles. Also important is the orientation of the magnets. The
magnets will be oriented differently during the tests. N-N-N
means that poles that are alike are next to each other, so N-S-N
means that opposite poles are next to each other.

The different sample geometries are summarized in table I.

TABLE I
NAMES AND GEOMETRIC PROPERTIES OF THE DIFFERENT TEST SETUP

CHANNELS

test setup 1 2 3 4 5 7
hchannel [mm] 1 0.5 1 1 1.25 0.5
hseparation [mm] 0.5 0.5 1 0.4 0.4 0.5
wchannel [mm] 3 3 3 4 4 4
Max. amount of drops 3 3 3 4 4 8

The critical assumption is found to be satisfied. The greatest
distance between ferrofluid and magnet is 2 mm with test
setup 3. This results in min||Hext||Ω = 1.20·105 Am−1. The
used ferrofluid has a Ms = 3.5 · 104 Am−1, thus ferrofluid
behaviour is dominated by the magnet.

Measurements were conducted by recording ∆P over 1, 2,
3 and 4 drops, up until 8 drops for test setup 7. Filling the
entire channel with fluid and then applying pressure resulted
in air pocket formation, which positioned between the drops
obtaining their optimal volumes. When drops that almost
interact with each other are injected the same phenomenon
occurs. If a certain ∆P is exceeded, all the drops were blown
out of the channel. This pressure difference is ∆Ptot and this
scenario is called overfilled. There is a critical volume, Vcrit

for a drop and when drops are below or near this Vcrit, ∆Ptot
cannot be exceeded. Here, close to ∆Ptot the drops slightly
deform (see figure 3), let through some air, and form back
to their optimal shape. This process repeats itself over and
over, and almost no ferrofluid is lost during this process. Only
after an considerable amount of time, ∆Ptot slightly lowers.
A different ∆Ptot was found for slightly different volumes
around Vcrit, this scenario is called filled. The geometry of
the channel determined the value of Vcrit.

Calculating the value of ∆P tot was done with the arithmetic
mean ∆P tot = 1

k

∑n
k=1 ∆Pk. Where ∆Pk is a measured

∆Ptot over N drops. The data for all setups was put on
a N versus ∆Ptot graph. A least squares regression anal-
ysis was made to check for a ∆Ptot = ∆Pd,maxN type
relation. A ∆Pd,max is found if with every extra drop, the
same ∆P is added to ∆Ptot. Error bars where added to
the graph by means of the experimental standard deviation:
s(∆Ptot) =

√
1

k−1

∑n
k=1(∆Pk −∆P tot)2. Propagation of

uncertainty methods were of no use and due to this s(∆Ptot)
was used. The error introduced by injecting the drops was
inestimable, the distribution of uncertainty of the manometer
is unknown nor are user related errors.

IV. RESULTS
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1 overfilled N-S-N
1 overfilled N-N-N
2 overfilled N-S-N
3 overfilled N-S-N
4 overfilled N-S-N
5 overfilled N-S-N

Fig. 8. The test results for setup 1, 2, 3, 4 and 5, specifications can be found
in table I. Linear behaviour is shown by all setups with very small deviations
confirming the hypothesis of linearity.
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7 overfilled, no influence
7 overfilled N-S-N
7 overfilled, N-N-N
7 filled, no influence
1 filled, N-S-N

Fig. 9. The test results for setup 7 and 1, specifications can be found in
table I. Linear behaviour is shown by very small deviations in all scenarios
confirming the hypothesis of linearity.

The results of the tests are shown above. All magnets
influence each other due to the small distance between them
unless stated otherwise, thus no influence means that the
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magnets do not influence each other. A linear regression
analysis with the data of test setups 1, 2, 3, 4 and 5 are shown
with the linear fit through the points in figure 8. The coefficient
of determination for four of the five lines is above 0.98 and
is 0.91 for setup 3. Comparing 1 to 2 and 5 to 4, the only
difference between these setups is the height of the channel.

In figure 9 the data for test setup 7 are shown but also
data of the filled scenario from setup 1 is plotted, so the
differences between the different filled scenarios can be seen.
A linear regression analysis is also shown. The coefficient of
determination for the fits with data from test setup 7 are above
0.97 and for the fit with the filled scenario of setup 1 it is 0.91.

V. DISCUSSION

The results that have been found confirm the hypothesis,
∆Ptot= ∆Pd,maxN . Every setup shows this linear relation be-
tween ∆Pd,max and N . Moreover, decreasing channel height
leads to an increasing ∆Pd,max and variation of the channel
width has negligible effects on ∆Pd,max, because setup 2 and
7, both overfilled and magnets placed N-S-N, only differ in
width and lead to the same ∆Pd,max. If the volume of the
ferrofluid drop increases, the pressure difference increases, just
as expected from Equation 6. With an overfilled scenario,
the magnet cannot hold the drop in position when ∆Ptot is
exceeded, presumably because the working principle in figure
3 slightly differs in this scenario. In the filled scenario ∆Ptot
can never be exceeded, due to deformation of the drops. In
figure 8 and figure 9, except for ’7 overfilled, no influence’
and ’7 filled, no influence’, a bias can be seen due to the lines
not starting exactly at ∆Ptot = 0 if the lines are extrapolated
to N = 0. This phenomenon occurs when the magnetic fields
influence each other, lowering ∆Pd,max, this conclusion has
been verified with setup 7. If the magnets are placed in such a
way that they can not influence each other, no bias is found and
a higher ∆Pd,max is reached. For this to be true a gap between
the magnets of approximately 3 cm was needed. Furthermore,
the orientation of the poles of the magnets affects ∆Pd,max
if the magnets influence each other. If two opposite poles are
next to each other, a lower ∆Pd,max is reached than with two
poles that are the same. This effect gets smaller when hchannel
decreases as can be seen by comparing the figures.

The achieved results are very useful and give a good
impression of how a pump can be designed. These results
show the impact of different variables such as the height of the
channel, the number of drops, the orientation of the magnets
and size of the ferrofluid drops when designing a pump.

The measured results have on average a small variation,
however these could be explained due to the various errors.
The accuracy of the manometer and reduction valve can play
a role due to human errors, the amount of ferrofluid drastically
changes the pressure that can be build up, production errors
can also be found and play a role.

VI. CONCLUSIONS AND RECOMMENDATIONS

The hypothesis is the maximum pressure difference
∆Pd,max over a single drop will lead to a maximum total
pressure drop over a channel of ∆Ptot = ∆Pd,maxN over
N drops. This hypothesis has been confirmed with physical
experiments. The results can be incorporated in future pump
design, for example when implementing more magnets ∆Ptot
will increase linearly. Furthermore, a tolerance for hchannel
and hseparation has been found. hseparation should be as small

as possible but 0.5 mm was already sufficient enough to build
pressure. hchannel can vary depending on the specifications
of the pump, a smaller hchannel will allow a higher ∆Ptot,
however a larger channel will allow a higher volume dis-
placement although a maximum hchannel of 1.5 mm would
be adviced. The plug of the pump, the stationary drops (B)
in figure 2 which prevents the pressure from escaping the
reservoir, must be able to hold a higher pressure than the
rotating drops (A) of the pump can build up, otherwise the
pump will not work sufficient. To achieve this, more of the
same drops must be used in the plug than in the rotating disk,
alternatively stronger magnets or different magnet orientations
can be used to increase the magnetic field. Orienting the
magnets in the N-N-N orientation offered on average a higher
∆Ptot, compared to N-S-N, but this effect becomes smaller
when hchannel decreases. In the final pump the magnets in
the plug should all be orientated in a N-N-N direction towards
the disk and the magnets in the disk should be orientated in
the S-S-S towards the plug. With magnetic fields that do not
influence each other, orientation of the magnets is irrelevant.
Overfilling the plug compared to the channel will also lead
to a higher ∆Ptot in the plug, however this has its limits
due to the dangers of completely being blown away. Future
research can be done into the impact of different magnets and
ferrofluid on the results, scalability and dynamical effects are
also concepts that can be tested. However with the results of
this paper an initial pump design with optimum proportions
can be constructed and tested.
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