
Automatic car trunk vacuuming robot
1st Demi Breen

Mechanical Engineering
TU Delft

Delft, Netherlands
d.breen@student.tudelft.nl

2nd Sander Schipper
Mechanical Engineering

TU Delft
Delft, Netherlands

a.p.schipper@student.tudelft.nl

3rd Pepijn Westland
Mechanical Engineering

TU Delft
Delft, Netherlands

p.westland@student.tudelft.nl

4th Suzanne Wiersma
Mechanical Engineering

TU Delft
Delft, Netherlands

s.wiersma-1@student.tudelft.nl

Acknowledgements—We would like to thank M. Wisse, M.
Klomp, G. van der Hoorn, D. Schepers and D. Kroezen for
helping us realise this project.

Abstract—In this research, the Robot Operating System (ROS)
was used to create an application for vacuuming the trunk of a
car. Knowledge of ROS and the Godel packages was needed to
reach the goal of automating the vacuuming of a car trunk. These
packages were used to create a simulation and a demonstration,
showing the process of path planning, collision avoidance and
controlling the robots movements. The results show potential for
further development in the field of automation.

I. INTRODUCTION

This research study has been commissioned by Loogman, a
Dutch company specialised in the cleaning of cars. Loogman
has a fully automatic car wash offering multiple cleaning
services. Besides the cleaning of the outside of the car, there is
also the possibility to clean the inside. People can use vacuums
and cleaning cloths themselves or they can use Loogman’s
semi-automatic interior cleaning system. The current system
contains a conveyor belt and vacuum cleaners hanging from
the ceiling. It is similar to a production line; each employee
has their own tasks and cleans a specific part of the car. The
interior cleaning is high strain manual labour, which results in
a high turnover rate of the staff working there. That is why
the innovation department of Loogman, called Innovation Lab,
reached out to the TU Delft.

When tasked with this problem, the objective was to explore
automating the process of cleaning the interior with the use
of robotic arms. This research is narrowed down into a first
step, starting with only automating the vacuuming of the car
trunk, specifically the floor of the trunk. That is why the goal
of this project is to perform a demonstration of a robot arm
automatically vacuuming the floor of a car trunk, showing the
feasibility of the project.

This research study has been conducted as part of the
Bachelor End Project for Mechanical Engineering students at
the TU Delft in the third year of their Bachelor studies.

II. STATE OF THE ART

This section covers a quick overview of the current state in
the field of robotics and software currently used in the industry.

A. Industrial robots

Automation with robotic arms is widely used, for example
in the manufacturing industry. However, there is a big dif-
ference between industrial robots and, in this case, cleaning
robots. The difference being that industrial robots work in a
static environment, while cleaning robots work in a dynamic
environment. Because of that, the industrial robots have a pre-
programmed path, which stays the same for the lifetime of the
robot. In the case of a car trunk vacuuming robot the work
piece (the trunk) is different for every car, so the arm cannot
repeat the same path every time. It needs to scan the trunk
and plan its vacuuming path accordingly to its dimensions.

B. Software

There is an approach designed for flexible robot handling
named Scan-N-Plan [14]. Scan-N-Plan contains a set of tools
that enable real-time robot trajectory planning from 3D scan
data. Software that uses this approach will plan a custom
solution based on the scan that has been given as input. The
scan and plan parts of this software can be used individually.
The scan part contains the scanning of the physical object.
The scanner sends the data to the used program, which in
turn generates a 3D model. The plan part consists of the path
and motion planning of the robot. To use the plan part it is
necessary to have a 3D model. Instead of using the scan part,
it is also possible to insert a pre-programmed 3D model. This
way, the two parts can be used separately. Since there is a
limited time for this research study, it will only focus on the
planning part of the Scan-N-Plan approach.

The Scan-N-Plan approach is used in applications similar to
this project that need custom handling of different products.
This software is currently under development. The approach
and the existing knowledge in this field will be used as the base
for this research, narrowing it down to the specific application
of car trunk vacuuming.

When looking into existing software for the Scan-N-Plan
approach, two options where found; Bezier and Godel. Bezier
is able to generate rectilinear trajectories on 3D surfaces [2].
Another option is the Godel package [7], this package is also
useful for trajectory planning, but can execute these with a
connected robot as well. These surface trajectory planners are
developed for the use of surface blending, which is similar
to the case at hand. With Godel being more extensive, the



decision was made to use Godel instead of Bezier. Therefore
the Godel package will be used in this application.

III. THEORY

This section contains basic information about the software
that has been used in this project. This will give the back-
ground information for the methods section where the use of
these programs is explained.

A. ROS

A big part of this research is understanding and imple-
menting Godel and ROS. The software is quite extensive and
complex. Basic knowledge of ROS is required to start using
the Godel package. ROS is a widely used framework, which
enables people to create robot software. It is made of different
libraries, tools and conventions that provide the basics for
writing robot software [11].

For this project it is convenient to use ROS with Linux,
making the basic use of Linux and its installation functions
crucial. In order to be able to use the Godel package, the
correct distribution of ROS has to be installed. The Godel
package is currently supported by multiple distributions of
ROS. ROS Kinetic was chosen as distribution in this project
because it is a long-term supported release and at the start of
this project the Kinetic-devel branch of Godel was also more
stable and reliable than on other distributions. The long-term
support makes it usable for future developments of this project.
ROS Kinetic is best supported on Ubuntu 16.04, therefore
making this the version of Linux that has been installed [12].

ROS uses mostly Python and C++ code to control robots
in different ways. It is a large collection of different computer
processes, called nodes in ROS. Each node is a small script
that has a couple of functions and together these nodes can
create advanced programs to control robots.

B. Godel

As mentioned before, the Godel package is used for this
project. This is a collection of nodes designed to control
robotic arms for the application of surface treatment.

Godel can accept point clouds. Point clouds are the collec-
tion of points that define the location of solid objects within
a given space. The pre-defined method Godel uses to get this
data is via an Ensenso scanner. An Ensenso scanner is a stereo
3D camera that scanss an object and allows to generate a 3D
point cloud [5]. As explained before, the use of scanners will
be ignored in this project. Instead the point cloud data will be
supplied by pre-defined models.

A pre-defined car trunk model has been made by measuring
the dimensions of the car by hand and then creating a digital
model in SolidWorks. Converting this model to point cloud
data can be done with a program called Cloud Compare [6].
This will generate a pre-defined amount of points of a mesh
model.

The Godel program then uses this data to generate the tool
path for surface blending. Vacuuming is a similar process,
because both methods are surface treating and both require

surface trajectory planning. Following up on these similarities,
Godel will be made suitable for the use of vacuuming the trunk
of the car.

C. MoveIt

MoveIt is a program that can be used on top of ROS.
It is an open source software package that allows for the
control of robots via ROS. It can be used for creating the
kinematics of the robot, collision checking and path planning.
MoveIt is an important part of ROS when combined with the
Godel package. The graphical user interface (GUI) of MoveIt
is the MoveIt Setup Assistant, this can be used to create robot
configurations [10].

D. OpenRAVE

OpenRAVE has been developed to create and simulate an
analysis of kinematic and geometric information related to
motion planning of robotic arms. This means that it can
generate forward and inverse kinematics solvers, which are
used by the Godel software [4].

E. Descartes

Descartes is a package used for path planning. It is used to
convert Cartesian paths to joint path plans. It will also work
with under-defined paths, which is the case with planning the
vacuuming of the car trunk. The start position of the robot
and the start position of the path are often not connected and
need to be planned, Descartes takes care of planning these
movements [9].

F. Octomap

Octomap is a data structure used for collision avoidance.
It converts, in this case, a point cloud into voxels in a 3D
grid map approach. These voxels are used for the collision
detection by the Descartes path planner, to update its trajectory
path to check if a collision occurs. The collision avoidance of
Octomap adds functionality to the default collision avoidance
supplied by MoveIt. This makes it useful for moving the arm
inside an enclosed area with many collision surfaces, such as
a trunk [16].

IV. METHODS

Godel poses a set of challenges in order to be suited to
vacuum a car trunk. These challenges will be further explored
in this chapter, but will be briefly summarised. The current
robot arm used by Godel is not suitable, the tools on the arm
have to be changed and the path has to be changed as well.
Another challenge is the use of an enclosed work space. The
robot arm needs to work on the inside of the car, avoiding
collision with the walls of the trunk. The vacuum tool tip may
not damage the car while vacuuming the trunk. To solve these
challenges, certain packages and files need to be changed or
even replaced. For more detailed information regarding the
changes, please consult the appendix.

Page 2 of 9



A. Installing Godel

When starting with this project a stable version of Godel
was needed. This version can be found on GitHub and is
provided with a clear manual for downloading. When building
the packages there will be certain errors caused by faults in
two Descartes files. In the files:

• utils.h, located at: src/descartes/descartes core/include
• ikfast moveit state adapter.cpp, located at:

src/descartes/descartes moveit/src
The log error and log inform commands are used. Those need
to be replaced with ROS ERROR and ROS INFO respec-
tively.

B. Implementing a new robot arm

After installing Godel, a new arm has to be simulated, since
the standard ABB IRB2400 is not sufficient for this appli-
cation. The IRB2400 is not sufficient because it is relatively
small compared to a car trunk, and the IRB2400 does not have
a hollow wrist. A hollow wrist is essential when implementing
the robot at Loogman, because it will prevent the vacuum
hose from getting tangled with the robot arm. Replacing the
IRB2400 by the Yaskawa Motoman GP25 will benefit this
project because of two reasons:

• It is convenient to use the same robot in both the
simulation and in reality.

• The Yaskawa GP25 is available at the TU Delft for further
testing, making it accessible for this project.

In order to implement this arm in Godel, several packages
have to be made or changed. To start, a macro.xacro file
has to be created for the Yaskawa GP25 itself. The meshes
of the robotarm are already available on GitHub [17]. Using
these, a new macro.xacro can be made that will be compatible
with Godel. By implementing this, a new xacro modelling
the workspace has been created, keeping all existing blending
tools, the modified democell and the new Yaskawa GP25
xacro. This democell can be visualised as a box around the
setup, which constrains the arm from moving outside the work
space. This cell had to be changed as well, since the larger
GP25 did not fit into the original cell. This has been done by
changing the dimensions of the democell.

To allow the arm to move in simulation, a MoveIt
configuration package has to be built. This can be done
by loading the workspace.xacro file into the MoveIt Setup
Assistant. It is important to keep the same controllers and
move groups as the original MoveIt package of the IRB2400.
(Appendix B)

The next step is to change the Descartes files that plan the
desired path of the simulated arm to the required location,
so that the GP25 can move. First, a new Inverse Kinemetic
Fast (IKFast) plugin has to be created for the GP25 because
Descartes uses this algorithm for the motion planning of the
robot. IKFast is used to transform a Cartesian path to joint
poses for the robot. Inverse Kinematics differs from Forward
Kinematics. Forward Kinematics determines the position of

the tool tip on the angles of the joints of the robot. IKFast
plans the angles of the joints based on the desired position of
the tool tip [3]. To create this package the program OpenRAVE
was used. Second, the Descartes files of the robot have to
be modified, so that the new IKFast plugin can be used.
(Appendix C to E)

C. Inserting the vacuum tool

Next the blending tool has to be replaced by the vacuum tool
in the xacro file. The tool centre point (tcp)-frame, the frame
that models the tip of the blending tool, has to be modified,
so that it is positioned at the tip of the vacuum tool. Also
the radius of the tool tip has to be adjusted to the size of
the vacuum tool, this can be done in the configuration file
path planning.yaml. This is needed because the radius of the
vacuum tool is bigger than the default tool size of Godel.
(Appendix F)

D. Removing the Keyence laser scanner and the edge path

The Keyence laser scanner is used in Godel to check
whether the surface has sufficiently been blended by the robot.
It is a way to minimise errors in the quality of the blending pro-
cess. This specific component of the Godel package, created
for the blending robots, is not necessary for the vacuuming
robot. After vacuuming it is not required to have a quality
check, because this can simply be done by an employee. This
will make the cleaning process more time efficient. In order to
remove the Keyence laser scanner from the process a couple
of files had to be modified.

Besides removing the Keyence laser scanner, the paths
generated for both the scanner and the blending of the
edges have to be removed too. This has been done by
removing the generation of these paths in the blend-
ing service path generation.cpp file. (Appendix G)

E. Optimising the path

A new path needs to be created for the vacuum cleaning to
make it more efficient. The tool tip of the vacuum, provided
by Loogman, is not circular but oval, giving issues when
executing a path on a fixed angle, as is demonstrated in figure
1. Furthermore, Godel is based on a circular tool, which means
that the program does not take the direction the tool is facing
into account. When replacing the original blending tool with
the vacuum tool, the direction the vacuum tool is pointing
towards, has also been changed. This measure makes sure that
the complete trunk can be vacuumed more efficiently, without
the robot accidentally missing a spot.

Fig. 1. On the left the wrong tool position causes gaps between the paths,
on the right the correct tool position covers the whole height of the surface.

The default tool path supplied by Godel uses the spiral
pattern shown in the third picture in figure 2, where the

Page 3 of 9



mentioned issues are present. To solve these issues three
potential solutions have been researched. These solutions were
all developed without redesigning the whole path planning
algorithm. The first solution is to increase the density of the
path, and in that way covering more ground. The second one
is, using the zigzagging path of the Keyence scanner, covering
the whole surface with only horizontal movement. The last one
is actively changing the angle of the vacuum tool to always
be perpendicular to the path. These three solutions are shown
in figure 2.

Fig. 2. Three ways to vacuum, from left to right: increased density, zigzagging
(only horizontal movement), actively changing tool angle (covering the whole
surface).

To find the best solution, the lengths of the paths have
been compared to find the shortest path. With solution
three being the default length. The two different paths were
compared to the default length to calculate the difference in
path length. For these calculations, parameters such as the
speed and agility of the robot have not been taken into account.

Calculation of the path length, with n being the unit length
of the side of the square shaped surfaces:

Increased density = 4
n(n+ 1)

2
+

n

2
= 2n2 +

5

2
n (1)

Zigzagging = n(n+ 1) + n = n(n+ 2) (2)

Default and Rotating = 4
n(n2 + 1)

2
+

n

2
= n2 +

5

2
n (3)

Efficiency calculations:

Zigzagging

Default
=

2(n+ 2)

2n+ 5
(4)

Increaseddensity

Default
=

4n+ 5

2n+ 5
(5)

Comparing the lengths of the paths:
This table shows the different lengths with respect to the

values of n, with n=10 being the average value for the planned
paths for the car trunk.

TABLE I
LENGTH OF THE PATHS AS A PERCENTAGE OF THE DEFAULT PATH

n=0 n=1 n=10 n = ∞
Zigzag 80% 86% 96% 100%

Increased density 100% 128% 180% 200%

This research concludes that the zigzagging path is 4% more
efficient than the default path. Making it the selected path for
the vacuuming of the trunk. Implementing the path is done
by replacing the default spiralling path, with the zigzagging
path generated by the Keyence scanner. This has been done by
editing the blend planner.cpp file. This file calls the blend path
generation service and then publishes poses as blend poses.
The file has been changed in such a way that it calls the path
generator package of the scanner (zigzag pattern) and then
publishes the poses as blend poses instead of scan poses. The
default spiralling tool path and the Keyence scanner path are
shown in figure 3, as well as the new blending path in figure
4. (Appendix H,I)

Fig. 3. Point cloud of the trunk with the default path in red, and the Keyence
scanner path in yellow.

Fig. 4. Point cloud of the trunk with the new blending path.

F. Implementing the collision avoidance
One of the challenges is the implementation of collision

avoidance. The robot has to recognise all parts of the trunk and
make sure it does not collide with them. A solution to this is
implementing Octomap. This has been done by using a Godel
fork created by G.A.vd Hoorn [8]. This way the Descartes path
planner avoids collision by checking the collision for each tool
position, and changing it according to figure 5.

However, when using this software, only the spiralling
tool path can be used. This is because of how the path is
made; when creating the spiralling tool path, the blend path
generation service updates the Descartes regularly, thereby
taking collisions into account. The zigzagging path does not
do this, because the method of collision checking is not yet
compatible with the new path definition. (Appendix J)

Page 4 of 9



Fig. 5. Point cloud of the trunk with voxels representing the rest of the car

G. Demonstration

Initially, the Yaskawa GP25 was implemented in Godel for
the simulation. However, the Yaskawa GP25 was not available
anymore. Therefore the ABB IRB1200 was chosen for the
demonstration, since it was available and already incorporated
in Godel. This robot does not, in contrast to the GP25, have a
hollow wrist. This means that a full vacuuming demonstration
with this robot is not possible, because the vacuum hose might
become entangled with the robot arm. The robot can still
execute the planned path though.

A problem occurred while trying to get the real robot work-
ing. Godel did generate the path and planned the movements,
but the robot did not execute them. In order to fix this problem,
changes were made to the irb1200 blending.launch file and the
moveit planning execution.launch file. This allowed Godel to
send commands to the controller and for the robot to execute
them.

However, the robot would only execute half of the planned
path, due to a data limit on the robot controller. The robot
controller could only execute a maximum trajectory length of
one hundred points. The generated path consisted of signifi-
cantly more points and this caused the robot to stop executing
after it reached its maximum. In order to fix this problem,
the maximum trajectory length had to be increased. This was
done by changing the limit on the controller of the robot. After
changing this value, the controller had to be restarted with the
so-called ‘P-start’ (RAPID restart). (Appendix K)

V. RESULTS

After choosing Godel as the software that is going to be
used, the following features are achieved to complete the goal
of the research:

• A new arm is implemented in Godel, because it is
more suitable for the goal of automating the vacuuming
process. This result is achieved by writing a xacro of the
Yaskawa GP25 and by creating the required objects and
models.

• A new MoveIt configuration is generated with the MoveIt
setup assistant to make it possible for the robot to move
in the simulation.

• An IKFast package is created to make the planning part
faster.

• The vacuum tool is modelled and implemented in the
simulation.

• Godel scans the pre-defined point cloud data and visu-
alises the detected surfaces. Then it gives the option to
select which surface Godel needs to plan a path for.

• Godel only plans a blend path.
• The blend path has been changed from a spiralling to a

zigzagging path.
• The maximum trajectory length on the controller of the

IRB1200 is changed to enable the robot to execute the
whole path instead of just a segment.

• Collision avoidance is implemented to make it possible
for the robot to avoid the walls of the car trunk.

VI. DISCUSSION

The results show that the floor of a car trunk can be cleaned.
However, there are certain aspects of the project that need
thorough attention before implementation can start.

First of all, when using the zigzagging scan path, the path is
generated using approximations. Most trunks have small to big
curvatures on at least one side. The current scan path does not
take small curvatures into account and will treat the surface
as if it were rectangular. This can be optimised, in order to
clean the trunk floor entirely.

Second, only three tool paths have been analysed in this
project, due to their availability and easy implementation.
However, there are infinite possible tool paths and other paths
might be better suited for this application than the current
paths. Also when finding the best path, parameters such as
speed and agility of the robot have not been taken into account,
even though these could significantly change the outcome.

Third, the robot that was initially chosen might not be the
best suited robot for this project. The Yaskawa GP25 was
chosen because of its hollow wrist and availability. However,
when implementing a robot these are invalid arguments. There
is no Motoman driver in Godel yet, since the implementation
was more difficult than expected. Extended research should be
done on focusing what robot is most suited for this application.

Finally, the absence of the scan part of the Scan-N-Plan
leaves room for improvement. To fully use the flexibility of
Godel, the scanning part is crucial.

VII. CONCLUSION

The goal of this project was to perform a demo of a robot
arm automatically vacuuming the floor of a car trunk, showing
the feasibility of the project.

A working simulation with the Yaskawa GP25 has been
created. Godel starts with scanning the environment and is
able to detect the given point cloud of the car trunk. It is
also possible to choose which of the detected surfaces Godel
has to plan a path for. On the selected surface a zigzagging
blend path will be generated, covering the chosen surface. The
following step is to execute, which is done in simulation by
the virtual robot, but also by the real robot if it is connected. In
the demonstration the ABB IRB1200, executes a zigzagging
path in order to vacuum the mock-up of the trunk.

To avoid colliding with the car trunk Octomap was used in
the simulation. This only works with the spiralling path, but

Page 5 of 9



it creates a working collision 3D grid mesh, resulting in the
robot avoiding the walls of the car trunk when planning the
joint trajectory path.

To conclude this research project has contributed to the
project of designing a fully automated car interior cleaning
system, by creating a simulation and a demonstration in which
the trunk of a car is being vacuumed by a robot. This shows
that automatic car interior cleaning is a feasible option for
Loogman to use in the future.

VIII. RECOMMENDATIONS SHORT-TERM

Before the robot can be fully implemented in the interior
cleaning process, more research has to be done. This will
take a lot of time and therefore it is a long-term solution.
When looking for a short-term solution, it might be better
to look for other possibilities. For example, hybrid robotic
assistance systems that are used in the car manufacturing
industry could be redesigned for application at Loogman.
Another option is a small vacuum robot, which is put in the
trunk by employees and vacuums the trunk autonomously.
This is easier to implement in the interior cleaning process at
this moment. However, these solutions do not offer the multi-
employability of generic robot arms. Researching more basic
solutions will yield more returns in the short term.

IX. RECOMMENDATIONS LONG-TERM

This project is a good start in realising the full automation of
the interior car cleaning process at Loogman. Suggested next
steps are the optimisation of this project, as well as looking
into developing a fully automated cleaning system.

To finish the goal of full automation it is recommended to
combine the current issues mentioned in the discussion with
the following recommendations, to create a working robot with
the optimal path and a working collision avoidance.

At the moment, the software needs two different point cloud
inputs to generate both the collision meshes with Octomap and
the surfaces that need to be tooled. It would make more sense
to give one point cloud as input and automatically select the
surfaces to be tooled. Once a surface is selected, all the other
surfaces should be converted into collision meshes, thereby
erasing the need for multiple point clouds. This could be
implemented in the future.

In the current project the scan part of the Scan-N-Plan
method was skipped. The robot arm is supposed to scan the
trunk by itself and generate the required models, instead of
receiving pre-programmed data as described in this paper.
Receiving these pre-made models limits the robot to only
vacuuming the given trunk, and thus withholds the robot from
being able to vacuum the trunk of any car. It is necessary to get
the scan part working before the robot can be implemented in
the process. Therefore it is recommended to do more research
into the scan part of Scan-N-Plan.

To optimise the vacuuming, it is useful to develop a new
vacuum tool specialised for the application of vacuuming.
Humans can adjust their force manually while vacuuming, for
example when the car is moving a bit. To prevent the car from

getting damaged due to too much pressure from the robot, a
new vacuum tool could be designed. Instead of a new vacuum
tool that regulates the applied force, it is also possible to let
the robot control the force applied. The version of Godel used
in this project does not have this feature, so this needs be
added. Furthermore, the shape of the tool could be optimised
for different tool paths, improving the efficiency of the process.

Finally, the implementation of a fully automatic car cleaning
system is something that requires research on its own. The
interior car cleaning process contains different types of tasks
which will need multiple robots. Looking into automating the
whole process with robots requires a lot of work in itself.

X. REFERENCES

1) ABB Experimental package, Consulted in December
2019. https://github.com/ros-industrial/
abb_experimental

2) Bezier package, Consulted in October 2019.
https://github.com/ros-industrial-
consortium/bezier

3) S. Chitta, D. Hershberger, A. Pooley, D. Coleman,
M. Gornera, F. Suarez, and M. Lautman, MoveIt!
tutorials: IKFast Kinematics Solver, Consulted in
October 2019

4) R. Diankov, Automated Construction of Robotic
Manipulation Programs. PhD thesis, Carnegie Mellon
University, Robotics Institute, August 2010.
http://www.programmingvision.com/rosen
_diankov_thesis.pdf

5) Ensenso GmbH, About us, Consulted in December
2019. https://www.ensenso.com/about-us/

6) D. Girardeau-Montaut, Cloudcompare, Consulted in
December 2019.
https://www.danielgm.net/cc/

7) Godel package, Consulted in October 2019.
https://github.com/ros-industrial-
consortiumconsortium/godel

8) G. vd Hoorn, GitHub repository Octomap, Consulted in
December 2019. https://github.com
/gavanderhoorn/godel/tree/
add_octomapmoveit_descartes

9) R. Madaan, Descartes. ROS.org, Consulted in
December 2019.
http://wiki.ros.org/descartes

10) MoveIt, MoveIt Documentation, Consulted in December
2019.
https://moveit.ros.org/documentation/

11) ROS, About ROS, Consulted in September 2019.
https://www.ros.org/about-ros/

12) ROS, Ubuntu install for the use of ROS Kinetic,
Consulted in September 2019.
http://wiki.ros.org/kinetic/
Installation/Ubuntu

Page 6 of 9



13) ROSIN Project consortium, ROS-I Academy Training.
https://tudelftroboticsinstitute.nl/
study/ros-academy

14) ROS-Industrial consortium, Scan-N-Plan, Consulted in
September 2019
https://rosindustrial.org/scan-n-plan

15) SoloLearn, C++ Tutorial.
https://www.sololearn.com/

16) K. Wurm, Octomap. ROS.org, Consulted in December
2019. http://wiki.ros.org/octomap

17) Yaskawa GP25 support package, Consulted in October
2019.
https://github.com/fizyr/yaskawa_gp25_
support

18) Yaskawa Motoman, Handling & General Applications
with the GP-series, Consulted in November 2019.
https://www.yaskawa.eu.com/index.php?e
ID=dumpFile&t=f&f=17300&token=6b0b872f
02729308f584c0daa937652f249879f4

XI. APPENDIX

A. Tutorials

To learn the basics of the software used in this project
the following tutorials supplied for this project were used,
recommended for beginners for working with ROS.

• Installing Ubuntu for ROS [12]
• ROS-I Academy Training [13]
• Learning C++ [15]

B. MoveIt configuration adjustments

In order to make it possible for the Yaskawa GP25 to move
during simulation, a new MoveIt configuration had to be made.
To make it suitable for Godel the following files had to be
created or adjusted:

• All links, joints and virtual joints in the GP25 MoveIt
configuration have been given the same names as used in
the IRB2400 files, since Godel uses these names in the
remaining parts of the program.

• The fake controllers.yaml file has to be exactly the same
as the one used for the IRB2400, because these specific
controllers are called upon by the rest of the Godel
program.

• In the ompl.yaml file, all the default values created by
the MoveIt setup assistant were put to none. These had
to be removed.

• The ros controllers.yaml file is called upon by the GP25
MoveIt configuration, while the IRB2400 configuration
calls upon a controllers.yaml file. The solution to this was
adding the controller mentioned in the controllers.yaml to
the ros controller.yaml.

C. Creating IKFast

OpenRAVE is a special software developed to create IK-
Fast solutions for robot arms. These solutions are incredibly
powerful and fast in calculating the possible positions of

the robot arm. In order to make the files that create these
solutions, OpenRAVE needs a collada file as input. ROS can
automatically create these files from URDF files with a simple
command. An URDF file of the setup can be easily created
by loading the workspace.macro.xacro into the MoveIt Setup
Assistant. This .xacro file has been created and converted to
the collada format. Next OpenRAVE created the needed IKFast
files.

D. First implementation of the IKFast

The original Godel structure has an IKFast package con-
taining two .hpp files and one plugin init.cpp file. However,
the IKFast created by OpenRAVE has two .cpp files that have
almost the exact same content as the two .hpp files. In order
for Godel to work, the newly created IKFast files need to
have the same structure. This has been achieved by copying
the existing files and their structure and changing them to the
new GP25.

The first step was to add the .hpp files in the IKFast manip-
ulator package and copy and paste the contents of the GP25
IKFast .cpp files into them. Next the names of these files had
to be changed to make sure that they are specific for the GP25.
In the new GP25 IKFast MoveIt plugin .hpp file, the IKFast
solver should call the .hpp file instead of the original .cpp file.
Next, the plugin init.cpp file had to be changed, making sure
it would call upon the right .hpp files as well as changing the
pluginlib export class from irb2400 ikfast manipulator plugin
to ikfast kinematics plugin. Since this is the class that is
created by the GP25 IKFast files. Also the CMakeLists.txt
file had to be changed: In the add libraries section, now the
gp25 plugin init.cpp has to be called instead of the old .cpp
file.

E. Creating a new Descartes package for the GP25

After copying the Descartes package in the Godel IRB2400
folder, the first thing that has to be changed is the CMake-
lists.txt file. The original file referred to the IKFast package
of the IRB2400, while it should now refer to the GP25
IKFast package. Next, the plugins.xml file has to be adjusted,
renaming the class and the type of the robot model, that will
be called upon from the gp25 blending.launch file. Finally the
package.xml file has to be changed so it refers to the GP25
IKFast package too.

Now that the Descartes package is compatible with the
IKFast package of the GP25, the files inside of the package
can be changed, starting with the robot model.h file and with
the kinematics plugin. These have to be changed just as
mentioned before in the implementation of the IKFast section.
Furthermore all the classes that are defined using the ABB
IRB2400 have to be replaced with the GP25 naming.

Next the robot model.cpp file has to be changed as well. For
this file the same changes are needed as for the previous file:
changing the kinematics type as well as replacing IRB2400
with GP25.

Page 7 of 9



F. Adding the vacuum tool

This can be done by replacing the blending tool in the xacro
to the tip of the vacuum tool. Afterwards the tcp-frame has
to be changed so it is positioned at the tip of the new tool.
Next the blend process planning.cpp has to be changed so it
positions the tool in the right direction. This has been done
by modifying the toDescartesBlendPt at line 34, so it only
accepts the tool in special poses, which helps the cleaning go
smoother.

G. Deleting the Keyence sensor

The Keyence laser scanner is not necessary in this project
so it has been deleted completely. To delete the whole scanner
all the files have to be checked for a scanner part. This can
be done by looking out and searching for the scanner in all
the files. In the end the scanner has been deleted from the
following files:

• Surface blending service.h
• Surface blending service.cpp
• Blending service path generation.cpp
• Blending eff macro.xacro
• Godel process planning node.cpp
• Godel process planning.h
• Godel process planning.cpp
• Process planning.launch
• Gp25 blending.launch
For removing the scan path and the edge path,

lines 272 to 314 have been removed in the blend-
ing service path generation.cpp file.

H. Adjusting the path

There are two files where the paths for the blending and for
the scanning are defined, respectively in blend planner.cpp and
scan planner.cpp. The part of the script of scan planner.cpp
where the path is described was copied and pasted in
blend planner.cpp, replacing the original blending path with
the scan path. Besides this, the growth factor in profilome-
ter scan.cpp was changed as well. The growth factor is a
scaling factor which scales the path. The growth factor had
to be decreased to acquire the desired coverage of the surface
of the trunk with the planned path. At last, the file profilome-
ter scan.h had to be called in blend planner.cpp in order to
be able to run.

I. Adjusting the speed in simulation

The robot was moving slow while in simulation,
so the speed of the robot had to be adjusted. In
godel process planning/src/common utils.cpp the default val-
ues are set, including the “DEFAULT JOINT VELOCITY”
in line 25. This initial value was of the IRB2400, so
it had to be changed to the joint velocity limit of the
Yaskawa GP25. This limit is 210 degrees/s, which is
equal to 3.665 rad/s [18]. Besides this value, the “DE-
FAULT MOVEIT VELOCITY SCALING” in line 30 had to
be changed. The value was initially set to 0.1 to slow down the

movements of the robot. But because the robot had to move
faster, this value was changed to 1.0.

J. Implementing the collision avoidance

To achieve the implementation of the collision detection
certain files had to be changed according to the Godel fork that
G.A. vd Hoorn posted on GitHub. This version of Godel added
a planning scene to Descartes, thereby making it compatible
with the newly produced data by Octomap. Also it updated
the path planning files, to make sure the Descartes would take
Octomap into consideration. Next a new Octomap sensor was
added, that could read point cloud data and convert it to voxels.
To get this sensor working with the current program, a new
node was written in the gp25 blending.launch file. This node
reads point cloud data (PCD) and publishes it on a topic that
the new sensor reads. This sensor can then change the data so
it will be regarded as collision data.

K. Getting the real robot working

The abb driver already provided by Godel was not sufficient
to make the real robot work so the abb irb1200 support
package from the abb driver had to be switched out
for the new abb irb1200 support package from the new
abb experimental package. The abb experimental driver
package can be found on GitHub [1]. After downloading the
abb experimental package some changes had to be made in
the moveit planning execution.launch file of the IRB1200.
In line 6 the joint names irb1200.yaml had to be altered to
joint names irb1200 5 90.yaml. Also lines 34 t/m 53 had to
be removed and replaced by:

<group unless = ” $(arg sim)”/>
<include file = ” $(find abb irb1200 support/launch/robot

interface download irb1200 5 90.launch/>
<arg name = ”robot ip” value = ”$(arg robot ip)”/>
</include>
</group>

In irb1200 blending.launch in lines 32 and 36 the
nodes had to be switched. So in line 32 the type =
”blend process service node” had to be switched out with
”abb blend process service node”.

This solved the problem of connecting the real robot with
the Godel program. However, the controller could only accept
a maximum of 100 points while Godel would send more,
which resulted in that the robot would only execute a frac-
tion of the trajectory. This has been solved by updating the
amount of points the controller can receive. First of all the
ROS commons.sys file in Godel had to be changed; the value
of the MAX TRAJ LENGTH had to be adjusted to 500. That
way Godel was able to send all the necessary points to the
controller. Next, the trajectory length had to be changed on
the controller itself, so that it accepts a maximum of 500
points. This has been done via ABB studio. In RAPID the
ROS commons.sys file has been changed in the same way as

Page 8 of 9



in Godel. Finally, the controller had to be restarted to make
sure that these changes were saved using a P-start.

Page 9 of 9


