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Abstract—This research was commissioned by Ahold Delhaize.
The aim was to produce a system using a robotic arm and
3D camera to accurately cut open different sized boxes. The
software used for this was ROS (Robotic Operating System). The
application Gödel, an open source project designed for scanning
and blending surfaces, was used and adapted in order to make
it suitable for the assignment. After successful simulations the
application was connected to the robot arm ABB IRB1200. After
successful merging of the application and robot arm, different
knives were tested resulting in the use of a powered circular
blade. Lastly, a 3D camera (Asus Xtion) was added to the system
to scan the boxes instead of using generated point cloud data.
It can be concluded that within a simulation it is possible to
automate the box cutting process. When using the 3D camera,
small imperfections in the generated point cloud made it hard for
the box cutting application to recognise the precise surface. As a
result, executing the cut sometimes had a small offset resulting
in cutting the cardboard instead of the tape. Due to Gödel being
a 2D path planner, the box cutting application can not take
small differences in height into account resulting in a part of
the box not being cut. Solutions for these issues can be explored
by using a more accurate 3D camera and a 3D path planning
package. Apart from this, it can be concluded that this project
has produced a satisfactory proof of concept.

I. Introduction
Ahold Delhaize is one of the pioneers when it comes to

automating the processes in between the supplier and the
customer. Their distribution center in Zaandam has automated
almost every single process and it could be only a matter
of time before the grocery stores will see fully automated
processes too. Robotization will not only speed up certain
processes and save costs, it will also take away some tasks
that are boring and repetitive for employees and are better
suited for a robot.

The company is trying to find out if different stages in
logistics can be automated and the process of cutting boxes
is one of them. From an engineering point of view this is a
challenging task since there is deformation of the material
due to stacking and tiny margins in between the box and
the products that fill up the box. Simple tasks, such as
making a robotic arm move from point A to B are being
used for a while now and are widely adopted across different
industries. Since technology keeps evolving, 3D cameras can

produce point cloud data more accurate and faster than ever
before. This creates new opportunities to improve automated
industrial processes.

The assignment that Ahold Delhaize gave is to research
the options of automating the box cutting process. This
research will be done by using ROS, short for Robotic
Operating System. ROS is an open source framework for
writing robot software. This allows the programmer to
build on existing packages. More specific, we will use the
Gödel application within ROS. This is a bundle of packages
made for point cloud surface detection, path planning and
polishing. A brief introduction to both ROS and Gödel will
follow in this paper first before it focuses on the actual project.

This paper has the following goals: (1) to describe the
problem and the design requirements for the robotic arm,
in order to solve it, (2) to give an overview of the steps
taken to achieve the goal (a detailed description of this can
be found in Appendix 1), (3) to provide an overview of
the results, (4) to discuss and clarify these results and (5)
to provide a starting point for further development in this field.

This design study has been conducted by bachelor
Mechanical Engineering students of the TU Delft’s
Mechanical Engineering department as a graduation project.

1) Introduction to ROS
According to the wiki of ROS, ROS is an open source set

of software libraries and tools (”About ROS,” n.d.). Open
source means that there is information and existing code on
the internet that can be reused. After discussing the main
goals with the project supervisors, the choice was made to use
a pre-programmed application within ROS called ”Gödel”.
This will be used as a starting point for designing a box
cutting robot. Gödel is an application using ROS that can be
used for locating and blending (polishing) surfaces.

ROS makes it easy to use and combine packages. Packages
can contain one or multiple nodes. Nodes are files of code
that fulfill a certain purpose (”Nodes,” n.d.). Communication
between nodes is done by topics (”Topics,” n.d.). An



application is usually built from multiple packages, nodes
and topics work together and each have different purposes
for the application.

2) Introduction to Gödel
Gödel is an application using ROS that is part of the

open-source Scan-N-Plan™ project of ROS Industrial (”Scan-
N-Plan™”, n.d.). On their website, ROS-Industrial describes
itself as follows: ”ROS-Industrial is an open-source project
that extends the advanced capabilities of ROS software
to manufacturing.” (”ROS-Industrial”, n.d.) Gödel is an
application that consists of a collection of packages. It
is divided into two clearly distinctive processes. The first
process is the scan process which contains the scanning
of the operating space of the robot. The robotic arm first
moves to a specified scan pose. When the robotic arm is
positioned at the scan pose, a scan of the operating space
is made. The second process is the plan process which
contains the detection of all surfaces in the obtained point
cloud of the operating space, generating a blending and laser
scanning path and making a plan how to actuate the robot arm.

Gödel is an adequate option to start with, since the blending
and laser scanning movements are comparable to box cutting
movements. Therefore, Gödel is used for this design study.

The original Gödel application is meant to first make a
scan of the operating space. A point cloud is a 3D cluster of
dimensionless points that are represented as dots. Together
these dots approach the shape of objects. A point cloud can
be obtained either by generating a fictive point cloud or by
using a 3D-camera which generates a point cloud.

After scanning the operating space and obtaining a point
cloud, Gödel detects all flat surfaces of the point cloud
within the operating space. Gödel then plans two paths
over each detected surface: one path for the blending tool
(red trajectory) and one path for the laser scanner (yellow
trajectory) (figure 1). There are various end effectors attached
to the robot arm that are used for the blending application,
for instance a Keyence laser scanner and a blending tool.
These however are not useful for the box cutting application.

Gödel can be used to control a real robot arm when a
connection is established. The program constructs both a
simulation and an execution of the blending processes and
the laser scanning processes. The simulation can be used
to inspect the motion of the robot arm before executing it.
Executing makes the robot arm actually move. If the robot
arm makes unexpected movements during the simulation, the
operator can choose not to execute the motion.

The default robot arms included in the Gödel application
are from ABB. However, if a different arm is required due to
specification requirements such as minimum operating range,
the specific model can be put into the Gödel application by

Fig. 1. Example of a blending path (red) and a laser scanner path (yellow),
produced by Gödel

making some changes to the support files and the MoveIt
configuration files.

Most of the files in Gödel are written in the c++ pro-
gramming language. Next to that, Gödel makes use of .yaml
files and some .STL files. The c++ written files are the main
code, the .yaml usually contain parameters and the .STL files
are files that contain the physical objects which could be
used as a visual and collision model independently. RViz, a
visualisation tool within ROS, is used to visualize the robot
and the operating space in a 3D space.

II. Objectives and requirements
The main objective of Ahold Delhaize is to explore the

possibilities of automation in their processes. One of these
processes is cutting boxes open. An essential aspect that
comes with that is convincing the managing board whether
cutting open a box using a robot is possible in the first
place. This implies that it is important to be able to show
a demonstration of a proof of concept, rather than having
a completely worked out idea but nothing to demonstrate.
What this means is that concessions can be made in order
to get the product working. The main requirements are the
ability to locate the box, to recognize the top surface of the
box and to determine the correct path necessary to cut it open.

A. Requirements
There are three requirements for the design study.

• ROS and Gödel have to be used for this project.
• The robotic arm should be able to cut different sized

boxes.
• The box cutting application should be able to recognize

surfaces independent of location and angle.



B. Objectives
This project consists of three main objectives. To achieve

these objectives, sub-objectives were set as a guideline for
the project.

Main objective 1: Getting a working simulation of a robot
arm cutting open a box in the Gödel application.

Sub-objectives
• Determine the best way to cut open a box
• Get a box point cloud into Gödel
• Insert the cutting tool as end effector
• Alter the laser scan path planning
• Remove path planning process for blending
• Select the top surface of the box
• Execute the scanning
• Give the cutting tool the correct orientation
• Selection of an appropriate robotic arm which is also

available for testing

Main objective 2: Transitioning from a simulation in the
Gödel application to controlling a real robot with the same
movements.

Sub-objectives
• Establish connection with the ROS server on the robotic

arm
• Design an end effector for box cutting
• Build an end effector for box cutting
• Get the conveyor belt working

Main objective 3: Implementation of a 3D camera in the
Gödel application to scan real boxes.

Sub-objectives
• Select an appropriate 3D camera and install the correct

drivers
• Set the correct scan pose
• Let the box cutting application make a 3D snapshot
• Reset parameters for surface detection
• Solve path planning deviation due to imperfect point

cloud

III. Methods
A. Main objective 1: Simulation

The method for achieving the first main objective was
going through files, getting an overview of Gödel and looking
for specific parts of code that could be changed in such a
way that the objectives would be met.

To get a better understanding of how Gödel is structured,
a tree structure was made of how all launch files and nodes
are related. This is done by opening each launch file and

going through them. By excluding one node or launch file at
a time, it could be determined which nodes and launch files
are of importance and which ones are not. By applying this
method, it was possible to narrow down the number of files
to look through.

Fig. 2. Example of a box; Indigo represents the tape on the box, yellow the
areas to be cut

1) Determine the best way to cut open a box
First, an analysis of the design request has been made. The

following three methods to cut open a box were considered:
1. Cut the box open through the middle of the top surface
of the box. With this approach, two assumptions are made.
The first assumption is that the gap and tape will always
be exactly in the middle of the top surface of the box. The
second assumption is that the box only has tape on the top
surface and not any tape at the side surfaces.(figure 2)
2. Cut the box open through the middle of the top surface
and along the two shortest edges. With this approach, the
same assumption is made that the gap and tape will always
be exactly in the middle of the top surface of the box (figure
3).
3. Cut the box open by cutting off the whole top (figure 4).

Fig. 3. Example of a box; Indigo represents the tape on the box, yellow the
areas to be cut

Out of these three options, the first one appeared to be the
most achievable within the time span of the design study.
Primarily since Gödel its path planning seemed compatible



with the path that we needed for this option. The advantage
of this approach is that the most important part, which is the
tape along the length, can be cut with one simple movement.

The second option can be divided into two parts: 1, cutting
the tape along the length like the first option and 2, cutting
the tape on the sides. A single cut through the middle is not
enough to open most boxes because both lids will still be
held in place by the tape on the sides. This approach would
be able to open most boxes on the market, however the path
planning is different from Gödel its standard paths, so it had
to be written from scratch. Because the two parts can be
separated, even if the more complex movement of cutting the
edges does not work according to plan, the box cutting robot
can still cut open the tape in the center (figure 3).

Fig. 4. Example of a box; Indigo represents the tape on the box, yellow the
areas to be cut

The third option (figure 4) required the end effector to
go through the cardboard completely, whereas the first two
only required cutting the tape. Taking the preservation of the
products in the box into consideration, the first two options
seemed better. When the tape has to be cut, the thickness of
the cardboard functions as a cutting margin. Having to cut
through the first layer of cardboard eliminates this partly and
thus increases the risk of cutting the products inside the box.

2) Get a box point cloud in Gödel
Since Gödel originally has three separate horizontal

flat point clouds, this needed to be changed. The three
surfaces were replaced by a point cloud of a box. In order
to accomplish this, the height of one of the surfaces was
increased and the width and length were set to the dimensions
of a standard box. The other two surfaces were removed.
This resulted in a point cloud of a single box.

3) Insert the cutting tool as end effector
A .STL file of the new end effector had to be produced in

order to replace the original end effector. To get this done,
a model of the cutting tool was made in Solidworks. This
file was then converted into a .STL file and implemented

into Gödel. The box cutting application needs this .STL file
in order to prevent a collision with itself. To not slow down
the simulation the .STL file was built from basic figures. It
consists only of a few squares and cylinders which represent
the basic shape of the end effector.

All parts of code that would call upon the original Gödel
end effector were deleted except for the blending tool link
that was directly attached to the robot arm. In the code for
this part, some modifications were made so that it would call
upon the .STL file of the newly created knife. Also the knifes
orientation compared to the old end effector had to be changed.

4) Alter the laser scan path planning
Gödel generates paths for the laser scanner and the

blending tool. The blending path that is generated is projected
along the edges of a surface with a slight offset and the laser
scan path makes zigzag movements (called ’slices’) over the
surface. For this designs study, it seemed more relevant to
use the laser scanner path and alter the number of slices to
just one. This resulted in one slice exactly through the middle
along the length of the top surface (figure 5).

Fig. 5. Path planning when only cutting the tape in the middle

After the cutting tool completed cutting through the middle
of the top surface of the box, it also has to cut the tape along
the two shortest edges of the box. For that purpose, the end
effector has to make a 90 degrees turn over the z-axis. To
prevent any damage to the cutting tool, the robotic arm first
moves 5 centimeters above the top surface before making this
rotation. Also the translation between the two shortest edges
is completed 5 centimeters above the top surface for the same
reason. It would make more sense if the box cutting robot
first cuts one of the two shortest edges, then cuts through
the middle and finishes it by cutting the other shortest edge.
However, this is not possible since the robotic arm does not
turn the 90 degrees quickly enough within the short distance
it would travel. The system performs all actions overall in a
more rapid way now it only has to perform one 90 degree
rotation over the z-axis.



Fig. 6. Path planning including the edges

5) Remove path planning process for blending
In the original Gödel codes, a blending path and a laser

scan path are created for each surface. Since it was decided
to use the laser scanning path generation for the box cutting
robot, the blending path generation is ignored.

6) Select the top part of the box
Another part of the path planning is solely selecting the

top surface of the box. In the original Gödel application, the
operator has to manually select the surfaces of interest. For
the box cutting application, only the top surface is of interest.
In order to automate the process of cutting open boxes, the
selection of the top surface should be done automatically.
The solution for this was making the box cutting application
select the surface from the point cloud with the most dots.
Most cardboard boxes have a rectangular shape where the
sides with the largest surface area and therefore the most
dots, are the top and the bottom one. From these two surfaces
the top one is automatically selected.

7) Execute the scanning
While running Gödel, the simulation in Rviz performs both

a simulation and an execution for the blending. However for
the scanning part Gödel only showed a simulation. This was
observed because the simulation is a transparent version of
the robot in RViz and the real one is not transparent. The
transparent simulation did perform the scanning, the other one
did not. Since the scanning part is the part that is used, a way
had to be found to also perform the execution. Otherwise,
when trying to use Gödel on a real robot arm, the robot arm
would never execute the movement and only a simulation in
Rviz would be run. In the original file, Gödel would look
for a connection with the Keyence laser scanner. However
in the box cutting application, the Keyence laser scanner is
not used. In order to make the script work regardless, all
the references to the Keyence laser scanner in this file were
deleted.

8) Give the cutting tool the correct orientation
After replacing the original end effector for the cutting

tool, the cutting tool moved parallel to the surface. To cut

properly the cutting tool has to be orientated perpendicular
to the surface. This unwanted movement happened because
in Gödel the laser scanner is mounted at the end effector
with a different relative location and orientation. The points
in the yellow trajectory (figures 5 and 6) contain not only
information about the location, but also information about the
how the robotic arm has to be oriented towards the trajectory.
By altering this orientation, the cutting tool will always move
perpendicular to the surface.

9) Selection of an appropriate robotic arm
which is also available for testing

The default robotic arm used in Gödel is the ABB
IRB2400. Because this robotic arm is not available at the
Mechanical Engineering Department of TU Delft and the
second objective is to implement Gödel to a real robotic arm,
it was necessary to search for a substitute. Since the Yaskawa
GP25 robotic arm is actually available in the Mechanical
Engineering Department, it was chosen to substitute the
IRB2400. Another advantage of this arm is that it has a larger
reach and therefore could reach each side of a box with ease.

Time was invested to implement the Yaskawa GP25 in
Gödel and getting it working correctly. Due to lack of space
and lack of available drivers for the actual Yaskawa GP25,
it was decided to look for other robotic arms available. It
was decided to use the ABB IRB1200 robotic arm since
this model was available at Robohouse (Delft, Netherlands).
Though being a small robotic arm, it still met the necessary
requirements to use for the box cutting application. Since it
was already implemented in Gödel it was available for use
instantly.

If preferred, other robotic arms can be implemented in
Gödel. It could be convenient for any further research and
development to use a substitute robot arm. Instructions
for implementing a different robotic arm can be found in
Appendix 2.

B. Main objective 2: Real robot arm
After getting the simulation in Rviz to work, it was time

to move on to the actual ABB IRB1200 at RoboHouse.

1) Establish connection with the ROS server
on the robotic arm

In order to make connection with the ABB IRB1200, a
tutorial was followed. This tutorial was written by a TU Delft
employee and specifically written for the ABB IRB1200 at
Robohouse. The tutorial is not available to the public. After
following the steps of this tutorial (this includes installing
the correct drivers) and setting the right network settings,
connection with the ABB IRB1200 was established. In
addition, some changes were made to the launch file to make



Fig. 7. Setup and operating space of the ABB IRB1200 used in this project

Fig. 8. Utility knife end effector Fig. 9. Pizza cutter end effector

it work with the box cutting application.

2) Design an end effector for box cutting
Three different kind of cutting tools were considered to

use as end effectors in order to cut open the boxes. They
were all mountable on the same flange which makes it easy
to quickly swap between them. All three end effectors have
their own set of advantages and disadvantages.

The first type of cutting tool was a utility knife (figure 8).
This is the cheapest and most durable option, however it is
potentially dangerous and might have problems with initiating
the cut. Typically static friction of this type of knife is high
while dynamic friction is low resulting in unwanted forces on
the robot arm and cardboard box.

Secondly, a circular blade was considered. In this case a
pizza cutter was used (figure 9). Since this blade is rotating
it does not have the tendency to push the box out of its way
when faced with resistance. Another advantage is that it is
not that sharp, making it safer to mount on a robot arm.
The lack of sharpness however also requires this blade to be
pushed down in the box harder which might deform it. It was
also possible to fix the circular blade to see if it was more
successful in cutting boxes open.

The third option was a circular blade which was powered

by a DC-motor from a hand drill (figure 10). Since this blade
is always rotating, there is no static friction therefore there
will not be massive differences in friction and the box is less
likely to move when cut. Disadvantages would be that this is
the most dangerous end effector and since it involves moving
parts it is the least durable. The end effector was designed in
such a way that the smooth blade of the pizza cutter could
be mounted on the motor, as well as two other blades with
different sized teeth.

Fig. 10. End effector (circular blade + 3D scanner) mounted at the end of
the ABB IRB1200 robotic arm

CAD models of all three end effectors were made in
Solidworks in order to easily implement them in the Gödel
application.

3) Build an end effector for box cutting
The end effectors were all constructed with the help of

a lathe and a milling machine. All were constructed with
tolerances of less than 0.1 mm in order not to deviate from the
CAD-models, therefore reducing the risk of inconsistencies
between simulation and the real world.

4) Get conveyor belt working
The last sub-objective was to automatically feed new boxes

to the robot arm without getting dangerously close to it.
Thankfully a conveyor belt enclosed the robot arm at the
location (figure 7). The belt is easily controlled via the same
controller as the one used to manually move the robot arm.
Since this was a last minute addition it was only manually
controlled.

C. Main objective 3: 3D camera
Up to this point, cutting boxes with the robotic arm and

the box cutting application has no potential for opening boxes
on an industrial scale. Since the system uses a fixed point
cloud, the location, size and orientation of the real box would
have to be exactly the same as the one in the simulation. The
dimensions of the point cloud in the box cutting application



could be altered in order to cut different sized boxes, but
this would still work far from ideal. According to the contact
person of Albert Heijn, the company has around 26,000
different sized boxes. A library could be made containing all
the different sized boxes, but then the system would have to
be manually changed every time. Moreover it would still not
allow for damaged boxes.

To cut open boxes on an industrial scale, the process of
determining the size, location and orientation of the boxes
should be automated with the help of a 3D camera.

1) Select an appropriate 3D camera and install
the correct drivers

Due to the high costs of new 3D cameras, only 3D
cameras available at the Mechanical Engineering Department
of TU Delft were considered for this purpose. There were
two Ensenso cameras and one Asus Xtion available at
the department. The Ensenso cameras in general have a
better resolution so it was the preferred option. However,
due to a lack of available ROS drivers for the Ensenso
cameras they could not be used. In contrast, there were
already ROS drivers available for the Asus Xtion camera
(library openni2). Therefore, the decision was made to use
this 3D camera. This 3D camera is mounted at the end effector.

2) Set the correct scan pose
In order to correctly translate and rotate the generated

point cloud into the world frame, the scan always has to be
made from a pre-set location and orientation. This location
and orientation is called the scan pose. Since the 3D camera
is mounted at the end effector, the robotic arm has to move
towards this scan pose before making a scan of the operating
space. The scan pose is set at location (0.55;0.0;0.8) (in
meters) with respect to the robotic arm and with an orientation
in the negative z-axis direction.

3) Let the box cutting application make a 3D
snapshot

After the robotic arm moved to the scan pose, a snapshot
of the operating space is made. This is done by saving
the point cloud generated by the Asus Xtion at that exact
moment. In the original Gödel application, a point cloud
of a perfect box was placed into the world frame. This
point cloud was then used by the surface detection of the
Gödel application. In the box cutting application, instead of
implementing a point cloud of perfect box the snapshot of a
point cloud generated by the Asus Xtion is placed into the
world frame. The camera has to be calibrated so this point
cloud is placed and transformed into the world frame in such
a way that the origin of the point cloud has a location and
orientation that corresponds with the location and orientation
of the real 3D camera mounted on the robotic arm. After
this, the point cloud is used by the surface detection of the

box cutting application (figures 11 and 12).

Fig. 11. 3D scan without path Fig. 12. 3D scan with path

4) Reset parameters for surface detection
A consequence of using imperfect point clouds generated

by the Asus Xtion is that the box cutting application was not
always able to detect all surfaces. To fix this problem, some
parameters used to determine what points form a surface
were changed. By altering these values, the box cutting
application is able to sufficiently recognize surfaces in the
imperfect point cloud. These new values were determined
experimentally until the surface detection gave satisfactory
results.

5) Solve path planning deviation due to imper-
fect point cloud

Due to the imperfect point cloud, the generated laser scan
path had a small rotation regarding to the surface (Appendix
1 figure 1). This was solved by determining the angle of this
faulty rotation and give the laser scan path the same angle of
rotating in negative direction (Appendix 1 figure 2).

IV. Results and Observations
A. Main objective 1: Gödel simulation

When putting a fictive box point cloud in the simulation,
the box cutting application was able to only select the top
part of the box and draw one straight line across its length,
as well as a line across both edges. After this the simulation
and the execution of the cutting movement was performed
correctly in Rviz. This all worked with the ABB IRB 1200
robot arm.

B. Main objective 2: ABB IRB 1200
1) Getting Gödel to work with the robot
First a connection was established with the ROS server on

the ABB IRB 1200. After that Gödel was made compatible
with the arm. When launching the Gödel application the real
robot would now follow the exact movements as shown in
Rviz when moving to the scan position and executing the
planned path. When a box with the same dimensions as the



point cloud was placed on exactly the same location in the
real world, the robot arm would perform a movement exactly
across the middle where its planned path was.

2) The end effector
There were difficulties with the box cutting performance

of the real robot arm. First of all there was a problem with
the utility knife. The static friction of the knife was so great
that the box was malformed before it started cutting the
cardboard. This resulted in a cut that was not very clean. It
had the tendency to push away boxes that were too light.
This result however was anticipated and the prime reason
for the construction of the circular blade. The circular knife
however was not that sharp and had trouble getting through
the tape at all.

The solution for this was the powered circular blade. This
terminated all static friction. First the smooth blade of the
previous circular knife was tested. This setup created a very
clean cut in the tape but it was still not optimal. Some boxes
that were tested had a very small gap between the cardboard
at the top that the tape covered. In that case the knife had to
cut some of the cardboard, for which this smooth blade was
not ideal. It created so much friction that there was a risk of
setting the box on fire. The next step was to use a circular
toothed blade. This resulted in a broader cut eliminating the
need for very high accuracy. Lastly the size of the teeth of
the blade was increased in order to try to cut through the
material faster. The blade with larger teeth however seemed
to be less succesful than the blade with smaller teeth.

C. Main objective 3: Asus Xtion 3D cam-
era and autonomous box-cutting

1) Asus Xtion 3D Camera
The surface of the point cloud data obtained from the

Asus Xtion 3D Camera has reasonable accuracy and surfaces
were detected when the 3D camera was positioned properly
above the box. The 3D camera did have problems creating
point clouds of shiny surfaces. The edges of the scanned
boxes were a bit less clear and less defined than the middle
section. The box cutting application was also able to detect
the environment around the scanned boxes. If there were
smooth surfaces close enough to the box, there is also the
option to select these as a detected surface.

2) Path planning and execution with the Asus
Xtion 3D camera camera

Once the surface was detected the box cutting application
would project a straight path through the middle. A small
mistake could be observed once or twice when the box
rotated a bit underneath the camera. Overall the path planning
was accurate and a correct path was calculated and executed.
A box can be seen cut open all the way through (figure 13).

Fig. 13. Good and clean cut
through the end Fig. 14. Failure halfway through

When the box would have a dent or any imperfection that
would make the top of the box not completely flat, it showed
that the blade would not cut into the box deep enough or not at
all at some points leaving it closed, which can be observed in
(figure 14). The cut only went only halfway through in the Z-
axis, leaving one part of the box only scratched instead of cut.

V. Discussion and Recommenda-
tions

1) Box point cloud and path planning
The results show that with the right modifications, Gödel

was able to perform all the required tasks in the simulation
that were listed in the sub objectives. The recognition of
the correct part of the box, followed by a path planning,
simulation and execution all worked smoothly.

2) ABB IRB 1200
After connecting with the ABB IRB 1200 and making

Gödel compatible with it, the arm performed as expected. As
long as the box was placed at exactly the same location as in
the simulation, the robot arm would always make a straight
precise cut along the path that had to be followed. One of
the main objectives of this project was making the robot arm
able to perform the task correctly, no matter the location, size
and orientation of the box, as long as it was in the robot arm
its range. This worked out well.

3) The Asus Xtion 3D camera
The camera worked well enough when only making a cut

through the middle of the box. Either the accuracy or the
calibration fell short when trying to include cutting the tape
on the sides of the boxes as well. It appeared the sides of
top surface of the box were not always scanned with the
required accuracy needed in order to plan the paths on the
sides correctly. Higher camera accuracy will result in higher
accuracy cuts and would also be useful if the box cutting
application was converted to 3D path planning. This option
was already available for the Gödel application but at the time
of writing it was still experimental. The current box cutting



application only uses 2D path planning. Therefore it was not
that important to detect small bumps and imperfections on
the surface of the box. The box cutting application its surface
detection makes an average estimate of the entire surface.
This cancels out small imperfections and might change the
average surface height a little in the world frame. Therefore,
even if these bumps were detected with precision, the current
box cutting application would not follow the bump properly.

A limitation of the camera was the minimum distance
required with respect to the surfaces that needed to be
detected. According to the descriptions of the product this is
about 0.8m but in reality it still worked correctly to about
0.6m. If the distance is less than 0.6m, empty spots will
appear in the point cloud of the box which results in bad path
planning. Moreover, the box needs to be accurately placed
under the 3D camera because its scanning width is not great.
When the box is placed partly outside of the camera its scan
width, a part of the scanned surface will be missing which
also results in bad path planning.

4) The cut
The offset in the cut that sometimes showed when cutting

open the boxes could be explained either by imperfections
in the box confusing the path planning, or imperfections
in the 3D scan. When the surface scan has edges that
are rough, it is likely that this will have an effect on the
path planning. Imperfections in the box will also turn into
imperfections in the point cloud, which could pose the same
problem. Though, when the offset caused the blade to go
through the cardboard instead of the tape it would still work
because the blade is able to go through cardboard without
any problem. Cutting through this cardboard should be
done cautiously. When the products in the box are tightly
packed inside the box, they are likely to touch top lid of
the box. In this case, deformations of the box can induce
a path that goes partly through the products and damage them.

5) The end effector
It was not the main focus of this design study to design the

most efficient end effector. The one used in the project had
to be manually turned on with a button each time the robot
is about to be cut. This requires a person to turn it on which
in essence does not make the robot autonomous. To make the
robot autonomous it is possible to keep the blade spinning
all the time. However for safety reasons this might not be
the best idea. When the blade is spinning it also creates
vibrations which might affect the 3D camera. Ideally, the end
effector should be implemented in the box cutting application
and be programmed to start each time the robot starts the cut.

6) Safety
When working with a robotic arm, or any machine in

general, safety should always be taken into account. In
the current setup of the project there is a virtual wall

which stops the robot arm its movements if you trespass
it. Next to this virtual barrier there is also a physical
barrier consisting of a Tensabarrier and marking tape on
the floor. Lastly, when the robot arm is actuated, there is
always someone that has hands on a kill switch to turn the
robot of in case of an emergency or an unexpected movement.

The end effector most used was a custom made cutting
tool powered by a dc motor connected to a battery. There
are several ways to stop the spinning blade if necessary.
Either the power cord can be pulled out of the battery or
the button that turns it on and of can be switched. When
working on the robot, the power cord is always pulled out
so it is not possible that the blade spins up unexpectedly.
Even though there is two ways to turn the blade off, there
probably should be an extra safety measure. For instance an
emergency brake on the blade itself. Making sure the blade
also turns off when trespassing the virtual wall or pressing
any emergency stop would be a good solution. It should both
be connected to the ROS server and to the electrical circuit
that is connected to the virtual wall for this to work properly.
For the unlikely scenario the blade breaks while spinning,
there is a aluminium casing around the blade that should
prevent shards from flying in all directions. Though there
are no calculations done to the energy of the flying shards
and the maximum capability of the aluminium to catch these
shards. Instead, an intuitive overdimensioning approach has
been taken. For personal safety, safety goggles were worn
by people around the robot arm when the cutting tool was
spinning.

7) The effective speed
Replacing a human with a robot must have a solid reason.

Whether this is speed, cutting costs or for safety reasons.
Speed and cutting costs can go hand in hand, and for Ahold
Delhaize this is one of the reasons they wanted this design
study to be performed. At this point there can be made
improvements on speed, which in turn will also save costs
because more products can be opened in the same time.

The path planning at this point is the process that up the
most time. This can probably solved with a better kinematic
solver. This is the program that makes the calculations needed
to plan a path. Another way in which this can be solved is
by raw power e.g. a faster computing chip that performs the
calculations.

A different way to speed up the entire process is to make
the robot cut boxes while the conveyor belt still moves. This
is a bit tricky to implement in the box cutting application at
this point, because the 3D camera is on top of the robotic
arm. This gives issues because the robotic arm would have
to move above the box to detect and therefore move with the
same speed as the conveyor belt. A possible solution would
be to split the scanning and the cutting. For example, the
scanning could be done at a point on the conveyor belt before



the robotic arm performs operations.

8) Keeping the boxes stationary
The conveyor belt that is located around the ABB IRB1200

robotic arm is made from a material with a smooth surface.
This offers little to no grip. For boxes with a heavy content
this is not a big issue, but for lightweight boxes this can
cause the box to slide over the conveyor belt when the blade
pushes against it.

To solve this problem during testing the boxes were filled
with heavy concrete blocks to make sure that they wouldn’t
move. In a more realistic scenario boxes can be a lot lighter
then the ones used for testing. A possible solution to keep
the boxes in place is to use a material with a high coefficient
of friction for the conveyor belt links. Even with this there is
still a chance certain boxes will slide over the conveyor belt,
and maybe a totally different approach that secures boxes
into place should be implemented like locking them into place.

9) Other solutions/approaches to the boxcut-
ting problem

While a robotic arm gives a universal solution to opening
boxes thanks to its versatility, it lacks speed and efficiency.
Time is lost because the 3D camera is attached to the robotic
arm. To scan, the robotic arm has to return to its scan pose
every time it has cut a box because there is a minimal
scanning height. This in combination with inertia affects
the robot arm its effective working speed. Thus limiting the
amount of boxes handled in a certain time frame.

One solution that has been discussed early in the project is
a conveyor belt with boxes on it and a 3D camera on the side
that just measures the height of the boxes. A horizontal band
saw could quickly adjust to the height of each of the incoming
boxes and cut off the top sheet. This increases overall speed,
but with damaged boxes decreases accuracy since this cut
will always be linear. Also there is a bigger chance that
products get damaged if they are close to the top lid of the box.

The knife used in this case was spinning with several
thousand revolutions per minute. The teethed blade then cuts
the cardboard in very fine pieces, creating dust. In many
environments this dust will not be acceptable and it should
therefore be extracted from the blade. Another approach
could be a slower spinning higher torque engine on a smooth
blade. Both options would result in a better system.

Lastly there was a small problem with the path planning.
The way this path planning was performed was by scanning
the top surface of the box and planning a path in the middle
of the longer side. This worked fine until a square box was
scanned. The path planning would not always plan the path
over the tape, but sometimes it planned its path perpendicular
over the cardboard. This would be solved if the software had

some kind of detection tool for the tape.

VI. Conclusions
The aim of this project was a pioneering exploration of the

possibilities of automation in the cutting of boxes. The goals
were to see if a proof of concept for this application could be
made, for both a simulation, and a real world application that
would cut open an actual box, using a fictive point-cloud. The
third goal was diving into the possibilities in 3D scanning in
order to fully automate the process.

Inspecting the results, it can be concluded that within a
simulation it is possible to automate the box cutting process.
The path planning and execution in the simulation worked
perfectly. Also the step from using this program to directing
a real robot arm proved to be viable and the robot would
perform a correct movement across the box.

When using the 3D camera to generate a point cloud, the
surface presented in Rviz appeared to be close to perfect.
However, small imperfections made it hard for Gödel to
recognise the precise surface. The path planning across the
recognised surface worked well, but since the recognised
surface did not perfectly match the actual top of the box,
executing the cut sometimes had a small offset resulting in
cutting the cardboard instead of the tape. With the use of
the rotating blade as an end effector this did not show to
be a problem as the blade could cut through the cardboard
effortlessly. Dents in the top of the box did cause a problem.
Due to Gödel being a 2D path planner, the robot would
always cut in a straight line. However if there would be any
difference in height between different parts of the section that
was to be cut, it could result in a part of the box not being
cut. This problem could be explored more by using a 3D
path planner.

Overall, with these results it can be said that it is possible
to implement automation in the box cutting process. The
main difficulties reside in the scanning. Mainly the accuracy
of the 3D camera and the imperfections of the box will pose
problems. Solutions for this can be explored by using a more
accurate 3D camera and a 3D path planning package. Apart
from this it can be concluded that this project has produced
a satisfactory proof of concept.
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VII. Appendices 
Appendix 1: 
Tutorial for altering the original Gödel application to a box cutting 
robot application 
In this tutorial, explanation is given about how the original Gödel application is altered in order to 
create the box cutting robot application. 
 
This tutorial is written for ROS (Robot Operating System) version Kinetic which is running on 
Ubuntu 16.0.4. This tutorial assumes that Ubuntu 16.0.4, ROS Kinetic and Scan-’n-Plan-library 
(specifically Gödel) are already installed and therefore lacks instructions for installing Ubuntu 
16.0.4, ROS Kinetic and Gödel. This tutorial is written with the assumption that the reader has 
sufficient knowledge about C++ and ROS. Therefore, basic definitions are not explained. Next 
to that, basic operations like editing/adding variables in header files and how to source a 
workspace are not mentioned and assumed that the reader is able to perform these operations. 
 
The project page of Gödel is: https://rosindustrial.org/scan-n-plan  
The codes of the original Gödel project could be found on: 
https://github.com/ros-industrial-consortium/godel  
 
The codes of the box cutting robot application could be found at: 
https://github.com/RLWBruins/boxcuttingrobot  
 
 
 

  

https://rosindustrial.org/scan-n-plan
https://github.com/ros-industrial-consortium/godel
https://github.com/RLWBruins/boxcuttingrobot


Main objective 1: Simulation 
Sub objective 2: Get a box point cloud into Godel 
By default, there are three flat surfaces in Gödel. These surfaces are originally defined in the file 
point_cloud_descriptions.yaml in package godel_irb1200_support. Since the project is about 
cutting boxes, a box has to be loaded into Gödel. For the box cutting robot, two flat surfaces are 
removed and the other one is used to generate a box. The entire file was changed to the 
following: 
 

frame_id: world_frame 
point_cloud_descriptions: 
  - x: -0.196 
    y: 0.6175 
    z: 0.162 
    rx: 0.0 

     ry: 0.0 
    rz: 0.0 
    l: 0.45 
    w: 0.305 
    h: 0.255 

   resolution: 0.005 
 
 
Sub objective 3: Insert the cutting tool as end effector 
For the box cutting robot an ABB IRB1200 robot is used. The original end effector 
blending_end_effector was copied and renamed to boxcutting_knife. The file 
blending_eff_macro.xacro was renamed to boxcutting_knife_macro.xacro. 
 
The file Endeffectorcollision.STL containing the end effector of this project was added in this 
package to the folders meshes/visual and meshes/collision.  
 
Within the file boxcutting_knife_macro.xacro, the link blending_tool was changed so that the 
visual and collision tags contain Endeffectorcollision.STL. In all the other links (except the 
blending_tool-link because that is where geometry of the knife is located) all geometry-tags and 
its contents were removed. The links themselves can not be removed because Gödel assumes 
that they exist. If links are removed, there will be errors if links are removed and Gödel will not 
start. 
 
The following parameters were changed to the following: 
 

ensenso_optical_x: -0.055 
ensenso_optical_y: -0.115 
ensenso_optical_z: 0.068 



 
keyence_tcp_x: 0.0 
keyence_tcp_y: 0.025 
keyence_tcp_z: 0.128 

 
These coordinates indicate the point of where the 3D-camera (ensenso_optical_x/y/z) and the 
tip of the powered blade (keyence_tcp_x/y/z) are positioned relative to the link: bracket. Link: 
bracket is positioned at the end of the robotic arm. 

 
The other parameters, which are set in this file are not relevant since only a modified version of 
the laser scanner path is used for the box cutting robot. 
 
In order to change the blending tool to the box cutting knife tool, in the file 
irb1200_workspace.xacro (package: godel_irb1200_support) line 4 was changed to : 

 
<xacro:include filename="$(find 
boxcutting_knife)/urdf/boxcutting_knife_macro.xacro"/> 
 

In Gödel, there is a demo cell around the robot arm which prevents the robot from moving 
outside this specified region. For the boxcutter it could be necessary to let the robot move 
outside this box. Therefore the demo cell should be enlarged. This is done by changing in the 
file automate_demo_cell_macro.xacro.xacro (package: godel_irb1200_support) the values of 
the parameters on lines 9, 10, 11, 13 and 14 to: 

 
demo_cell_width: 10.0 
demo_cell_length: 10.0 
demo_cell_height: 10.0 

 
robot_to_corner_x: -5.0 
robot_to_corner_y: -5.0 
 

Remember that the robotic arm does need sufficient space around it. If the arm is not able to 
move freely to its maximum reach, the demo cell should be sized accordingly. 
 
Sub objective 4: Alter the laser scan path planning 
For the application of the boxcutter, the laser scanning path had to be modified. The path should 
go through the middle of the surface instead of making zigzag-movements over the whole 
surface.  
 
It appeared that this always happens when in the file path_planning.yaml (package: 
path_planning_plugins) the parameter scan_width parameter given has always exactly the 
same value as the width of the surface. However, this would mean that everytime this value has 
to be set manually for the right box width. In order to always make just one slice over the 



surface, independent of the size of the surface, some changes were made in the file 
profilometer_scan.cpp (package: path_planning_plugins). This resulted in the robotic arm, 
crossing the centerline of the box once, across the length of the tp surface. 
 
To make this happen, the following two changes have to be made in the file 
profilometer_scan.cpp (package: path_planning_plugins) : 

- line 204 of the file has to be changed to : 
 

std::vector<RotatedRect> slices = sliceBoundingBox(bbox, bbox.h, 
params.overlap); 

 
- In the function sliceBoundingBox the variable n_slices has to be set to 1. Thus, 

change the line number 75 containing 
 

n_slices = static_cast<int>(bbox.h / (adjusted_width)) + 1; 
 
to  
 

n_slices = 1; 
 
These two changes let the application create just one path through the middle of a surface 
instead of creating a zigzag-path over the whole surface. 
 
In the same file (profilometer_scan.cpp) the variable GROWTH_FACTOR is set equal to 1.2 
(instead of the default value of 1.1). This makes the path 1.2 times longer than the length of the 
box. This is just a measure to make sure that the knife will entirely cross the whole surface and 
not does not stop before, for instance, reaching the end of the surface. There is a chance that 
this might happen because of  surface recognition errors since a 3D-camera will be used which 
will not have perfect accuracy. 
 
After the creation of the path through the middle of the upside of the box, the coordinates of the 
first point and the last point of this trajectory are determined. These points should lie on both 
outer edges of the box. The coordinates of these points are stored in the variables 
beginCoordinatesX, beginCoordinatesY, endCoordinatesX and endCoordinatesY. Also, a 
variable distance is created. The knife should travel a path with the length of 2.0*distance (from 
y=-distance to y=+distance) along the outer edges. 
 
All the points of the path through the middle of the upside of the box are stored in the variable: 
points. This is the same as in the original code of Gödel. The points of the path over the outer 
edges of the upside of the box are stored in the variabele points2. These points are stored 
separately because Points2 contains all points for which the robotic arm has a yaw difference of 
-1.5707 radians (approximately equal to -90 degrees) compared to the points contained in the 
variable: points.  



 
To make the procedure more clear, an overview is given of how the cutting tool moves: 

- moves from scan position to coordinate (beginCoordinatesX;beginCoordinatesY;0.0) 
- moves through the middle of the top surface to (endCoordinatesX;endCoordinatesY;0.0) 
- is lifted 5 centimeters above top surface (endCoordinatesX;endCoordinatesY;0.05) 
- moves to (beginCoordinatesX;beginCoordinatesY-distance;0.05) while rotation the 

cutting tool with -90 degrees over z-axis. 
- the cutting tool is lowered with 5 centimeters to 

(beginCoordinatesX;beginCoordinatesY-distance;0.0) 
- the cutting tool moves, while cutting, to 

(beginCoordinatesX;beginCoordinatesY+distance;0.0) 
- is lifted 5 centimeters above top surface 

(beginCoordinatesX;beginCoordinatesY+distance;0.05) 
- moves to (endCoordinatesX;endCoordinatesY-distance;0.05) 
- the cutting tool is lowered with 5 centimeters to 

(endCoordinatesX;endCoordinatesY-distance;0.0) 
- the cutting tool moves, while cutting, to 

(endCoordinatesX;endCoordinatesY+distance;0.0) 
- is lifted 5 centimeters above top surface 

(endCoordinatesX;endCoordinatesY+distance;0.05) 
 
To give a more technical overview, here is stated for variables points and points2 which 
coordinates they contain. First, all points stored within variable points are executed. After that, 
all points stored within variable points2 are executed. 
 
Within variable points the following coordinates (listed in chronological order) are stored: 

1. (beginCoordinatesX;beginCoordinatesY;0.0) 
2. Points of the path between the coordinates (beginCoordinatesX;beginCoordinatesY;0.0) 

and (endCoordinatesX;endCoordinatesY;0.0). The points in this path are linearly 
positioned between these two coordinates, and have an increment of distance of 
SCAN_APPROACH_STEP_DISTANCE per point. 

3. (endCoordinatesX;endCoordinatesY;0.0) 
4. (endCoordinatesX;endCoordinatesY;0.05) 

 
Within variable points2 the following coordinates (listed in chronological order) are stored: 

1. (beginCoordinatesX;beginCoordinatesY-distance;0.05) [While moving to this coordinate, 
the robotic arm also makes a -90 degrees rotation over z-axis.] 

2. (beginCoordinatesX;beginCoordinatesY-distance;0.0) 
3. Points of the path between (beginCoordinatesX;beginCoordinatesY-distance;0.0) and 

(beginCoordinatesX;beginCoordinatesY+distance;0.0). The points in this path are 
linearly positioned between these two coordinates, and have an increment of distance of 
size SCAN_APPROACH_STEP_DISTANCE per point. 

4. (beginCoordinatesX;beginCoordinatesY+distance;0.0) 



5. (beginCoordinatesX;beginCoordinatesY+distance;0.05) 
6. (endCoordinatesX;endCoordinatesY-distance;0.05) 
7. (endCoordinatesX;endCoordinatesY-distance;0.0) 
8. Points of the path between (endCoordinatesX;endCoordinatesY-distance;0.0) and 

(endCoordinatesX;endCoordinatesY+distance;0.0). The points in this path are linearly 
positioned between these two points, and have an increment of distance of size 
SCAN_APPROACH_STEP_DISTANCE per point. 

9. (endCoordinatesX;endCoordinatesY+distance;0.0) 
10. (endCoordinatesX;endCoordinatesY+distance;0.05) 

 
 
The complete code for function generatePath could be found on the Github page of the box 
cutting application 
(https://github.com/RLWBruins/boxcuttingrobot/blob/master/godel/path_planning_plugins/src/op
enveronoi/scan_planner.cpp). 
 
Sub objective 5:  Remove path planning process for blending 
In the original Gödel code, the file Blending_service_path_generation.cpp (package: 
godel_surface_detection) contains a function called generateProcessPath. In this function the 
paths for the blending, the laser scan and the edge paths are generated. Since the box cutting 
robot application will only use the laser path, the generating process of the blending paths and 
the edge paths are commented. This results in the application generating only a laser scan 
path. 
 
Sub objective 6:  Select the top surface of the box 
Only the top surface of a box is of interest for the box cutting robot application. In the original 
Gödel application, after the scan and surface detection process has been completed, the 
operator has to select manually which surface has to be cut. In order to automate the box 
cutting process, the selection of only the top surface has to be done automatically. The closer a 
surface is to the 3D camera, the more points the point cloud of that surface contains. Since the 
box cutting robot application makes a scan above the place were the box should be located, the 
point cloud of the top surface contains the most points. By selecting only the surface consisting 
of the highest number of points, the top surface of the box is selected. 
 
This is done in the file surface_detection.cpp (package: godel_surface_detection) in the function 
find_surfaces between lines 373 and 418. 
 
Sub objective 7:  Execute the scanning 
At this stage, the robot has a box cutting knife as end effector instead of the blending tool, 
Gödel will generate just one laser scanner path right through the middle of the surface and the 
knife moves, oriented perpendicular to the surface. In other words, at this point the basic 
functions of the box cutting robot are already working. However, the following problem occurs: 
By giving the robot the command of executing, it will show the following error message in the 

https://github.com/RLWBruins/boxcuttingrobot/blob/master/godel/path_planning_plugins/src/openveronoi/scan_planner.cpp
https://github.com/RLWBruins/boxcuttingrobot/blob/master/godel/path_planning_plugins/src/openveronoi/scan_planner.cpp


terminal: Keyence ROS server is not available on service /change_program. This error occurs 
because Gödel assumes that there is a keyence laser scanner connected to the computer. The 
effect is that the execution of the robot will be cancelled (this is caused by the return false; 
lines). In this case there is not a real keyence laser scanner connected and it is also not needed 
for the box cutting robot. To overcome this problem, the following pieces of code are 
commented in the file keyence_process_service.cpp (package: godel_process_execution): 
 

- if (!keyence_client_.exists()) { 
ROS_ERROR_STREAM("Keyence ROS server is not available on service " << 
keyence_client_.getService()); 
return false; 

} 
 

- keyence_experimental::ChangeProgram keyence_srv; 
keyence_srv.request.program_no = KEYENCE_PROGRAM_LASER_ON; 
 
if (!keyence_client_.call(keyence_srv))  { 

ROS_ERROR_STREAM("Unable to activate keyence (program " << 
KEYENCE_PROGRAM_LASER_ON << ")."); 
 
return false; 

} 
 

- keyence_srv.request.program_no = KEYENCE_PROGRAM_LASER_OFF; 
if (!keyence_client_.call(keyence_srv)) { 

ROS_ERROR_STREAM("Unable to de-activate keyence (program " << 
KEYENCE_PROGRAM_LASER_OFF << ")."); 
return false; 

} 
 
 
 
 
 
Sub objective 8:  Give the cutting tool the correct orientation 
The original Gödel code lets the robotic arm move in such a way that the knife will not move 
perpendicular, but parallel to the surface. This is a very undesirable orientation of the robotic 
arm and knife for the box cutter. Therefore, the orientation has to be altered to make sure that 
the knife will be oriented perpendicular to the surface.  
 
The following information has to be understood in order to understand and solve this problem. A 
path trajectory consists of a set of poses. Although the yellow trajectory displayed only shows 
the location, a pose consists of a location and an orientation. The orientation of the poses in the 
trajectory determines the orientation of the robotic arm and its end effector. By giving every 
pose the correct orientation, it is possible to let the end effector move, oriented perpendicular, 
across the surface. 



 
Several changes have to be made in the file scan_planner.cpp (package: 
path_planning_plugins) in the function generatePath in order to alter the orientation of the pose. 
Changing the orientation of a pose could be done by using the following line: 

 
 pose.orientation =  tf::createQuaternionMsgFromRollPitchYaw(roll,pitch,yaw); 
 
The orientation is saved as a quaternion message. With this line, Euler angles are converted 
into quaternion messages. Giving the roll a value of 1.5707 radians (is equal to 90 degrees) and 
the pitch a value of 0.0 radians (zero degrees) will let the knife move oriented downwards and 
thus perpendicular over the surface of a box. 
 
The knife has to be rotated correctly over the z-axis. This is automatically done correctly by 
Gödel. Therefore, this value has to be kept the same. For that purpose, the value for the 
yaw-angle first has to be determined, before altering the orientation of the pose. This yaw-angle 
has to be used again to give the new orientation the same yaw-angle. Determining the Euler 
angles of the orientation of a pose is done by the following code: 
 

tf::Quaternion q_original(pose.orientation.x, pose.orientation.y, 

pose.orientation.z, pose.orientation.w); 

 tf::Matrix3x3 m(q_original); 

 

 double roll, pitch, yaw; 

 tf::Matrix3x3(q_original).getRPY(roll, pitch, yaw); 

 
 
The original relevant piece of code in this file in function generatePath looks like: 
 
   std::transform(points.begin(), points.end(), std::back_inserter(scan_poses.poses), 

                  [boundary_pose_eigen] (const geometry_msgs::Point& point) { 

     geometry_msgs::Pose pose; 

     Eigen::Affine3d r = boundary_pose_eigen * Eigen::Translation3d(point.x, point.y, 

point.z); 

     tf::poseEigenToMsg(r, pose); 

     return pose; 

   }); 

 
 
This piece of code has to be replaced by the following. It also contains some code which will be 
explained later in this appendix. 
 



   std::transform(points.begin(), points.end(), std::back_inserter(scan_poses.poses), 

                  [boundary_pose_eigen] (const geometry_msgs::Point& point) { 

     geometry_msgs::Pose pose; 

     Eigen::Affine3d r = boundary_pose_eigen * Eigen::Translation3d(point.x, point.y, 

point.z); 

     tf::poseEigenToMsg(r, pose); 

 

     ros::NodeHandle nh; 

     float angleCorrection = 0.0; 

     nh.getParam("angleCorrection",angleCorrection); 

 

     // Convert roll, pitch and yaw to Quaternion : 

     float roll2 = 1.5707, pitch2 = 0, yaw2 = 0; 

 

     ///* GET THE EULER ANGLES AND PUBLISH THEM 

     tf::Quaternion q_original(pose.orientation.x, pose.orientation.y, 

pose.orientation.z, pose.orientation.w); 

     tf::Matrix3x3 m(q_original); 

 

     double roll, pitch, yaw; 

     tf::Matrix3x3(q_original).getRPY(roll, pitch, yaw); 

 

     yaw2 = yaw+angleCorrection; 

 

 

     pose.orientation =  tf::createQuaternionMsgFromRollPitchYaw(roll2,pitch2,yaw2); 

 

 

     return pose; 

   }); 

 

 
  



Main objective 2: Real robot arm 
 
Sub objective 1: Establish connection with the ROS server on the robotic arm 
 
Get the correct drivers and connect to the ROS server, which is running on the robot. 

1. For this project an ABB IRB1200 robot was used at Robohouse (TU Delft). For the 
connection a library, which was written by a TU Delft employee was used. Therefore, 
Robohouse has its own tutorial on how to establish a connection with the robot. Because 
of that, it is not possible to write a general tutorial for this. However, to get it working at 
Robohouse, a set of packages called ABB experimental had to be installed. When 
building the workspace, an error will occur since there are two packages with the name 
abb_irb1200_support. Keep the just downloaded package and remove the package 
originally downloaded with Gödel. 

 
2. When connection to the ROS server, installed on the ABB IRB1200 robot, is established 

(it is possible to check this by pinging to the robot and checking if any response is 
received) it is time for the next step. When running Gödel and trying to execute the 
robotic arm, an error will occur that the right kinematic plugin has not been found. To 
overcome this problem, open a new terminal window and execute the following 
command: 

 
sudo apt-get install ros-kinetic-trac-ik-kinematics-plugin 

 
This will install the correct kinematic plugin. 

 
3. Now it will be possible to control the robot by executing the command: 

 
roslaunch abb_irb1200_5_90_moveit_config moveit_planner_execution.launch 

 
To make it work with Gödel, the following two changes were made in the file 
moveit_planner_execution.launch (package: godel_irb1200_moveit_config) : 

 
- Lines 34 up to and including line 52 was in the original Gödel code. But this has 

been commented. 
 

- At line 28 the following code has been added : 
 

 <group unless="$(arg sim)"> 

   <include file="$(find 

abb_irb1200_support)/launch/robot_interface_download_irb1200_5_90.launch" 

> 

     <arg name="robot_ip" value="$(arg robot_ip)"/> 



   </include> 

 </group> 

 
 
This piece of code comes from the file moveit_planning_execution.launch 
(package: abb_irb1200_5_90_moveit_config) which is included in the package 
abb_experimental which had to be downloaded according to the tutorial done in 
step 1. 

  



Main objective 3: 3D camera 
For this specific box cutting robot, an Asus Xtion camera is used. Therefore, this part of the 
tutorial is written for the Asus Xtion.  
 
Sub objective 1:  Select an appropriate 3D camera and install the correct drivers 
As explained in the report, it is chosen to use the Asus Xtion camera. For the box cutting robot 
application, the library openni2 is used as drivers to connect with the Asus Xtion. In order to 
install this library open a new terminal and execute the following command: 
 

sudo apt-get install ros-kinetic-openni* 
 
This will automatically install the required drivers for the Asus XTion camera. 
 
To test whether the camera is working correctly, execute the following command: 

 
roslaunch openni2_launch openni2.launch 

 
After executing this command, go to the drop down menu and select  /camera/depth/image_rect 
and inspect whether the streaming is correct.  
 
It is also possible to visually check whether the output of the Asus Xtion-camera is correct by 
generating a point cloud. This is done by the following instructions: 

1. Open a terminal and execute the following command: 
 

rosrun rviz rviz 
 

2. Go to Global Options and change the Fixed Frame by clicking on the dropdown menu 
and select camera_link. 

 
3. Click on Add and create a PointCloud2. Change the topic of this PointCloud2 to 

/camera/depth/points. 
 
Now it is possible to inspect the point cloud which is generated by the 3D-camera. 

 
Sub objective 2:  Set the correct scan pose 
A scan pose is a pose (as explained earlier: this consists of a location and an orientation) from 
which a scan is made. In the original Gödel version, the scan positions are set in file 
robot_scan.cpp (package: godel_surface_detection) in the function create_scan_trajectory. For 
the box cutting project, this function has been copied and modified into another version. 
Therefore, a new function called create_scan_trajectoryImproved (instead of 
create_scan_trajectory) is created. In this new function, the scanpose used in the box cutting 
robot application is set. This function is called in the function scan in the same file. For our 



application, just one scan from above is enough since it is only necessary to know the size of 
the upside of the box. The newly created function contains the following code and starts at line 
337: 
 

bool 

RobotScan::create_scan_trajectoryImproved(std::vector<geometry_msgs::Pose>& 

scan_poses, 

                                      moveit_msgs::RobotTrajectory& scan_traj) 

{ 

 // This function is created for the box-cutting project 

 tf::Transform world_to_tcp    = tf::Transform::getIdentity(); 

 tf::Transform tcp_to_cam_tf   = tf::Transform::getIdentity(); 

  tf::Transform transformation1 = tf::Transform::getIdentity(); 

 tf::Transform transformation2 = tf::Transform::getIdentity(); 

 tf::Transform transformation3 = tf::Transform::getIdentity(); 

 tf::Transform transformation4 = tf::Transform::getIdentity(); 

  geometry_msgs::Pose pose; 

  // Pose #1 : (just one scan pose is needed since one scan of the upside is 

enough) 

 transformation1.setRotation(tf::Quaternion(tf::Vector3(0, 1, 0), 

3.14159265359/2.0)); // Rotation over y-axis within local frame 

 transformation2.setRotation(tf::Quaternion(tf::Vector3(0, 0, 1), 

3.14159265359)); // Rotation over z-axis within local frame 

 transformation3.setOrigin(tf::Vector3(0.0, 0.55, 0.8)); // Translation within 

world_frame 

 transformation4.setRotation(tf::Quaternion(tf::Vector3(0, 0, 1), 

-3.14159265359/2.0));// Rotation over z-axis within wold_frame 

  world_to_tcp = transformation4 * transformation3 * transformation2 * 

transformation1 * tcp_to_cam_tf.inverse(); 

 tf::poseTFToMsg(world_to_tcp, pose); 

 scan_poses.push_back(pose); 

  move_group_ptr_->setEndEffectorLink(params_.tcp_frame); 

 

 return true; 

} 

 
 
Sub objective 3: Let the box cutting application make a 3D snapshot 

1. Now the drivers are installed and the scan pose is set, the point cloud which is 
generated by the 3D-camera has to be implemented into Gödel. Several steps need to 



be completed in order to implement it into Gödel. First of all, the drivers have to be 
launched simultaneously when Gödel is launched. The file irb1200_blending.launch has 
been copied and renamed to  irb1200_box_cutting.launch. Launching the drivers along 
launching the box cutting robot application is done by the added line at line 64 in the file 
irb1200_box_cutting.launch (package: godel_irb1200_support) : 

 
 <include file="$(find openni2_launch)/launch/openni2.launch"/> 
 

2. Now the drivers are launched when Gödel is launched, there will be a topic available 
called /camera/depth/points which contains the point cloud data. The next task is to read 
and implement these point cloud data into Gödel. In Gödel, the node 
generate_point_cloud_node (in the file point_cloud_generator_node.cpp in package 
godel_surface_detection) is used to generate a fake point cloud of a box. This node first 
creates a perfect pointcloud of a 3D-box and then saves this point cloud in variable 
full_cloud (of type PointCloud). After this point cloud has been created, it publishes the 
point cloud in a while-loop to the topic generated_cloud which is remapped to the topic 
sensor_point_cloud. The remapping is defined in IRB1200_box_cutting.launch at line 65 
which contains:  

 
<remap from="generated_cloud" to="sensor_point_cloud"/> 

 
The sensor_point_cloud topic is published in rviz and the data of this topic  also used for 
the detection of surfaces. 

 
3. When the scan pose has been reached, a signal should be created to let 

point_cloud_generator_node know that a 3D screenshot should be made. Because the 
screenshot will be made in another node (in the node generate_point_cloud_node) and 
there should be communication between these two nodes, the parameter server could 
be used for this purpose. This is done in the file robot_scan.cpp (package: 
godel_surface_detection) in the function scan by the following lines (line 278, 279 and 
280) which were added for this purpose: 

 
// Let the node point_cloud_generator_node know that it is time to make a 3D 

screenshot : 

       ros::NodeHandle nh("/"); 

       nh.setParam("make3DScreenshot",true); 

 
 

4. The topic that publishes a point cloud into RViz is called sensor_point_cloud. To 
implement the 3D-scanner, the point cloud data produced by the Asus Xtion have to be 
published to the topic sensor_point_cloud. An easy way this could be done is by 
modifying the earlier mentioned file named point_cloud_generator_node.cpp (package: 
godel_surface_detection). The file is modified in such a way that the point cloud, 



generated by the 3D-camera, is constantly published in a while-loop to the topic: 
generated_cloud (which is remapped to sensor_point_cloud) instead of the perfect point 
cloud of the box. 

 
To get this done, the following changes have been made to the file 
point_cloud_generator_node.cpp (package: godel_surface_detection): 

- The already existing function run: has been changed to the following: 
 

void run() { 
   ros::NodeHandle nh; 

   ros::Publisher cloud_publisher = 

nh.advertise<sensor_msgs::PointCloud2>(POINT_CLOUD_TOPIC, 1); 

 

   if (init()) { 

 

     full_cloud_.clear(); 

     full_cloud_.header.frame_id = frame_id_; 

 

     // ORIGINAL GODEL CODE : genenerate_cloud(); 

  

     ros::NodeHandle nh("/"); 

     nh.setParam("make3DScreenshot",false); // Define the parameter for 

the first time 

 

     bool make3DScreenshot=false; 

  

     sensor_msgs::PointCloud2 msg; 

     pcl::toROSMsg(full_cloud_, msg); 

 

     ros::Duration loop_duration(0.4f); 

     while (ros::ok()) { 

  

       nh.getParam("make3DScreenshot",make3DScreenshot); 

  

       if ( make3DScreenshot ) { 

  

         make_screenshot(); // Make a 3D screenshot A.K.A. read data 

3D-camera 

 



         pcl::toROSMsg(full_cloud_, msg); // Create new message with the 

new added pointcloud data 

  

         nh.setParam("make3DScreenshot",false); // Reset parameter 

       } 

 

       msg.header.stamp = ros::Time::now() - loop_duration; 

       cloud_publisher.publish(msg); 

       loop_duration.sleep(); 

 

     } 

   } 

 } 

 
In this piece of code, the value of ROS parameter make3DScreenshot is read 
and transferred to the boolean make3DScreenshot. If this variable is set to true, 
the node generate_point_cloud_node knows that it has to make a 3D screenshot 
at that moment and calls the function make_screenshot. Immediately after that is 
done, ROS parameter make3DScreenshot is set to false again.  

 
- A new void function called make_screenshot has to be created. In this function, 

the topic /camera/depth/points generated by the Asus Xtion is read just one time 
as if it is making a screenshot. The message containing the point cloud data are 
converted into a PointCloud2 class. After that, the PointCloud2 is converted to 
PointCloud class. However, the point cloud created by Asus Xtion will be 
positioned as if the camera is positioned at the origin of the world_frame and 
oriented straight ahead. This is not correct since the camera is positioned at the 
end effector and looking downwards from the scan pose-position. Therefore, the 
pointcloud has to be transformed correctly before publishing. This is done by 
applying a transformation matrix called transformationMatrix. This transformation 
matrix is formed by multiplying four matrices called transformation1 (180 degrees 
rotation about local z-axis), transformation2 (180 degrees rotation about local 
y-axis), transformation3 (translation of the scan pose in the world_frame with 
0.55 meters in y-direction and 0.8 meters in the z-direction) and transformation4 
(rotation of -90 degrees about z-axis with respect to the world_frame). If the 
transformation is done, the pointcloud is added to the variable full_cloud. The full 
code of the function make_screenshot is as follows: 

 
 void make_screenshot() 

 { 



   full_cloud_.clear(); // Prevent that multiple 3D screenshots/clouds 

merge with eachother 

 

   sensor_msgs::PointCloud2ConstPtr msg = 

ros::topic::waitForMessage<sensor_msgs::PointCloud2>( 

       "/camera/depth/points", ros::Duration(20.0f)); 

   pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_ptr(new 

pcl::PointCloud<pcl::PointXYZRGB>()); 

 

  

   // Box-cutting project : Convert message to PointCloud2 

   pcl::PCLPointCloud2 pcl_pc2; 

   pcl_conversions::toPCL(*msg,pcl_pc2); 

 

   // Box-cutting project : Convert cloud_ptr (class PointCloud2) to 

PointCloud 

   pcl::PointCloud<pcl::PointXYZ>::Ptr temp_cloud(new 

pcl::PointCloud<pcl::PointXYZ>); 

   pcl::fromPCLPointCloud2(pcl_pc2,*temp_cloud); 

 

   // Transform PointCloud to the frame of the 3D-camera : 

   tf::Transform transformationMatrix = tf::Transform::getIdentity(); 

 

   // Make rotation over z-axis in the local frame 

   tf::Transform transformation1 = tf::Transform::getIdentity(); 

   transformation1.setRotation(tf::Quaternion(tf::Vector3(0, 0, 1), 

-3.14159265359)); 

 

   // Make rotation over y-axis in the local frame 

   tf::Transform transformation2 = tf::Transform::getIdentity(); 

   transformation2.setRotation(tf::Quaternion(tf::Vector3(0, 1, 0), 

3.14159265359)); 

 

   // Make an translation within the world_frame 

   tf::Transform transformation3 = tf::Transform::getIdentity(); 

   transformation3.setOrigin(tf::Vector3(0.0, 0.55, 0.8)); 

 

   // Make rotation over z-axis in the world_frame 

   tf::Transform transformation4 = tf::Transform::getIdentity(); 



   transformation4.setRotation(tf::Quaternion(tf::Vector3(0, 0, 1), 

-3.14159265359/2.0)); 

 

   transformationMatrix = transformation4 * transformation3 * 

transformation2 * transformation1; 

 

   // Make the transforming actually happen 

   Eigen::Affine3d eigen3d; 

   tf::transformTFToEigen(transformationMatrix, eigen3d); 

   pcl::transformPointCloud(*temp_cloud, *temp_cloud, 

Eigen::Affine3f(eigen3d)); 

 

   full_cloud_ += *temp_cloud; 

 

   full_cloud_.header.frame_id = frame_id_; 

 } 

 
 

Further implementation of the pointcloud is explained in the next section. 
 
 
Sub objective 3: Reset parameters for surface detection 
The first problem with running Gödel with the 3D-camera is that the surface detection does not 
work satisfactory anymore. This probably has something to do with the fact that Gödel has to 
work with imperfect point clouds generated by the 3D-camera instead of the perfect point clouds 
generated in point_cloud_generator_node.cpp. To fix this problem, the parameters for the 
surface detection have to be altered so that the surfaces are recognized again. 
 
An important part of the surface detection happens in the file surface_segmentation.cpp 
(package: godel_surface_detection). Specifically in the function computeSegments. Here, 
segments of points are determined. These segments of points are in file surface_detection.cpp 
(package: godel_surface_detection) in function find_surfaces regarded as surfaces.  
 
In the file surface_segmentation.cpp in function computeSegments, it could be seen that there 
are several parameters for the surface detection. A couple of these parameters are: 

- Minimum cluster size 
- Maximum cluster size 
- Number of neighbours 
- Curvature threshold 

 



The first problem is that surfaces in general, and also the surfaces of the box, are not always 
detected. To make Gödel detect all surfaces, the number of neighbours and the curvature 
threshold are decreased. After this change, more surfaces and therefore also the surfaces of 
the real box are detected by Gödel.  
 
Increasing the minimum cluster size filters out small and unwanted surfaces. Increasing the 
maximum cluster size enables Gödel to also detect the topside. It appeared that the topside of 
the box was not always detected as a surface. This has to do with the fact that the closer a 
surface is positioned to the 3D-camera, the more points this surface contains in the generated 
point cloud. With the default values for the parameter Maximum cluster size, the surface of the 
topside of the box to be scanned often contained too many points to be recognized as a 
surface. Increasing the value of maximum cluster size solves this problem.  
 
For the box cutting project, the default values for these parameters are changed to: 

- Minimum cluster size: 20000 
- Maximum cluster size: 1000000 
- Number of neighbours: 10 
- Curvature threshold: 0.01 

 
All values of these parameters are arbitrarily determined until the surface detection worked 
satisfactory. With the new values for these parameters, the surface detection works correctly in 
the box cutting application. The result is that only the topside of the box is detected and all other 
surfaces are neglected. 
 
Sub objective 4: Solve path planning deviation due to imperfect point cloud 
The second problem which arose with working with imperfect point clouds is that the laser scan 
path has a small rotation regarding to the surface. It appeared that the point cloud of the surface 
is a bit rotated within its own frame (see figure 1). To fix this problem, the rotation of the point 
cloud within its own frame is calculated in the function calculateAngleCorrection. After this angle 
has been calculated, the point cloud is rotated back within its own frame with the same angle so 
that there is no rotation anymore. All these operations happen (and the necessary functions are 
called) in the function generatePath in the file scan_planner.cpp (package: 
path_planning_plugins). 
 
The function calculateAngleCorrection works as follows. First, the point within the point cloud 
with the biggest distance towards the midpoint of this point cloud (averageX,averageY) and with 
coordinates x<0 and y>0 is determined. The distance is calculated by using the Pythagorean 
theorem and this is done in the function calculateDistance. The coordinates of this point are 
stored in mostLeftUpX and mostLeftUpY. According to the same principle, this happens to 
determine the point with coordinates x<0 and y<0 and the biggest distance towards the midpoint 
(averageX,averageY). The coordinates of this point are stored in mostLeftDownX and 
mostLeftDownY. Then, the angle of the triangle consisting of the points 
(mostLeftDownX;mostLeftDownY), (mostLeftUpX;mostLeftUpY) and 



(mostLeftDownX;mostLeftUpY) is calculated. This angle is an approximation of the angle with 
which the point cloud is rotated within its own frame. After this angle has been calculated, all 
points within the point cloud are rotated back with a value of this angle. This solution gives 
satisfactory results for the box cutting project (see figure 2). 
 
The function calculateAngleCorrection consists of the following code: 
 
float openveronoi::ScanPlanner::calculateAngleCorrection 

(std::unique_ptr<mesh_importer::MeshImporter>& mesh_importer_ptr, const 

pcl::PolygonMesh& input_mesh) { 

 

 // Zet PointCloud2 om naar PointCloud 

 pcl::PointCloud<pcl::PointXYZ>::Ptr points(new pcl::PointCloud<pcl::PointXYZ>); 

 pcl::fromPCLPointCloud2(input_mesh.cloud, *points); 

 pcl::transformPointCloud(*points, *points, 

mesh_importer_ptr->plane_frame_.inverse()); 

 

 double mostLeftDownX = 0.0; 

 double mostLeftDownY = 0.0; 

 double mostLeftUpX = 0.0; 

 double mostLeftUpY = 0.0; 

 double mostRightDownX = 0.0; 

 double mostRightDownY = 0.0; 

 double mostRightUpX = 0.0; 

 double mostRightUpY = 0.0; 

 

 double averageX = 0.0; 

 double averageY = 0.0; 

 

 for (int i = 0; i < points->points.size(); ++i) { 

   averageX += points->points[i].x; 

   averageY += points->points[i].y; 

 } 

 

 averageX /= (double)points->points.size(); 

 averageY /= (double)points->points.size(); 

 

 

 for (int i = 0; i < points->points.size(); ++i) { 



   double x = points->points[i].x - averageX; 

   double y = points->points[i].y - averageY; 

 

   double distance = calculateDistance(x,0,y,0); 

 

   if ( x < 0 && y < 0 && distance > 

calculateDistance(mostLeftDownX,0,mostLeftDownY,0) ) { 

     mostLeftDownX = x; 

     mostLeftDownY = y; 

   } 

   if ( x > 0 && y < 0 && distance > 

calculateDistance(mostRightDownX,0,mostRightDownY,0) ) { 

     mostRightDownX = x; 

     mostRightDownY = y; 

   } 

   if ( x < 0 && y > 0 && distance > calculateDistance(mostLeftUpX,0,mostLeftUpY,0) ) 

{ 

     mostLeftUpX = x; 

     mostLeftUpY = y; 

   } 

   if ( x > 0 && y > 0 && distance > calculateDistance(mostRightUpX,0,mostRightUpY,0) 

) { 

     mostRightUpX = x; 

     mostRightUpY = y; 

   } 

 } 

 

 float angle = atan2(mostLeftDownY - mostLeftUpY, mostLeftDownX - mostLeftUpX) * 180.0 

/ 3.14159265359 + 90.0; 

 

 return 3.14159265359/180.0*angle; 

} 

 
 
Giving the points of the laser scan path the extra angle with a value of angleCorrect has been 
done by lines 267 until 286 in the same file: 
   for ( int i = 0; i < points.size(); i++ ) { 

 

     double radius  = sqrt(pow(points[i].x, 2) + pow(points[i].y, 2)); 



     float  angle   = atan2(points[i].y, points[i].x)+angleCorrection; 

 

     points[i].x = radius * cos(angle); 

     points[i].y = radius * sin(angle); 

 

   } 

 

   for ( int i = 0; i < points2.size(); i++ ) { 

 

     double radius = sqrt(pow(points2[i].x, 2) + pow(points2[i].y, 2)); 

     float  angle  = atan2(points2[i].y, points2[i].x)+angleCorrection; 

 

     points2[i].x = radius * cos(angle); 

     points2[i].y = radius * sin(angle); 

 

   } 

 
 

    
Figure 1 Path is wrongly rotated   Figure 2 The wrong path rotation has been corrected. 
 
After solving this last problem the ABB IRB1200 robot should work as a box cutting robot. 
 
The box cutting robot should be working correctly by running the following commands : 

- Run simulation:  
 
roslaunch godel_irb1200_support irb1200_box_cutting.launch 

 



- Run while connected to real robotic arm:  
 
roslaunch godel_irb1200_support irb1200_box_cutting.launch sim_robot:=false 
robot_ip:=[robot ip] 

  



Appendix 2: 
Implementing the GP25 robotic arm: 
In this tutorial, it is assumed that the box cutting robot application is installed in the folder 
~/catkin_ws. 
 
Step 1: download the entire package https://github.com/fizyr/yaskawa_gp25_support. Place this 
package in a place in the workspace that makes sense, e.g. ~/catkin_ws/src/abb 
 
Step 2: Change all names of the joints and links in the .xacro file of the GP25 (this file is called 
gp25_macro.xacro) to the names used in the irb2400 robotic arm. In the downloaded GP25 
robotic arm all links and joint have names as link_s and link_t etc. The irb2400 has names as 
link_0 and link_1. Therefore, changed these names of the links in the GP25 to the names of the 
links in the irb2400. So in the end you need to end up with link names such as link_1 link_2 
instead of link_s and link_t. 
 
Step 3: Go to the map config, open the file joint_names_gp25.yaml and change the content 
with: 

controller_joint_names: ['joint_1', 'joint_2', 'joint_3', 'joint_4', 'joint_5', 'joint_6'] 
 
Step 4: make a copy of the map godel_irb2400_support (location : 
~/catkin_ws/src/godel/godel_robots/abb/godel_irb2400/godel_irb2400_support) and name this 
godel_yaskawa_gp25_support. In the map godel_yaskawa_gp25_support/urdf change the 
name of the file irb2400_workspace.xacro to gp25_workspace.xacro. 
 
Step 5: change in CMakeList.txt and package.xml the name godel_irb2400_support to 
godel_yaskawa_gp25_support. 
 
Step 6: Go the the map urdf and open the file gp25_workspace.xacro and change line 3 to: 

<xacro:include filename="$(find yaskawa_gp25_support)/urdf/gp25_macro.xacro"/> 
 
Step 7: go the the map launch, copy the file irb2400_blending.launch and call it 
gp25_blending.launch. You can delete the file  irb2400_blending.launch. 
 
Step 8: open the file gp25_blending.launch, scroll down and change the line: 

<include file="$(find 
godel_irb2400_moveit_config)/launch/moveit_planning_execution.launch"> 

 
By 
 

<include file="$(find 
godel_yaskawa_gp25_moveit_config)/launch/moveit_planning_execution.launch"> 

 

https://github.com/fizyr/yaskawa_gp25_support


Step 9: If you build the entire workspace, the robotic arm should be in it and it can also move. 
There is however still a couple of things that should be changed to get the movements behave 
like you want them to. The way the robotic arm is implemented right now will still cause the arm 
to make odd movements with blending and scanning. To repair this, the next changed have to 
be made. Open the file gp25_macro.xacro and remove in this file at joints 3, 4, 5 and 6 like 
down here the minus sign: 
 

<axis xyz="0 -1 0"/>      or      <axis xyz="0 0 -1"/> 
 
Should be changed to: 
 

<axis xyz="0 1 0"/>      or      <axis xyz="0 0 1"/> 
 
This makes sure that all the axis are mirrored. With the irb2400 this doesn't happen. By 
removing the minus sign it will now behave the same way as with the irb2400. If you run Gödel 
right now, the movements of the arm will probably behave better than before, but still as 
expected. 
 
To be sure you can also change in between the <limit> tags the parameter "effort" from 100 to 
0. In the IRB2400 it has the same values. 
 
Still the movements aren't 100% accurate. This is because the GP25's origin and the IRB2400's 
origin probably have an offset respectively with each other.  You can fix this to change at joint_1 
in the file gp25_macro.xacro the line 
 

<origin xyz="0 0 0" /> 
 
To 
 

<origin xyz="-0.05 0 0.11" /> 
 
This makes sure the offset is removed and the arm works fine right now with the exception that 
the base of the arm and the arm itself are now not coupled anymore. This is probably not the 
proper method to fix this problem but it is a workaround. 
 
Step 10: build the workspace with the new package in it again by using the following 
commands: 
 

cd ~/catkin_ws 
catkin build 
source devel/setup.bash [Change this or it will not detec tthe package] 

 



The MoveIt!-configuration still isn't correct because it still uses the MoveIt!-configuration from 
the workspace with the irb2400. The right MoveIt!-configuration will be made in the following 
steps. 
 
 
Create MoveIt!-configuration: 
Making the URDF-file: 
 
To make the MoveIt!-configuration for the new workspace with the GP25 you need a .urdf-file 
from the entire workspace. So far there's just .xacro-files. These have to be converted into 
.urdf-files. 
 
To fix this, follow the next steps: 
 

1. Put this in your terminal: cd 
~/catkin_ws/src/godel/godel_robots/abb/godel_irb2400/godel_yaskawa_gp25_support/ur
df/ 

2. Put this in your terminal: rosrun xacro xacro --inorder -o gp25_workspace.urdf 
gp25_workspace.xacro 

3. The .urdf-file can be loaded in the MoveIt! Setup Assistant 
4. To be sure if the .urdf-file is still valid you can use the following command: 

Put this in your terminal: check_urdf gp25_workspace.urdf 
 

MoveIt! Setup Assistant : 
1. In the directory ~/catkin_ws/src/godel/godel_robots/abb/godel_irb2400/ Make a new 

directory with the name godel_yaskawa_gp25_moveit_config. Leave this direcetory 
empty, because the setup assistant is going to fill it with config files. 

 
2. Start the setup by putting the following line in the terminal: roslaunch 

moveit_setup_assistant setup_assistant.launch 
 

3. Load the earlier made gp25_workspace.urdf from the directory 
~/catkin_ws/src/godel/godel_robots/abb/godel_irb2400/godel_yaskawa_gp25_support/ur
df/ in the MoveIt! Setup Assistant and make sure everything is set the same way as for 
the godel_irb2400_moveit_config. These settings can be found in the config files of the 
godel_irb2400_moveit_config. You can copy them from these files, but to make things 
easier it is summed up down here. Make sure you copy the values to the same ones as 
listed down here: 

 
- Tab Self Collisions : 

- Click just on “Generate Collision Matrix” 
- Tab Virtual joints : 



- Virtual Joint Name : FixedBase 
- Child Link : world_frame 
- Parent Frame : map 

- Tab Planning Groups : 
- Group #1 : 

- Group name : manipulator 
- Base link : base_link 
- Tip link : tool0 
- Kinematic solver : kdl_kinematics_plugin/KDLKinematicsPlugin 

- Group #2 : 
- Group name : manipulator_asus 
- Base link : base_link 
- Tip link : kinect2_move_frame 
- Kinematic solver : kdl_kinematics_plugin/KDLKinematicsPlugin 

- Group #3 : 
- Group name : manipulator_ensenso 
- Base link : base_link 
- Tip link : ensenso_sensor_optical_frame 
- Kinematic solver : kdl_kinematics_plugin/KDLKinematicsPlugin 

- Group #4 : 
- Group name : manipulator_keyence 
- Base link : base_link 
- Tip link : keyence_tcp_frame 
- Kinematic solver : kdl_kinematics_plugin/KDLKinematicsPlugin 

- Group #5 : 
- Group name : manipulator_tcp 
- Base link : base_link 
- Tip link : tcp_frame 
- Kinematic solver : kdl_kinematics_plugin/KDLKinematicsPlugin 

- Tab Robot Poses : 
- Do nothing and skip. 

- Tab End Effectors : 
- Do nothing and skip. 

- Tab Passive Joints : 
- Do nothing and skip. 

- Tab ROS Control : 
- Do nothing and skip. 

- Tab Simulation : 
- Do nothing and skip. 

- Tab 3D Perception : 
- Chose : Point Cloud. After that do nothing and skip. 

- Tab Author Information : 



- Fill in legit or random information, otherwise the MoveIt! Setup cannot be 
finished. 

 
4. If everything is set properly, select in the last tab in the directory  

godel_yaswaka_gp25_moveit_config and make sure it places all files in this directory. 
 

5. If you have followed these steps, there are still a few files missing that were used with 
the godel_irb2400. Put the file moveit_planning_execution.launch in the directory 
godel_yaskawa_gp25_moveit_config/launch. This .launch file can be found in the 
directory godel_irb2400_moveit_config/launch. Change in this file all the references to 
the irb2400 to those of the gp25. 
 

6. Change in the file moveit_planning_execution.launch the follow line (if that isn't already 
done in step 5): 
 

<rosparam command="load" file="$(find 
abb_irb2400_support)/config/joint_names_irb2400.yaml"/> 
 
by :  
 
<rosparam command="load" file="$(find 
yaskawa_gp25_support)/config/joint_names_gp25.yaml"/> 
 

7. Make the following adjustments. Change in the directory 
godel_yaswaka_gp25_moveit_config/launch the files move_group.launch and 
irb2400_workspace_moveit_controller_manager.launch.xlm by the files with the same 
name from the directory godel_irb2400_moveit_config/launch. Change if needed all 
references from the godel_irb2400_… directory to the godel_yaskawa_… directory. 
Keep all the names in the workspace equal to those in the  irb2400_workspace. Copy 
the file controllers.yaml from godel_irb2400_moveit_config/config to 
godel_yaswaka_gp25_moveit_config/config. 
 

8. Build the workspace with the new package in it again with the following commands: 
 

- In the terminal: cd ~/catkin_ws 
- In the terminal: catkin build 
- In the terminal: source devel/setup.bash [otherwise it will not find the new 

package] 
9. If these steps are followed it should work if you put the following command in the 

terminal: 
roslaunch godel_yaskawa_gp25_support gp25_blending.launch 
 

 


