
Delft University of Technology
Department of Cognitive Robotics

Bachelor Thesis

AVA, a prototype for speech-based assistance in automated
driving

Gitte Hornung (4443535)
Daan Koetzier (4460979)
Tessa Talsma (4365631)

Bob van der Windt (4445503)
Supervisors: Dr. Ir. J. de Winter and Ir. J. Stapel

December 19, 2019

Abstract
In this paper, a speech-based assistant for partially automated driving is presented. AVA, the
acronym for Automated Vehicle Assistant, has the goal of increasing the situational awareness
of the driver to provide a better possibility of manual interference when driving in partially
automated vehicles. The system does this by talking about objects in the vicinity of the car.
This design-based research is based on iterations followed by test runs and offline reiterations.
First, the problem of prioritizing objects to mention is tackled and later logic and the wishes
of people are simulated. System relevance and understandability are then evaluated with
human evaluation. Participants in possession of a driving licence are presented pictures about
specific situations and prioritize objects, with the aim of getting the algorithm to generate the
same prioritization. In the end, the prototype is able to mention relevant objects by filtering
out stationary objects, give priority to objects that rapidly appear into vision, depend the
detection-speech box on its own speed and provide special attention to vulnerable road users.
Furthermore, the possibility of the implementation of eye-tracking is evaluated through the
relevance of the commands of the system. At last, the final prototype of AVA is demonstrated
by means of an accompanying video.

1 Introduction

Automated vehicles promise to drastically reduce
road accidents, improve traffic flow, and reduce
fuel consumption and emissions in the future
[17]. However, for economical, technical, legal and
psychological reasons, vehicle automation is not
directly available to the market. It is incrementally
introduced through advanced driver-assistance
systems (ADASs) such as adaptive cruise control,
intelligent speed adaptation, lane-keeping assist
systems and lane-change decision aid systems.
These systems rely on a limited number of hardware
components that allow partially automated driving
on the public road [16].

Currently, partially automated vehicles still require
a constantly attentive driver and staying vigilant
has proven to be a challenge [3]. Keeping a driver
situationally aware in automated vehicles with the
aim of giving the possibility of successful manual
intervention, could be achieved by a system acting
as a co-driver. It can be assumed that appropriate
feedback reduces the time needed for a successful
takeover as it could allow the driver to anticipate the
need to intervene [3]. A speech-based system that
can talk to the driver about the objects it sees in its
environment will thereby also create understanding
in the perception of the vehicle and thus trust in the
automation [17].

1.1 Speech-based assistance

A comparable system has already been developed in
2019, namely the on-demand intersection-assistant
CORA. Researchers from Toyota have created an
interactive system, which allows the driver to
literally call on CORA and request her assistance,
whenever the driver has difficulty overseeing the
traffic situation at an intersection. The system
will then give information on the traffic on the
intersection and possible gaps for entering the
intersection. Hereby, CORA already gives the
driver the ability to partially transfer the task of
monitoring the traffic and solves the shortcomings of
earlier sensor technology in establishing an adequate
environment perception [9]. Shortcomings of the
technology are that the system is only focused on
intersections and dangerous situations can still occur
when a driver has not yet called on CORA for help.

1.2 Full assistance co-driver

The goal of the present study is the design of a
talkative, human like, co-driver that aims to increase
the situational awareness of the driver by giving
constant information about the surrounding traffic
and road users. The psychological experience of
people with this system, is left out of this research.
Only human logic on the visual experience of people,
is in scope. This prototype is from now on called
AVA, an acronym for Automated Vehicle Assistant.
This design is based on iterative tests and is later
validated using the wide array of data recorded
during test runs with a modified Toyota Prius, made
available by the Delft University of Technology.

This paper will start by listing the requirements for
a successful co-driver in section 2, where the method
will also be explained, consisting of iterations, test
runs and offline reiteration. After that, the design
choices will be presented in section 3. The results,
accompanied by detailed explanations on each
iteration, will be described in section 4. Section
5 validates the final system one more time and
a demonstration will be presented, in section 6
the discussion and future recommendations can be
found and lastly the conclusion in section 7.

2 Method

2.1 Materials

In the following subsections, the materials originally
provided for this research are presented.

2.1.1 Toyota Prius

A Toyota Prius, modified in 2015, equipped
with automatic transmission and implemented with
eye-tracking cameras and stereo vision cameras, has
been used for the development and testing of AVA.
Using a differential GPS, the car can determine its
position and movement with respect to the world.

2.1.2 Object detection

The stereo vision cameras that have been
implemented in the car, use visual odometry
and have an upper limit of 10 Hz. The system
is able to recognize and distinguish different road
users and compute their coordinates. The cameras
of this vehicle cover a total angle of 60° in which

1

objects can be detected. A known disadvantage of
this system, is that it uses cameras to distinguish
the object, so image deficiencies can lead to faults in
object detection. Additionally, concerning cyclists,
the system detects the bicycle and the person
riding it individually. As a result, a cyclist can be
erroneously mentioned as a person.

2.1.3 Smart Eye

In order to detect the direction of the drivers gaze
relative to the direction of the car, the vehicle is
equipped with a Smart Eye eye-tracker. Funke [6]
compares five different eye tracking systems, where
the Smart Eye has the highest percentage of usable
data. A deficiency is that if the face can not be
properly distinguished, the gaze data will falter.

2.1.4 Code state of the art

Due to previous research at the department of
Intelligent Vehicles, at the Delft University of
Technology, a previously written ROS (Robot
Operating System) node was made available for this
study. This provided code [15] was already able
to (1) detect the type of object, (2) determine
the location of an object in the world-frame and
car-based frame, but not yet the velocities of these
objects and (3) determine the angle of the drivers
gaze via gaze data. The provided code is marked in
appendix E (line 434 - 810).

2.2 Requirements

Based on the existing capabilities of already existing
speech-based assistance systems in cars, such as
navigation applications and CORA [9], the largest
challenge of a constantly assisting co-driver is to
solve the aforementioned problem of staying vigilant
and trying to keep a driver situationally aware.
Therefore, the additional requirements established
for this prototype are:

(i) The co-driver must only provide information
on relevant and active road users.

(ii) The co-driver must provide information about
its surroundings in a timely manner.

(iii) The co-driver must provide messages that are
in line with the thinking process of the driver.

(iv) The voice of the co-driver must be intelligible.
(v) The co-driver must provide information

comprehensible for the driver.

2.2.1 Desirables

It is also desirable to come to a fully professional and
complete prototype. Therefore the desirables in this
study are established as follows:

(vi) The driver is able to directly distinguish the
mentioned object by the co-driver, from other
objects in its surroundings.

(vii) The system acts and talks like a human
co-driver would and has a pleasant voice.

2.3 Measurement protocol

AVA will be optimised via the measurement
protocol described in the following subsections and
as visualised in figure 1.

Figure 1: Overview of the iterations and versions

2.3.1 Iterations

Firstly, the existing capabilities of the provided ROS
node, as mentioned in 2.1.4, will be improved and
built upon to create a conceptual design. In this
design, the co-driver should be able to detect objects,
along with their location and urgency, and notify the
driver about the approximate location of the most
urgent object in traffic.
Following that, the first iteration will improve the
functionality of the system by filtering out irrelevant
objects and mentioning objects in time. The data
flow as described later in this paper will be left
untouched in this version.
The second and last iteration of this design, will
improve upon the wishes of people and human logic
will be added to the choices that AVA makes.
The iterations lead to a final design. Within this
design the possibility of using eye-tracking will be
explored.

2.3.2 Test runs

As can be seen in figure 1, each version of AVA
is succeeded by a test run in the Toyota Prius.
Appendix A contains the routes for the test runs
in between iterations. All routes contain at least an

2

intersection, a roundabout, a section with high speed
and one with low speed, necessary to test outcomes
of AVA.

2.3.3 Reiteration

The test runs are recorded and can be evaluated
at any time by reviewing the data in a ROS bag.
A ROS bag is a package from a real test drive,
consisting of eye-tracking data, object detection
data, sensor data and camera footage. As the system
makes no distinction between the bag and a real
test drive, the system can be verified and optimised,
without a new physical test run. From the bag
a simplified representation can be established, as
shown in figure 2, containing the location and type
of the detections and a gaze vector, simulating the
direction in which the driver is looking.

Figure 2: A screen capture of a test run in ROS

2.4 Validation

Requirement (i), (ii), (iii) and (vi) will be evaluated
for each test run in the manner explained in the
following section. Requirement (iv), (v) and (vii) will
be validated through the literature study presented
in section 3.

2.4.1 (i) The co-driver must only provide
information on relevant and active
traffic users

Objects are observed to be irrelevant because of two
reasons: (1) the object is a false positive or (2) the
object is not an active traffic participant. A false
positive is defined as when AVA gives a message
about an object that has been detected, but that
object does not truly exist. Secondly, examples
of inactive traffic participants are parked cars and

bicycles. It is aimed that the system has a percentage
of 85% relevant messages.
This requirement will be tested after each test run by
counting both the false positives and the mentioned
inactive traffic users in the recorded data. The
first is done using the recording of the test drive to
accurately determine if it is truly a false positive.
The latter is done by extracting the detected parked
cars from the test drive data and comparing it to the
list of mentions by AVA.

2.4.2 (ii) The co-driver must provide
information about its surroundings in
a timely manner

An object is considered to be mentioned in a timely
manner if a collision can be avoided. According
to McGehee [13] in 1 second a driver is aware of
a new situation and within 1.5 seconds a driver
is able to make a decision to avoid an accident.
AVA is designed as an informational system and not
necessarily as a warning system, so the driver would
seldomly be necessitated to take action. Therefore 1
second is used as the minimal value for the time to
collision. The time to collision is defined as how long
it will take to collide with an object if no action is
undertaken and can be calculated with the distance
to an object and the current vehicle speed. If the
time to collision is greater than 1, an object is seen
as mentioned in a timely manner.
This elaborate validation will only be done for the
final design. For the iterations, an object will be
seen as untimely if it has passed at the time AVA
mentions it.

2.4.3 (iii) The co-driver must provide
messages that are in line with the
thinking process of the driver.

This requirement is validated by means of a
questionnaire with 6 pictures of traffic situations
encountered on the third test run. Participants
are asked to determine the order in which they
would like to have the traffic objects mentioned by
a co-driver. The objects are specified by the colour
of the surrounding box and a short description, e.g.
”the car in the left lane”. An example of a situation
can be found in figure 3. The questionnaire is taken
among 47 participants. Each one of the participants
is in possession of a driving licence and currently
studying at the Delft University of Technology. The
complete validation questionnaire can be found in

3

appendix C.1. During the validation, a fraction of
direct commands of AVA could not be determined
due to a data gap in the recorded eye tracking. More
about this will be described in section 6. The urgency
was manually determined according to the logic of
AVA.

Figure 3: Question 5 from the second questionnaire

2.4.4 (vi) The driver is able to directly
distinguish the mentioned object by
the co-driver, from other objects in its
surroundings

To measure the achievement of this desirable,
six additional questions are asked in the above
mentioned questionnaire. The participants are given
a situation, such as in figure 4, along with the
message given by AVA, in this case ”person left”.
Hereafter, they are asked to indicate which object
AVA is referring to. The objects are specified in
the same manner as the questions from section 2.4.3.
The remaining questions can be found in appendix
C.2.

Figure 4: Recognition question from validation
questionnaire

3 Design choices

In this section, the choices preceding the iterations
and test runs are explained through literature. Each
referring to a requirement in section 2.2.

3.1 Information transfer

Although visual notification is extensively used
as a form of communication in the automotive
industry, auditory information has proven to be
a better alternative to visual communication in
the automotive context [9]. As the system only
communicates via speech, the driver can fully focus
their visual attention on the actual driving task
[9]. Additionally, for systems giving low-urgency
feedback to the driver, auditory signals are received
as most preferred [1]. Out of the various auditory
signals, spoken messages are more accepted than
abstract sounds [1]. From this, it is concluded to
let AVA give verbal messages to the driver.

3.2 (iv) The voice of the co-driver
must be intelligible

In the first version of AVA, eSpeak is implemented,
which is an open source software speech synthesizer.
eSpeak uses a formant synthesis method to provide
the basics of a large variety of languages with
limited fluency [4]. After iteration 1, the second
version of AVA is implemented with Google API [14].
Google API can articulate better and sounds more
realistic because of WaveNet, a deep neural network
for generating raw audio waveforms. The model
is probabilistic, autoregressive and can be trained
on data, therefore providing a more human-like
pronunciation. We can conclude that the Google API
speech engine is more intelligible than other open
sourced engines.
For further intelligibility, the speech engine is kept
from interrupting itself. This is done by stopping the
speech engine from starting a new command, until
the previous command has been said.

3.3 (v) The co-driver must provide
information comprehensible for
the driver

Listening comprehension can be divided into the
speech rate, the number of items per message and
the interference period.
Firstly, it is proven that listening comprehension will

4

not be affected drastically by a word rate from 125
to 250 words per minute, but it declines rapidly
above 250. This is because time is required for the
listener to perceive the words [8]. The applied Google
speech engine speaks with a rate of 180 to 220 words
per minute. According to the aforementioned range,
AVAs speech rate is comprehensible.
Secondly, an experiment explained by Fleming [5]
states that error rates, defined as drivers not recalling
the full auditory message while driving, are linearly
related to the number of units in the message.
Perceptual memory, involved with the immediate
readout of information, for example when people
glance at something, has a typical capacity of 5-17
items. The research concludes that a brief message
is preferred by drivers. Typically the messages of
AVA contain 2 to 3 basic items, as seen in figure 5.
This is considered a comprehensible number of items
and additionally keeps the messages from getting too
long in a way that objects could be missed, because
AVA is already speaking.
Lastly, the interference period is defined as the silent
period between two messages. For AVA it is fixed at
2.5 seconds, because, as mentioned before, objects
could be missed and a longer interference period
would not be able to adapt to rapidly changing traffic
situations.

Set of announcements from AVA

cyclist right
person in front

car left
bus right

Figure 5: Set of possible announcements of the
system

3.4 (vii) The system acts and talks
like a human co-driver would and
has a pleasant voice

To make AVA have a pleasant voice, a female
voice is used. Although for various reasons, female
voices are found to be less annoying than male
voices concerning take-over requests in automated
driving [1]. Secondly, making AVA sound human
like is achieved by using the Google speech engine.
Because the Google API engine uses WaveNet voices
generated by human voices, it strongly mimics the
human voice [14]. To make AVA come across as even
more human like, the system introduces itself when
the car is started.

4 Results

4.1 Conceptual design

This section systematically presents the data flow
of the first version of AVA. Essentially, AVA must
be programmed to process the object detection
and eye-tracker data along with the location, type,
velocity and gaze angle of each object, called track
data. Finally, it must generate a message from this
data. This data flow is visualised as a block diagram
in figure 6. This structure is maintained throughout
all iterations. For the extensive code, see appendix
E. In the subsections is also referred to lines of code
where the functions can be found.

Figure 6: Block diagram of data flow

4.1.1 Urgency function

Once an object has been detected, it is stored
together with its track data. The object is then
given an urgency value by the urgency function
(appendix E line 71-164), shown in equation 1.
An urgency is necessary to label objects with,
to sort objects on their relevance, as mentioned
in requirement (i). The function consists of: a
type-urgency reflecting the vulnerability of the
object in traffic; a velocity-urgency proportionate
to the absolute velocity of the object and a
distance-urgency inversely proportionate with
the relative distance of the object to the car
multiplied by factors a, b and c respectively, figure
7. These factors are determined by looking at
traffic situations. It is a possibility to include the
gaze-angle in the urgency, section 5.3.2.

U = a · Typeurgency + b · V worldAbs
+c ·DistanceUrgency

(1)

5

Multiplication factors a b c

Value 3 4 60

Figure 7: Urgency function values

4.1.2 Urgency rankers

The object and its urgency are then stored in
the designated urgency ranker (UR). UR1 features
objects not yet mentioned by AVA. When an object
is mentioned it is sent to UR2 and the urgency at
that time is stored in the urgency threshold (UT).
Objects that disappear from the view of the camera
and thus are irrelevant, are deleted at this point.

4.1.3 Priority decider

Subsequently, the priority decider compares the
urgencies from UR1, UR2 and UT (appendix E
line 273-300). Hereby, it prioritises the object with
the highest urgency. An object in UR2 will only
be mentioned if it exceeds its previous maximum
urgency in UT and this urgency is higher than the
one from UR1. This means that new objects will be
mentioned first and already mentioned objects will
only be mentioned again if they become more urgent,
e.g. by a sudden change of speed.

4.1.4 Command maker

The object with the highest priority is sent to the
command maker along with its track data (appendix
E 354-365). From this track data its direction is
calculated, using the angles in figure 8 (appendix
E line 234-260). Its type and direction are turned
into text (appendix E line 367-392) and the message
is then ready to be pronounced by AVA (appendix
E line 394-424). The frequency of messages can
be regulated by the frequency of the triggering of
priority decider with a maximum of 10 Hz, the
frequency at which the object detection system
gathers data.

Angle to object Direction command

α < -20° Left
-20° < α < 20° In front

20° < α Right

Figure 8: Table of direction angles and their
commands

4.2 Validation of conceptual design

This iteration is tested in the first test run. The
driven route can be found in appendix A.
(i) Only 30 seconds of the route are seen as relevant,
because this was the only part with parked vehicles.
Out of 11 messages 5 concern parked cars, as can
be seen in figure 14. These vehicles are not active
traffic participants and thus irrelevant. Furthermore,
some objects mentioned are so distant that the driver
is not able to distinguish them. With no other
major deficiencies, it can be concluded that the block
diagram in figure 6 works as desired.
(ii) Road users that have already passed before they
can be seen by the driver, are still mentioned.
(iv) The voice is not experienced as comprehensible.
The words are not properly articulated and rushed.
(vii) Currently eSpeak is implemented. The voice of
the AVA is experienced as robotic and as having no
intonation.
Requirements (iii), (v) and (vi) are not addressed in
this concept, but later on in the results.

4.3 Iteration 1

This iteration focuses on improving the functionality
of the co-driver. The following subsections will
explain different solutions to the main problems: (1)
filtering out parked vehicles and streaks of oncoming
traffic, (2) filtering out too distant objects, (3)
providing information in a more timely manner to
prevent passed objects from being mentioned and (4)
the unintelligibility of the system as noticed in test
run 1. The solutions correspond to requirement (ii),
(i), (ii) and (iv) respectively.

4.3.1 (i) Stationary vehicles

In the conceptual design parked vehicles did receive
a lower urgency from the urgency function 1 because
of their low velocity, but due to there being no other
traffic around and erroneous detection of velocities,
they were still mentioned.
Stationary vehicles are often lined up and this can be
used in a solution, additional to the speed detection
system. Objects detected with a absolute velocity ≤
3m/s, will be inserted in a streaklist, a list consisting
of the coordinates of all parked cars. If the following
detected object has a maximum distance ∆x of 1
meter and ∆y of 3.5 meter to the previous object,
figure 9, this object will not be mentioned.
In a similar way, streaks of oncoming traffic can be

6

filtered. Objects detected with a negative relative
velocity and a maximum ∆x of 0.5 meter and ∆y
of 2.5 meter from the first oncoming vehicle, are not
mentioned (appendix E line 119 - 146).

Figure 9: A visualisation of the streaklist

4.3.2 (i) Very distant objects

Objects that are indistinguishable for the driver,
are filtered out by implementing a speech box. A
speech box is defined as an area wherein a message
about the object may be generated. The maximum
horizontal distance is set to 15 meters on both
sides of the car. The maximum vertical distance
in front of the car is velocity dependent and set at
8 · vehicleSpeed.

Figure 10: A visualisation of the detection distance

4.3.3 (ii) Passed objects

To present messages in a timely manner, an
imaginary line has been placed in front of the car.

The distance of this line is placed at 1 ·vehicleSpeed,
as is explained in section 2.4.2. Only if objects are
situated in front of this line, AVA may generate a
message. Combined with section 4.3.2, this gives a
speech box as shown in figure 10

4.3.4 (iv) Intelligible messages

Due to the voice being unintelligible during test run
1, the choice is made to implement Google API as a
speech engine. This differs from the initial choice of
using eSpeak, as explained in section 3.

4.4 Validation of iteration 1

Iteration 1 is tested in the second test run. The route
that is used can be found in appendix A. Only 10
minutes of representative footage is evaluated. There
were harsh lighting conditions during the test run,
complicating the object detection.
(i) As can be seen in figure 14, 19 out of 71 messages
concern stationary cars. It can also be seen that
there are 8 false positives in the 10 minute data
analysis. The message are experienced as more
relevant and with no changes in the traffic situation
AVA is silent. However, the user driving the test run
still experiences it as many messages.
(ii) Out of the 19 times AVA reports a person, that
person has already passed 3 of those times. Other
messages are in a timely manner and the distance
to the object at the moment of a command is large
enough to react in time.
(iii) AVA mentions vehicles on the other side of the
crash barrier. For a human eye these vehicles are
clearly irrelevant, however AVA does not see that.
(iv) AVAs voice is experienced as comprehensible,
because of clear articulation and intonation.
(v) The amount of irrelevant messages causes the
user to stop listening to AVA, which is naturally
undesirable.
(vii) The user reports that the new voice of AVA is
more pleasant to listen to.
Requirement (vi) is not addressed in this first
iteration.

4.5 Iteration 2

In this iteration, human logic and the wishes of
people will be implemented. The next subsections
will provide the following solutions: (1) The
mimicking of human logic, (2) mentioning objects
that abruptly appear in vision of the cameras, (3)

7

a speech box depending on the vehicle speed, (4)
a speech box specially for pedestrians and (5) an
adaption to the stationary vehicles streak. The
solutions will correspond to requirements (iii), (iii),
(iii), (ii) and (i), respectively.

4.5.1 (iii) Human logic

As stated in requirement (iii), AVA is required
to mimic human logic in its choices. To get a
well-founded idea of logical human choices, a
questionnaire will be introduced where participants
are asked to determine the order in which they would
like to have the traffic objects to be mentioned. The
questionnaire exists of 6 pictures of traffic situations
encountered in test run 2. The object indicated with
the highest priority by the participant is compared
to the object that AVA mentioned during the test
run. The percentage of participants that choose
the same object as most urgent as AVA is called
the hitscore. It will then be aimed to make these
the same object. See appendix B for the situations,
exact results and the full questionnaire.
Question 1-3
Questions 1 through 3 had a hit score of 91%, 74%,
83% respectively. Accordingly, it can be concluded
that for these situations AVA already resembles
human logic.
Question 4
This situation has a hit rate of 9%. Cyclists on
the oncoming intersection are indicated as most
important, but because these are located behind
other objects, they can not be detected by AVA.
This makes them count as a false negative of the
detection system.
Question 5
This situation has a hit rate of 4%. A car that
suddenly passes on the right is considered most
important. However, AVA does not mention this car.

In conclusion, in 3 out of 5 situations, AVA
already equals with human expectation. Out of the
2 remaining situations, one is a false negative. The
outcome of question 5 calls for a change regarding
the logic of AVA. A solutions for the implementation
of this logic is explained in the following subsection.

4.5.2 (iii) Rapidly appearing objects

The reason AVA did not mention the fast passing
car in the situations of question 5 in section 4.5.1
is as follows. The Prius had a large speed at the

time, so that means the red car was behind the line
(solution for requirement (ii)) as seen in figure 10
and a message was not generated. This is solved
by implementing a so-called First Detection label
(appendix E line 599-601). This label is given to an
object when it is first detected in the area between
the 1 · vehicleSpeed line and the car, giving it the
exception of being mentioned behind this line.

4.5.3 (iii) High speed detection

To solve the problem of messages about vehicles on
the opposite side of the road, a speed dependent
speechbox is introduced (appendix E line 187-191).
So far only a constant speechbox was implemented
as discussed in section 4.3.2. It is determined that,
when travelling at a speed of 65 km/h or more,
information is only relevant one lane to the left and
the right from the car, because these road users are
part of the drivers direct traffic. The standard lane
width in the Netherlands is 3,5 meters [2], so the
speechbox has a horizontal distance of 5,25 meters on
both sides of the car. The initial vertical distance is
maintained. The speechbox will then resemble figure
11.

Figure 11: A visualisation of the speed dependent
speechbox

4.5.4 (ii) Person speechbox

As mentioned in section 4.4, especially ”person”
detections are mentioned too late. This is caused by
the relatively low speed of pedestrians in comparison
to other road users such as cars, so a special
person speechbox is implemented (appendix E line
177-185). This speechbox has the same format as
the earlier mentioned general speechboxes, including
an absolute x-distance of 15 meters on both sides of

8

the car, but its detection now ranges in y-distance
from 2 · vehicleSpeed to 6 · vehicleSpeed.

4.5.5 (i) Improvement on stationary vehicles

Some parked cars are still mentioned. The
comparison between the stationary object and
the streaklist can not properly function, because
objects are randomly detected and not necessarily
consecutively. This is why the solution for stationary
vehicles as mentioned in section 4.3.1, is updated by
comparing a stationary object with a streak of 30
other objects, instead of one other object.

4.6 Validation of iteration 2

This iteration is tested in a third test run. The route
that is used can be found in appendix A. The same
10 minutes of representative footage are evaluated
as in 4.4.
(i) A total of 18 out of 54 mentioned objects, concern
parked cars, as can be seen in figure 14. This is a
decrease compared to iteration 1. There are 6 false
positives mentions. In situations where there is little
traffic, the few present objects are mentioned even
though they are irrelevant. Overall, AVA has the
tendency to give few messages and these messages
concern irrelevant objects.
(ii) Out of 10 messages concerning a person, 4 are
delivered when that person has already passed. This
is a degradation with respect to iteration 1.
(iii) AVA no longer talks about cars on the opposite
side of the road at high speeds. AVA does mention
suddenly appearing object, such as cars merging
onto the highway.
(vi) In the next subsection, the results of the
questionnaire will be provided.
Requirements (iv), (v) and (vii) are left unchanged
with respect to iteration 1 and thus are unlisted.
Furthermore, it can be concluded that the speed
dependent speechbox, section 4.5.3, and first
detection, section 4.5.2, are functioning successfully.

Questionnaire results
In this section the results from the questionnaire, as
discussed in 2.4.3, are reviewed. Elaborate results
can be found in appendix C.1.
Question 1-3 & 6
With a hitscore of 98%, 89%, 72% and 91%
respectively, AVA performs sufficiently in these
situations. Thereby, the logic of the speed
dependent speechbox and first detection function

are validated.
Question 4
This situation has a hitscore of 0 %. The car
is mentioned before the person about to cross,
although the person is rated higher than the car
by participants. The car receives a high urgency
due to its large speed. Likewise, the stationary
person receives a low urgency. This means that,
according to human logic, the speed has too large a
factor in the current urgency function, see equation
1. Moreover, the person is not valued enough in
urgency as an object, especially with respect to the
car.
Question 5
This situation has a hitscore of 2 %. The parked car
with the opening door, is marked as most important
to mention. However, AVA does not see a parked
car as relevant due to its programming, see section
4.3.1, and mentions the person on the sidewalk.
The importance of the car is created by the opening
of the door, something the object detection is not
able to detect. Thus, in this case the deviation is
caused by a form of human logic that can not yet be
implemented in AVA.

The results from question 1 to 6 are visualised
in figure 12. The figure visualises the similarity in
order of urgency between AVA and the participants
in every situation. Each colour represents an
object that AVA mentioned and the magnitude is
dependent on the percentage of participants that
agrees with the objects place in the ranking. The
total of mentions is visualised in the graph.

Figure 12: Percentage resemblance scored per
question

9

5 Final design

5.1 Final iteration

After test run 3, a few changes need to be made to
present AVA as required and desired. This section
will provide the last set of implemented solutions.

To prevent the system from mentioning irrelevant
objects when nothing else is happening in traffic,
as cited in requirement (i), a general iteratively
based threshold for the urgency is added to the code
(appendix E line 174).

The values of ∆x and ∆y for the distance between
two parked vehicles, are changed from 1 and 3.5
to a maximum value of 0.8 and 5 respectively.
When a streak of cars is parked, these values are a
better approximation of the real life distances. It
is chosen to remove the filtering of oncoming traffic
completely, due to the uncertainty in the relative
velocity of objects as mentioned in 4.3.1 refraining it
from functioning properly and its small contribution
to the system.

When looking at the results of the human
logic questionnaire, see appendix C.1, it can
be noticed that people are not mentioned as much as
participants would like them to. Three solutions are
implemented to solve this problem: (1) The person
speech box from 4.5.4 which was initially speed
dependent, is now independent of the speed. (2)
The TypeUrgency of a person is increased from 4 to
4.9 (appendix E line 77). This is kept lower than 5,
the value of a bicycle, to partially solve the problem
of mentioning a cyclist as a person, which can be
confusing for the driver. (3) The a, b and c factors
of function 1 are optimised, so that the products of
the different urgencies are now in the same order of
magnitude. The figure in 7 then changes to:

Multiplication factors a b c

Original value 3 4 60
New value 8 2 60

Figure 13: Updated urgency function values

5.2 Validation of final design

The changes made between the second iteration
and the final design are tested via a last reiteration
as mentioned in section 2.3.3. The relevant
requirements will be evaluated.

(i) A total of 5 out of 55 mentioned objects, concern
parked cars. There are 3 false positives mentioned.
This is an improvement with respect to the previous
iterations as can be seen in figure 14. Currently,
71% of AVAs messages are relevant.

Figure 14: Classification of objects mentioned in part
of test run

(ii) AVA gives 8 messages about road users that have
already passed. In figure 15, a graph can be seen
of the distance from the object at the time AVA
mentions it and the vehicle speed at that time and
thus the time the car would take to reach that object
without interference. As explained in 2.4.2, this time
needs to be larger than or equal to 1 for the mention
to be timely. Currently, 29% of AVAs mentions can
be considered timely.

0 5 10 15 20 25
Vehicle Speed [m/s]

0

5

10

15

20

25

Di
st

an
ce

 O
bj

ec
t i

n
Y-

di
re

ct
io

n
[m

]

ttc = 1
Low light detection
Close first detection

0.5

1.0

1.5

2.0

2.5

Ti
m

e
to

 c
ol

lis
io

n
[s

]

Figure 15: Scatterplot of the y-distance of an object
versus the vehicle speed at the time the object is
mentioned

(vi) This requirement is validated with a
questionnaire discussed in 2.4.4. This section

10

will discuss the results. See appendix C.2 for the
situation, exact results and the full questionnaire.
Question 1 & 6
From these results it can be concluded that when
two objects are in the same direction and neither
have a particularly high urgency, it is not clear
which object is meant by AVA. It is assumed that
people expect an object with a high urgency
Question 2
On a road with different lanes, participants view
the car in the same lane as in front. This is
not necessarily the case for AVA and could cause
confusion.
Question 3-5
When one object is noticeably more urgent than the
other objects in the situation, it is assumed that
object is being mentioned disregarding the direction.
In conclusion, it is not always clear which object is
indicated by AVA.
Requirements (iii), (iv), (v) and (vii) have been left
unaltered with respect to iteration 2, 4.6.

5.3 Additional option: eye-tracker

In this research, the possibility of implementing
eye-tracking is explored as an additional option for
a co-driver system. This possibility arises from
requirement (i), and explores whether the system
would provide more relevant messages, if the gaze
of the driver is taken into account.

5.3.1 Design choices regarding gaze

The Smart Eye eye-tracker provides the angle of
the gaze of the driver and the cameras determine
the angle of an object relative to the car. The
angles of these two vectors are compared to define
the gaze angle. The stereo vision cameras in the
Toyota Prius cover a total angle of approximately 60°
and combined with the range of the eye-tracker the
maximum gaze angle of a driver can reach the value
of 110°. Furthermore, it is assumed that a person
has a field of view of 60° and a central vision of 5°
[7].

5.3.2 Implementing gaze

It is assumed that when an object has been in the
drivers central vision, it is less urgent for AVA to
mention this object. This is why the gaze angle
is added to the urgency function as in 4.1.1. The
urgency function then resembles equation 2. The

factor d has a value of 0.5, in order for the product
to be in the same order of magnitude as the products
of the original function.

U = a · Typeurgency + b · V worldAbs
+c ·DistanceUrgency + d · gazeAngle

(2)

When an object has been in the drivers central vision,
it will be placed in UR2 (appendix E line 150-154)
as seen in figure 6, following an identical path to
objects that have been mentioned as explained in
section 4.1.2 and 4.1.3. This is done to prioritise
unseen objects above objects that have already been
seen.

5.3.3 Validation of gaze implementation

This feature is not tested through a test run,
but by means of a reiteration as mentioned in
2.3.3. The coded system is first replayed with
the original function and later on the code with
the eye-tracking function. Because the eye-tracking
factor has now been added to the urgency function,
it will be larger than the urgencies from the original
function. Consequently, the threshold as mentioned
in section 5.1 has been temporarily removed for fair
comparison.

Figure 16: Classification of messages from AVA
during test run

As can be seen in the graph above, AVA gives
less messages when using the eye-tracker and the
percentage of relevant messages is lower. An
explanation for this is that driver tends to look at the
most relevant objects, so these will not be mentioned.
Implementing an eye-tracking option would have
to be combined with a threshold, otherwise the
information is irrelevant.

11

5.4 Demonstration

In this paper and the accompanying demonstration
video, a prototype of the Automated Vehicle
Assistant concept is presented with the intention
of improving the situational awareness of the
driver for a successful manual takeover in partially
autonomous driving. The video can be accessed at
https://vimeo.com/380507599.

6 Discussion

In this section, both potential shortcomings and
possible improvements are discussed along with
long term design ideas that can be implemented or
investigated in future designs and research.

The current urgency function applies the absolute
velocities of objects measured in the world frame.
A more accurate speed-urgency could be generated
using their relative velocity. This would favour
objects approached by the car at high speed, over
objects driving along at the same speed, which is
currently not the case. Objects approaching the car
perpendicularly could also be favoured over objects
leaving the car in that direction. However, due to
relative velocities being unreliable during the design
of AVA, they are not implemented in the current
urgency function.

The data processing is complicated by double
and erroneous detections. This can be caused
by overexposed low light situations or errors in
the image tracking. The current system using
two cameras with stereo vision is not capable of
detecting objects behind the car, under bad light
conditions (low or back light) or at night. Future
designs can focus on implementing a LUX LIDAR
[10] sensor on the roof of the car. LIDAR makes
a 360° scan of the surroundings, and use this data
combined with the camera data, as input for the
system. Moreover, LIDAR contains a light source so
that the system is able to detect objects at night or
scenarios with low or back light conditions. Lastly,
LIDAR would also be able to give the objects a
correct relative velocity.

Although the urgency function functions properly
when applied to standard situations, AVA falls
short of human logic in anomalous situations
such as someone suddenly opening the doors of

a vehicle parked on the side of the road. To
identify and anticipate on these unusual situations,
an advanced image recognition system could be used.

According to the results of the recognition
questionnaire in 5.2, it seems that the direction is
disregarded more frequently when an object is more
urgent than others. On the other hand, when two
road users have a similar urgency, it is unclear which
road user is mentioned by AVA. A solution can be to
adapt the style of the messages to the difference in
urgency, i.e. when the difference in urgency is large,
a short message is enough. For situations with a
small difference in urgency, a detailed message must
be sent. According to Fleming [5] in such a situation
details about the road user and landmarks must be
added to a message to make it clear for a driver.

Results from questionnaire 2 show differences in
interpreting the direction given by AVA, as presented
in 8. For example, AVA classifies a direction in
the left plane and gives it direction ”left”, but a
driver can interpret it as ”in front”. A solution to
solve this misunderstanding is to implement a gaze
trainer in the code. After the gaze of the driver is
calibrated in the system, the gaze trainer can let the
driver experience the different detection zones. For
example by turning the head slowly to the left until
the gaze trainer will say, ”at this angle, objects are
mentioned as left.”

The effectiveness of the eye-tracking is decreased by
bad lighting conditions. In this study problems were
encountered with low lighting that over exposed the
driver’s face, so that the eye tracking cameras could
no longer distinguish the drivers eyes. Because of the
way the code is structured, it will stop running when
it does not get eye tracking input. This occurred
during the third test run. To compare both human
logic that follows the second questionnaire and
the commands of AVA, the individual urgencies of
objects in the questionnaire are manually calculated
with function 1. These values could differ from the
actual values.

6.1 Further recommendations

Feedback plays an important role in car-driver
interactions it gives context for understanding,
acceptance of a driver and keeps the driver more
attentive [11]. By letting the electronic co-driver ask
questions about the traffic, an the driver answering

12

them, a driver can be less distracted.

In this study, a logic speech rate was implemented in
AVA. This speech rate was based on trial and error
and by examining literature as provided in section
3.3. Future research can focus on providing the
optimal speech rate for electronic vehicle assistants
by doing experiments on participants with different
speech rates and their experiences.

Using this speech-based prototype AVA, extensive
research with participants could be done to
determine the amount of acceptance the driver has
towards the system. In appendix D, a detailed
elaboration of such a research can be found.

7 Conclusion

In section 5.2, the final prototype for speech-based
assistance in partially automated driving, AVA, is
validated one last time. In the following picture the
essence of what the system can do, is visualized.

Figure 17: Simplified overview of capabilities of AVA

Most of the irrelevancies along the road are filtered
out, even with the additional use of an eye-tracker.
Objects that form an acute danger in traffic, are
given priority. As it is proven that appropriate
feedback reduces the time needed for a successful
takeover, it can be concluded that AVA provides a
clear, human like, solution to situational awareness

improvement to provide a better possibility of
manual interference. Until the future where driving
is fully automated, it is important to keep our eyes
on the road ahead.

7.1 Acknowledgements

Our gratitude goes out to the Intelligent Vehicle
department of the Delft University of Technology, for
thinking along and for the use of the Toyota Prius.
In addition, we would like to thank Ir. J. Stapel and
Dr. Ir. J. de Winter for their time, cooperation and
involvement in this project.

13

References

[1] Bazilinskyy, P., Petermeijer, S.M., Petrovych,
V., Dodou, D. & de Winter, J.C.F. (2018).
Take-over requests in highly automated driving:
A crowdsourcing survey on auditory, vibrotactile,
and visual displays. Transportation Research
Part F: Traffic Psychology and Behaviour, 56,
82-98.

[2] Dienst Beheer Infrastructuur (2012). Handboek
ontwerpcriteria wegen: Versie 4.0. Provincie
Zuid-Holland.

[3] Eriksson, A. & Stanton, N. (2017). The chatty
co-driver: A linguistics approach applying lessons
learnt from aviation incidents. Safety Science,
99 (A), 94-101.

[4] eSpeak (2019). eSpeak text to speech.
Consulted on 14 October 2019, from
http:\\espeak.sourceforge.net.

[5] Fleming, J., Green, P. & Katz, S. (1998). Driver
performance and memory for traffic messages:
Effects of the number of messages, audio quality,
and relevance (UMTRI Technical Report 98-22).
Michigan: University of Michigan Transportation
Research Institute

[6] Funke, G., Greenlee, E., Carter, M., Dukes,
A., Brown, R. & Menke, L. (2016). Which eye
tracker is right for your research? Performance
evaluation of several cost variant eye trackers.
Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, 60 (1),
1240-1244.

[7] The Government of the Hong Kong Special
Administrative Region of the People’s Republic
of China: Environmental Protection Department
(2017). Proposed comprehensive residential and
commercial development atop Siu Ho Wan
Depot(Environmental Impact Assessment Report
252/2017), Appendix 11.1: Prediction of visual
impact based on field of view.

[8] Griffiths, R. (1992). Speech rate and listening
comprehension: Further evidence of the
relationship. Teachers of English to Speakers of
Other Languages Quarterly, 26 (2), 385-390

[9] Heckman, M., Steinhardt, N., Orth, D., Bolder,
B., Dunn, M. & Kolossa,D. (2019, September).
CORA, a prototype for a cooperative,

speech-based on-demand intersection assistant.
Presented at the AutomotiveUI Conference,
Utrecht, the Netherlands.

[10] Himmelsbach, M., Müller, A., Lüttel, T.
& Wünsche, H.J. (2008). LIDAR-based 3D
object perception. Presented at 1st International
Conference on Application and Theory of
Automation in Command and Control Systems,
Barcelona, Spain.

[11] Koo, J., Kwac, J., Ju, W., Steiner, M.,
Leifer, L. & Nass, C. (2015). Why did my
car just do that? Explaining semi-autonomous
driving actions to improve driver understanding,
trust, and performance. International Journal
on Interactive Design and Manufacturing, 9 (4),
269-275.

[12] van der Laan, J.D., Heino, A. & de Waard, D.
(1997). A simple procedure for the assessment
of acceptance of advanced transport telematics.
Transportation Research Part C: Emerging
Technologies, 5 (1), 1-10.

[13] McGehee, D.V., Mazzae, E.N., Scott Baldwin,
G.H. (2000). Driver reaction time in crash
avoidance research: Validation of a driving
simulator study on a test track. Proceedings of the
Human Factors and Ergonomics Society Annual
Meeting, 44 (20), 320-323.

[14] van den Oord, A., Dieleman, S., Zen, H.,
Simonyan, K., Vinyals, O., Graves, A. &
Kavukcuoglu, K. (2016). WaveNet: A generative
model for raw audio. ArXiv.org:1609.03499v2.

[15] Stapel, J.C.J. (2019). Collect vehicleData.py.
Available in the marked regions of Appendix E,
lines 434-810 as in appendix E.

[16] Vanholme, B., Gruyer, D., Lusettie, B., Glaser,
S. & Mammar, S. (2013). Highly automated
driving on highways based on legal safety.
IEEE Transactions on Intelligent Transportation
Systems, 14 (1), 333-347.

[17] Walker, F., Wang, J., Marten, M.H. & Verwey,
W.B. (2019). Gaze behaviour and electrodermal
activity: Objective measures of drivers’ trust
in automated vehicles.” Transportation Research
Part F: Traffic Psychology and Behaviour, 64,
401-412.

14

Appendices

A Routes

A.1 Test run 1

This route was driven during the first test run as
mentioned in section 4.2.

Route 1: November 12, 10 minutes

V3

Architecture, Julianalaan 134,
2628 BL Delft, Netherlands

Zuidplantsoen 4, 2628 BZ
Delft, Nederland

A.2 Test run 2

This route was driven during the second test run as
mentioned in section 4.4.

Route 2: November 22, 23 minutes

Route van startpunt naar Prins
Bernhardlaan 412, 2628 BX Delft,
Nederland

startpunt

Prins Bernhardlaan 412, 2628
BX Delft, Nederland

A.3 Test run 3

This route was driven during the third test run as
mentioned in section 4.6.

Route 3: November 29, 26 minutes

Naamloze laag

startpunt

rotonde

N-weg

zebrapaden

herkenbaar punt aula

Route van startpunt naar Prins
Bernhardlaan 412, 2628 BX Delft,
Nederland

startpunt

Prins Bernhardlaan 412, 2628
BX Delft, Nederland

15

B Questionnaire human logic

This appendix consists of the questions in the questionnaire discussed in section 2.4.3 and section 4.5.1.
The following introduction was included:
Your co-driver is sitting next to you in the car and you have to listen to what they tell you about the
surroundings. To make it as meaningful as possible, you want the co-driver to tell you the most important
things first. Participants are asked the question: ”In which order would you like to hear something about
the traffic in this situation?”, for each of the next situations.

Question 1

Order of mention 1st 2nd 3rd 4th

Questionnaire result Red(91%) Green(57%) Purple(43%) Yellow(35%)
Current AVA Green Red Yellow Purple

The purple and yellow traffic object were interchangeable, 43% would like to hear Yellow third and 30%
would like to hear Purple last. The green object was mentioned by long before the situation occurred. AVA
is accurate in this situation.

Question 2

Order of mention 1st 2nd 3rd

Questionnaire result Red(74%) Yellow(61%) Green(61%)
Current AVA Green Red Yellow

Green was mentioned 10 seconds earlier. AVA is accurate in this situation.

16

Question 3

Order of mention 1st 2nd 3rd

Questionnaire result Green(83%) Red(83%) Yellow(96%)
Current AVA Green Yellow -

Red was not mentioned by AVA, because it could not be detected. AVA is accurate in this situation.

Question 4

Order of mention 1st 2nd 3rd 4th

Questionnaire result Yellow(48%) Purple(52%) Red(61%) Green(78%)
Current AVA Red - - -

Both the purple and yellow objects were seen as almost equally urgent by the participants. Of the
participants, 39% would like to hear Purple first and 30% would like to hear Yellow second. AVA is not yet
accurate in this situation.

17

Question 5

Order of mention 1st 2nd 3rd 4th

Questionnaire result Red(95%) Green(68%) Purple(55%) Yellow(82%)
Current AVA Green Yellow - -

This question included: ”You want to merge onto the rightmost lane”. One answer was marked as invalid.
AVA is not yet accurate in this situation.

18

C Questionnaire validation requirement (iii) and (vi)

Requirement (iii) and desirable (iv) are validated in the same questionnaire. This questionnaire has the
following introduction:
This survey is about an electronic co-driver, a system in your car that talks about the environment you are
driving in. Imagine that you are driving a car and you have to listen to what the system tells you about the
traffic around you. To make the information as meaningful as possible, you want the system to tell you the
most important things first.”
Information about the system:

• The system detects ’person’,’car’, ’cyclist’ and ’motorcycle’(sometimes a cyclist is called a ’person’).
• The system can tell about ’left’, ’right’ and ’in front’.

Note: there is no right or wrong answer.

C.1 Relevance questionnaire

This appendix displays the results from the questionnaire as discussed in section 2.4.3 and 4.6. Participants
are asked the following question: ”In what order of importance would you like to hear about the traffic, from
your co-driver, in this situation?”.

Question 1

Order of mention 1st 2nd 3rd

Questionnaire result Red(96%) Blue(53%) Yellow(55%)
Current AVA Red Yellow Blue

For this question the additional information was added: ”You want to insert to the left; the white car does
as well and the van inserts to the right”. In this result, the difference between the 2nd and 3rd mention was
minimal for the questionnaire as well as AVA. Therefore AVA can be seen as accurate in this situation.

Question 2

Order of mention 1st 2nd 3rd

Questionnaire result Yellow(89%) Blue(53%) Red(55%)
Current AVA Yellow Red Blue

In this result, the difference between the 2nd and 3rd mention was minimal for the questionnaire as well as
AVA. Therefore AVA can be seen as accurate in this situation.

19

Question 3

Order of mention 1st 2nd 3rd 4th 5th

Questionnaire result Green(72%) Blue(66%) Yellow(83%) Orange(47%) Red(55%)
Current AVA Green Blue Yellow - -

AVA is accurate in this situation.

Question 4

Order of mention 1st 2nd 3rd 4th

Questionnaire result Red(98%) Green(40%) Yellow(49%) Purple(51%)
Current AVA Purple Green Red Yellow

Other clarifying numbers are: 36% of the participants would like Green to be mentioned the last and 36%
of the participants would like Yellow to be mentioned second. AVA is not yet accurate.

Question 5

Order of mention 1st 2nd 3rd

Questionnaire result Blue(98%) Yellow(62%) Red(64%)
Current AVA Yellow Red & Blue -

AVA is not yet accurate.

20

Question 6

Order of mention 1st 2nd 3rd 4th 5th

Questionnaire result Red(91%) Yellow(72%) Green(43%) Blue(57%) Purple(91%)
Current AVA Red Blue Yellow - -

For clarification, 34% of the participants would like Green to be mentioned as last. Blue and Purple are not
mentioned by AVA. AVA is accurate.

C.2 Object recognition

This section displays the results from the questionnaire mentioned in section 2.4.4. The participants were
asked: ”Your co-driver warns you with ”[message]”. What object do you think your co-driver has detected?”.

Question 1

The AVA message was: ”car left”. To the participants it was not clear which car was indicated.
Object Yellow Red

Indicated as mentioned object 55% 45%

Question 2

The AVA message was: ”car in front”. To the participants it was not clear which car was indicated.
Object Red Blue Yellow Green

Indicated as mentioned object 4% 0% 96% 0%

21

Question 3

The AVA message was: ”person in front”. To the participants it was not clear which person was indicated.
Object Red Yellow Green

Indicated as mentioned object 81% 19% 0%

Question 4

The AVA message was: ”person left”. To the participants it was not clear which person was indicated.
Object Red Green Yellow

Indicated as mentioned object 19% 45% 36%

Question 5

The AVA message was: ”car in front”. To the participants it was not clear which car was indicated.
Object Yellow Red

Indicated as mentioned object 96% 4%

22

Question 6

The AVA message was: ”person in front”. To the participants it was not clear which person was indicated.
Object Red Yellow

Indicated as mentioned object 45% 55%

23

D Experimenting recommendations

In this paper it has been researched what is believed to be a successful version of the chatty co-driver.
However a technology can only be implemented if it is adopted by the user [17], in this case the driver.
In this appendix a recommendation can be found for the testing of the acceptance and trust of the driver
towards the chatty co-driver.

As mentioned in section 6, it is recommended to continue examination on the use of eye tracking data. A
recommended format for this examination is to include the three following situations: (1) AVA mentions
everything it would do as programmed until this point, (2) AVA gives information on the road users the driver
has already seen and (3) AVA gives information on the road users that the driver has not yet seen. In this
manner it can be investigated if and if so how the usage of eye tracking data would improve the acceptance
of the system.The participants will be asked to drive a route in a car equipped with the chatty co-driver four
consecutive times, each with the implementation of a different situation and naturally a baseline.

D.1 Participants

At least 20 participants are needed in order for the experiment to be considered significant. Concerning
the given information beforehand, the participants should be told no more than that they are about to
cooperate in an experiment concerning an electronic co-driver. This is to prevent the premature forming of
opinion and inconsistency of provided information between participants.
Before commencing the experiment the participants will be briefed by the experimenter via a pre-established
message read aloud, again to prevent inconsistency. This briefing contains an explanation of the duration
and setup of the experiment, still only revealing that the electronic driver will give suggestions about
the surrounding traffic. Additionally, it contains the two following regulations. During the experiment
non-experimental related communication will be kept to a minimum as to not interfere with the messages
from the chatty co-driver and if the participant finds themselves ill at ease, stressed by the system or
physically uncomfortable, they should inform the experimenter immediately so the experiment can be
(temporarily) terminated.

After the briefing, an informed consent must be presented to them, in which they are informed on the goal,
duration, procedure and possible risks of the experiment and the privacy regulations. Possible risks include
over-stimulation of the participant and the risks that apply for everyday traffic. This informed consent is to
be signed by the participant.

D.2 Route

For consistency, the route should be identical during each iteration of the experiment. It is recommended to
use a route within one will encounter multiple different environments and traffic situations and a complete
overview can be made of the acceptance of a chatty co-driver in everyday traffic e.g. urban area, highway,
main roads and residential area. Each situation will have a duration for 10 minutes, to supply sufficient
data to analyse but still eliminating factors like acclimatisation to the system.

D.3 Setup of the experiment

All participants will complete an identical experimentation. It is suggested to structure this experiment as
follows:
The participant is to drive four round identical consecutive rounds, beginning with the baseline measurement
followed by the three different situation in a randomised order. This is to eliminate the influence a
specific order of situation would have on the experiment clear and concise directions will be given by
the experimenter.These directions will be identical during each experiment. Following each situation the

24

participant will be asked to fill out a questionnaire. This is the vanderLaan-questionnaire which has specially
been developed for measuring acceptance of telematic systems [12]. The participant is granted a minimum
of 5 minutes rest before commencing the next iteration, to eliminate fatigue. The baseline measurement will
always be the primary iteration, to gather data without the usage of AVA and to ensure the same level of
familiarity with the route between all participants. After that the three situations will be driven, alternating
the order with each participant. This is to eliminate factors such as customisation to the system.

25

E Code

1 from copy import deepcopy
2 import rospy # make this script part of ros
3 import sys
4 import tf2 ros # ros reference frame transformations?
5 import tf2 geometry msgs # transformations for custom ros messages?
6 import numpy as np # for basic math
7 import cv2 # OpenCV for image processing
8 import colorsys
9 import math

10 import message filters # to synchronise the incoming messages
11 import cPickle as pickle # to store data
12 import operator
13 import thread # to run the main code and speech code in different threads
14 import os # to save data in a chosen file path
15 from playsound import playsound # to play a saved sound
16 from datetime import datetime # current date and time
17

18 from collections import Counter
19 from cv msgs.msg import GenericTracks, HypothesesStamped
20 from containers chatty import trackParam container, gazeParam container
21

22 from ros smarteye.msg import EyeTracker
23 from visualization msgs.msg import Marker, MarkerArray
24 from geometry msgs.msg import PointStamped, Vector3
25

26 from sensor msgs.msg import Image
27 from std msgs.msg import ColorRGBA, String
28 from FixedTransformListener import FixedTransformListener
29 from nav msgs.msg import Odometry
30

31 class gaze associator:
32 """ init is executed once by ROS when the gaze associator node is created
33 """
34 def init (self, outname='tracked objs gaze 3d marker', output path topic='gaze path marker',
35 gui comm name='message to gui'):
36 self.path pub = rospy.Publisher(output path topic, MarkerArray, queue size=1)
37 self.pub to gui = rospy.Publisher(gui comm name, String,
38 queue size=1) # sends message back to gui containing path
39 # to saved pickle
40 self.all tracks = {} # we will accumulate data in a dictionary we can access with
41 # ["unique track id"]["age"]
42 self.tfBuffer = tf2 ros.Buffer()
43 self.listener = FixedTransformListener(self.tfBuffer)
44 self.odom frame = rospy.get param('~odom frame', 'odom') # World frame in which tracks...
45 # ...should be visualized
46 self.imu frame = rospy.get param('~left frame',
47 'left') # vehicle-fixed frame in which gaze angles...
48 # ...should be resolved
49 self.current time stamp = rospy.Time.now()
50 self.last time stamp = rospy.Time.now() # to clean history when we go back in time
51 # (convenient when replaying rosbag)
52 self.countbagCounter = 0 # used for track visualisation
53 self.UrgencyRanker = {} # initial Urgency dictionary, keys are trackid and values are urgency
54 self.UrgencyRanker2 = {} # secondary Urgency dictionary, item is put in here once it...
55 # ...is pointed out by the chatty co-driver
56 self.UrgencyThreshold = {} # Urgency at time of previous mention is saved here for comparison
57 self.vehicleSpeed = 0 # initialise vehicleSpeed
58 self.commandlist = '' # contains the command the codriver will say
59 self.time = 0
60 self.command = None
61 self.commands = {} #commands and ranking are saved here

26

62 self.poplist = [] # deleted data is saved here
63 self.odom cache = [] # buffer of odom messages
64 self.streaklist X = [] #list of X-coordinates of parked cars
65 self.streaklist Y = [] # list of Y-coordinates of parked cars
66 self.oncomingtraffic X = [] # list of X-coordinates of oncoming traffic
67 self.oncomingtraffic Y = [] # list of Y-coordinates of oncoming traffic
68 self.parkedcarlist = [] # Trackid's of parked cars are saved here
69 self.iteration data = {} # commands said by the co-driver are saved here
70

71 def Urgency(self, trackid):
72 '''
73 Gives an urgency value to an item based on its speed, distance and type.
74 '''
75 # Determine TypeUrgency
76 trackId = self.all tracks[trackid].classId
77 if trackId == 'person':
78 TypeUrgency = 4
79 elif trackId == 'car':
80 TypeUrgency = 2
81 elif trackId == 'bus':
82 TypeUrgency = 1
83 elif trackId == 'bicycle':
84 TypeUrgency = 5
85 elif trackId == 'motorbike':
86 TypeUrgency = 5
87 elif trackId == 'truck':
88 TypeUrgency = 1
89 elif trackId == 'horse':
90 TypeUrgency = 5
91 else:
92 TypeUrgency = 0
93

94 # Determine velocity of an object from imu data
95 VworldVec, Vimuvec = self.CalculateVelocityCorrectly(trackid)
96 VworldAbs = math.sqrt(VworldVec[0] * VworldVec[0] + VworldVec[1] * VworldVec[1])
97 VimuAbs = math.sqrt(Vimuvec[0] * Vimuvec[0] + Vimuvec[1] * Vimuvec[1])
98 self.all tracks[trackid].Vabs = VworldAbs
99

100 # Determine location of an object for current timestamp and 10 timestamps
101 # (1 second since function is called at 10 Hz) ago in imu frame
102 track content = self.all tracks[trackid].track content[-1]
103 distance x new imu = track content.objectLocation imu.point.x
104 distance y new imu = track content.objectLocation imu.point.y
105 trackage = self.all tracks[trackid].age
106 CloseFirstDetection = self.all tracks[trackid].CloseFirstDetection
107 gazeAngle = track content.gazeAngle
108 centralBool = self.all tracks[trackid].beenIn central
109

110 # Determine relative distance of an object and create DistanceUrgency
111 Distance = math.sqrt(distance x new imu ** 2 + distance y new imu ** 2)
112 if Distance <= 0.1: # to avoid ZeroDivisionError, with some margin
113 DistanceUrgency = 10
114 else:
115 DistanceUrgency = Distance ** -1 # the closer an object the higher the urgency
116

117 if distance y new imu < 0: # filters out objects behind the car by giving it low urgency
118 U = 0
119 elif VworldAbs < 3.0 and trackId != 'person' and VworldVec[-1] != 0.0: # filters out slow...
120 #... objects except for persons
121 U = 0
122 # append the stationary object to the parked car lists
123 self.streaklist X.append(distance x new imu)
124 self.streaklist Y.append(distance y new imu)
125 self.parkedcarlist.append(trackid)
126

27

127 try:
128 delta yvec = []
129 delta yvec2 = []
130 delta xvec = []
131 # Calculate the differences in x- and y-coordinates for the 30 last appended objects
132 for i in range(min(30, len(self.streaklist Y))):
133 delta yvec.append(distance y new imu - self.streaklist Y[-i])
134 delta xvec.append(distance x new imu - self.streaklist X[-i])
135 for value in delta xvec:
136 if abs(value) <= 0.8:
137 k = delta xvec.index(value)
138 delta yvec2.append(delta yvec[k])
139 delta y = min(delta yvec2)
140 # If the object is close to the previous parked car it is identified as parked
141 if abs(delta y) <= 5:
142 U = 0
143 if trackid not in parkedcarlist:
144 self.parkedcarlist.append(trackid)
145 self.streaklist X.append(distance x new imu)
146 self.streaklist Y.append(distance y new imu)
147 else:
148 U = self.Detectionbox(distance x new imu, distance y new imu, TypeUrgency, VworldAbs
149 DistanceUrgency, trackage, CloseFirstDetection, trackId, gazeAngle)
150 if centralBool == True:
151 if trackid in self.UrgencyRanker.keys():
152 temp = self.UrgencyRanker.pop(trackid)
153 self.UrgencyRanker2.update({trackid : temp})
154 self.UrgencyThreshold.update({trackid : temp})
155 except:
156 U = self.Detectionbox(distance x new imu, distance y new imu, TypeUrgency, VworldAbs,
157 DistanceUrgency, trackage, CloseFirstDetection, trackId, gazeAngle)
158 if centralBool == True:
159 if trackid in self.UrgencyRanker.keys():
160 temp = self.UrgencyRanker.pop(trackid)
161 self.UrgencyRanker2.update({trackid : temp})
162 self.UrgencyThreshold.update({trackid : temp})
163

164 return U
165

166 def Detectionbox(self, distance x new imu, distance y new imu, TypeUrgency, VworldAbs,
167 DistanceUrgency, trackage, CloseFirstDetection, trackId, gazeAngle):
168 '''
169 Calculates the correct urgency for an id based on whether or not it is in the detection box
170 '''
171 # Define factors for urgencyfunction
172 a = 3
173 b = 4
174 c = 60
175 d = 0.4
176

177 if trackId == 'person': # Filter out persons outside the person speech box, unless the...
178 # ...first detection is < 1 meter.
179 if distance y new imu <= 1 or distance y new imu >= 15 or abs(distance x new imu) >= 5:
180 if CloseFirstDetection == True:
181 U = a * TypeUrgency + b * VworldAbs + c * DistanceUrgency + d * gazeAngle
182 else:
183 U = 0
184 else:
185 U = a * TypeUrgency + b * VworldAbs + c * DistanceUrgency + d * gazeAngle
186 else: # Apply the normal speech box to other objects
187 if self.vehicleSpeed >= 18: # Filter out objects more than one lane away
188 if abs(distance x new imu) >= 5.25 or distance y new imu >= 40: # a lane is 3.5 m
189 U = 0
190 else:
191 U = a * TypeUrgency + b * VworldAbs + c * DistanceUrgency + d * gazeAngle

28

192 elif self.vehicleSpeed >= 12.5 and self.vehicleSpeed < 18: # Filter out objects not on...
193 # ...or directly beside the road
194 if abs(distance x new imu) >= 8 or distance y new imu >= 30:
195 U = 0
196 else:
197 U = a * TypeUrgency + b * VworldAbs + c * DistanceUrgency + d * gazeAngle
198 else:
199 if abs(distance x new imu) >= 10 or distance y new imu >= 30:
200 U = 0
201 else:
202 U = a * TypeUrgency + b * VworldAbs + c * DistanceUrgency + d * gazeAngle
203

204 return U
205

206 def CalculateVelocityCorrectly(self, trackId):
207 '''
208 Calculates the velocity of an object
209 '''
210 nmeas = len(self.all tracks[trackId].track content)
211 Vodom= [0.0, 0.0]
212 Vimu = [0.0, 0.0] # setting to 0 instead of None, since both are handled in the same way
213 if nmeas > 1:
214 # calculate the velocity in world frame (absolute velocity)
215 pos new odom = self.all tracks[trackId].track content[-1].objectLocation world
216 pos old odom = self.all tracks[trackId].track content[0].objectLocation world
217 dt = (pos new odom.header.stamp - pos old odom.header.stamp).to sec()
218 dx = pos new odom.point.x - pos old odom.point.x
219 dy = pos new odom.point.y - pos old odom.point.y
220 if dt>0:
221 Vodom = [dx/dt, dy/dt]
222

223 # calculate the velocity in imu frame (relative velocity)
224 pos new odom = self.all tracks[trackId].track content[-1].objectLocation imu
225 pos old odom = self.all tracks[trackId].track content[0].objectLocation imu
226 dt = (pos new odom.header.stamp - pos old odom.header.stamp).to sec()
227 dx = pos new odom.point.x - pos old odom.point.x
228 dy = pos new odom.point.y - pos old odom.point.y
229 if dt>0:
230 Vimu = [dx/dt, dy/dt]
231

232 return Vodom, Vimu
233

234 def directionEngine(self, trackid):
235 '''
236 Determines the direction of an object relative to the driver
237 '''
238 # Pick the latest x- and y-coordinates of an object
239 try:
240 x = self.all tracks[trackid].track content[-1].objectLocation imu.point.x
241 y = self.all tracks[trackid].track content[-1].objectLocation imu.point.y
242 #Calculates the angle from the object towards the driver
243 try:
244 angle = np.arctan(x / y) * 180 / math.pi
245

246 if angle >= 20:
247 message = ' right'
248 elif angle < 20 and angle >= -20:
249 message = ' in front'
250 elif angle < -20:
251 message = ' left'
252 else:
253 message = ''
254

255 return message
256

29

257 except:
258 return ''
259 except:
260 return ''
261

262 def GetItemWithMaxUrgency(self, dictionary):
263 '''
264 Takes in a dictionary and returns the key with the maximum value attached,
265 in our case the most urgent object from an UrgencyRanker
266 '''
267 try:
268 Item Umax = max(dictionary.iteritems(), key=operator.itemgetter(1))[0]
269 return Item Umax
270 except: # in this case the dictionary is empty
271 return None
272

273 def PriorityDecider(self, UrgencyRanker, UrgencyRanker2, UrgencyThreshold):
274 '''
275 Decides which item to send to the speech engine
276 '''
277 # Picks the highest urgency from the Urgency Ranker and Urgency Ranker 2
278 ItemMax1 = self.GetItemWithMaxUrgency(UrgencyRanker)
279 ItemMax2 = self.GetItemWithMaxUrgency(UrgencyRanker2)
280 Factor = 3
281 if ItemMax1 == None:
282 if ItemMax2 != None:
283 # Only if the urgency in Ranker 2 is 3 times the initial urgency it will be
284 # sent to the speech engine
285 if UrgencyRanker2[ItemMax2] >= Factor * UrgencyThreshold[ItemMax2]:
286 return [ItemMax2, 2]
287 else:
288 return None
289 else:
290 return None
291 elif ItemMax2 == None:
292 return [ItemMax1, 1]
293 elif UrgencyRanker2[ItemMax2] >= Factor * UrgencyThreshold[ItemMax2]:
294 # Only if the urgency in ranker 2 is bigger than in ranker 1 it will be mentioned
295 if UrgencyRanker2[ItemMax2] >= UrgencyRanker[ItemMax1]:
296 return [ItemMax2, 2]
297 else:
298 return [ItemMax1, 1]
299 else:
300 return [ItemMax1, 1]
301

302 def UrgencyRankerFiller(self, track data):
303 '''
304 The function fills the different urgency rankers at 10Hz.
305 '''
306

307 # Determine speed of the Prius
308 odom = self.odom cache.getElemBeforeTime(self.current time stamp)
309 if odom is not None:
310 self.vehicleSpeed = self.odom2speed(odom)
311

312 # Check if the object is detected, calculate the urgency and put it in the correct ranker.
313 for track in track data.tracks:
314 key = track.id
315 if key in self.all tracks.keys():
316 urg = self.Urgency(key)
317 if key in self.UrgencyRanker2.keys():
318 self.UrgencyRanker2[key] = urg
319 else:
320 self.UrgencyRanker[key] = urg
321

30

322 # Delete old and passed vehicle updates from the urgency ranker
323 for key in self.UrgencyRanker.keys():
324 loc = self.all tracks[key].track content[-1].objectLocation imu
325 y = loc.point.y
326 delay = (self.current time stamp - loc.header.stamp).to sec() # Determines the...
327 # ...time since the latest update
328 # if an object is 3m behind the car or is not updates for 1s it is deleted
329 if y < -3 or delay>1.0:
330 self.UrgencyRanker.pop(key)
331 # if the urgency is zero the object will be deleted
332 elif self.UrgencyRanker[key] == 0:
333 self.UrgencyRanker.pop(key)
334

335 # idem for UrgencyRanker2:
336 for key in self.UrgencyRanker2.keys():
337 loc = self.all tracks[key].track content[-1].objectLocation imu
338 y = loc.point.y
339 delay = (self.current time stamp - loc.header.stamp).to sec()
340 if y < -3 or delay>1.0:
341 self.UrgencyRanker2.pop(key)
342 self.UrgencyThreshold.pop(key)
343 elif self.UrgencyRanker2[key] == 0:
344 self.UrgencyRanker2.pop(key)
345 self.UrgencyThreshold.pop(key)
346

347 def odom2speed(self, odom):
348 '''
349 Converts coordinates in the odom frame to speed
350 '''
351 V = odom.twist.twist.linear
352 return math.sqrt(V.x * V.x + V.y * V.y + V.z * V.z)
353

354 def CommandMaker(self):
355 '''
356 Decides which trackid/command to sent to the speech engine from the Urgency Rankers
357 by updating the commandlist
358 '''
359 self.command = self.PriorityDecider(self.UrgencyRanker, self.UrgencyRanker2,
360 self.UrgencyThreshold)
361 if self.command != None:
362 ID = self.command[0]
363 self.commandlist = ID # adds command to commandlist
364 else:
365 self.commandlist = ''
366

367 def Type(self, trackid):
368 '''
369 Translates the class Id's into the word that will be pronounced.
370 '''
371 if trackid != '':
372 trackId = self.all tracks[trackid].classId
373 if trackId == 'person':
374 Type = trackId
375 elif trackId == 'car':
376 Type = trackId
377 elif trackId == 'bus':
378 Type = trackId
379 elif trackId == 'bicycle':
380 Type = 'cyclist'
381 elif trackId == 'motorbike':
382 Type = 'motorcycle'
383 elif trackId == 'truck':
384 Type = trackId
385 elif trackId == 'horse':
386 Type = trackId

31

387 else:
388 Type = ''
389 else:
390 Type = ''
391

392 return Type
393

394 def Say1(self, Type, Direction, trackid):
395 '''
396 Makes a command that can be pronounced by AVA
397 '''
398 if self.command != None:
399 ID = self.command[0]
400 N = self.command[1]
401 if N == 1: # if an item from UrgencyRanker is chosen
402 temporaryvalue = self.UrgencyRanker.pop(ID) # takes the item out of UrgencyRanker
403 self.UrgencyRanker2.update({ID: temporaryvalue}) # places item in UrgencyRanker 2
404 self.UrgencyThreshold.update({ID: temporaryvalue}) # makes threshold for item...
405 # ...to compare current urgency with
406 else: # if an item from UrgencyRanker2 is chosen
407 self.UrgencyThreshold.update({ID: self.UrgencyRanker2[ID]}) # updates threshold...
408 # ...because item is sent to speech engine
409

410 # A list with data about every command is generated so a testrun can be analysed afterwards.
411 y = self.all tracks[trackid].track content[-1].objectLocation imu.point.y
412 ttc command = y/self.vehicleSpeed # time to collision is calculated from y location only
413 iterlist = [trackid, Type, Direction,
414 self.all tracks[trackid].track content[-1].objectLocation imu.point.x,
415 self.all tracks[trackid].track content[-1].objectLocation imu.point.y,
416 self.vehicleSpeed, ttc command, self.all tracks[trackid].age,
417 self.all tracks[trackid].CloseFirstDetection]
418

419 # The data is saved in a library with the time at which the command is spoken
420 self.iteration data.update({rospy.Time.now():iterlist})
421 if Type != '' and Direction != '':
422 filename = Type + Direction
423 # The command that plays the sound
424 playsound('/home/humanfactors/ros/catkin ws/src/chatty codriver/audio/%s.mp3' % filename)
425

426 def MakeSpeech(self, trackid):
427 '''
428 Takes a command from the commandlist and tells the speech engine to say it
429 '''
430 Type = self.Type(trackid)
431 Direction = self.directionEngine(trackid)
432 # A new thread is made so that the main code keeps running when something is said.
433 thread.start new thread(self.Say1, (Type, Direction, trackid))
434 '''
435 The source code below is from Collect vehicleData.py, Stapel, J.C.J. 2019.
436 '''
437 def get pick color(self, id, gazeAngle):
438 """
439 for track visualisation: determines track colour based on track ID (hue)
440 and gaze angle (intensity)
441 """
442 g = gazeAngle
443 maxangle = 90.0
444 if (gazeAngle < 2):
445 g = 0
446 elif (gazeAngle < 7):
447 g = 30
448 elif (gazeAngle < 30):
449 g = 60
450 elif (gazeAngle >= 30):
451 g = 50 + g / 3

32

452 if math.isnan(gazeAngle) or gazeAngle > maxangle:
453 g = maxangle
454 colorsys.hsv to rgb
455 h = (int(id * 11 * 32) % 361) / 360.0
456 s = (100 - g / maxangle * 100) / 100.0
457 v = (100 - g / maxangle * 50) / 100.0
458 return colorsys.hsv to rgb(h, s, v)
459

460 def fill gaze container(self, trackContainer, gaze, Point world, Point imu, track):
461 gaze container = gazeParam container()
462 gaze container.FrameNumber = gaze.FrameNumber
463 gaze container.gazequality = gaze.FilteredGazeDirectionQ
464 gaze container.objectLocation world = Point world
465 gaze container.objectLocation imu = Point imu
466 gaze container.gazeAngle = self.get smallest angle(gaze.GazeOrigin, gaze.FilteredGazeDirection,
467 gaze container.objectLocation imu.point)
468 gaze container.Age = track.age
469 fixation = gaze.Fixation
470 saccade = gaze.Saccade
471

472 # Determine if objects have been in the Field of View
473 if trackContainer.beenIn FOV:
474 pass
475 else:
476 if gaze container.gazeAngle < 30: # in FOV
477 trackContainer.beenIn FOV = True
478 if gaze container.gazeAngle > 30: # outside FOV
479 trackContainer.beenIn FOV = False
480

481 # Determine if objects have been seen with central vision
482 if trackContainer.seen:
483 pass
484 else:
485 if gaze container.gazeAngle < 7:
486 trackContainer.beenIn central = True # object been in central vision
487 if fixation > 0:
488 trackContainer.seen = True # object seen
489 trackContainer.beenIn peripheral = False
490 if saccade > 0:
491 trackContainer.seen = False
492 else:
493 trackContainer.beenIn central = False
494 trackContainer.seen = False
495

496 # Define possible peripherally detected objects
497 # objects that never entered the FOV and could have been detected peripherally
498 if not trackContainer.seen:
499 if trackContainer.beenIn FOV:
500 trackContainer.beenIn peripheral = True
501

502 # Define objects that never entered FOV
503 if not trackContainer.beenOut FOV:
504 pass
505 else:
506 if gaze container.gazeAngle > 30:
507 trackContainer.beenOut FOV = True
508 elif gaze container.gazeAngle < 30:
509 trackContainer.beenOut FOV = False
510

511 if gaze container.gazeAngle < 2:
512 trackContainer.centralTime += 1
513 if gaze container.gazeAngle < 10: # useful FOV
514 trackContainer.nearTime += 1
515

516 return gaze container

33

517 """ Perform transformations
518 """
519

520 def perform transforms(self, track data, track):
521 p in state frame = PointStamped()
522 p in state frame.header = deepcopy(track data.header)
523 p in state frame.point.x = track.state[0]
524 p in state frame.point.y = track.state[1]
525 p in state frame.point.z = 0.0
526

527

528 # initialize object location expressed in imu and map frame
529 p in imu frame = PointStamped()
530 p in odom frame = PointStamped()
531 p in imu frame.header = p in state frame.header
532 p in odom frame.header = p in state frame.header
533

534 # transform position to imu and map(=world) frame,
535 try:
536 tf2imu = self.tfBuffer.lookup transform(self.imu frame, track data.header.frame id,
537 track data.header.stamp)
538 p in imu frame = tf2 geometry msgs.do transform point(p in state frame, tf2imu)
539 if self.odom frame == track data.header.frame id: # if track is already in odom...
540 # ...frame, we don't have to transform it
541 p in odom frame = p in state frame
542 else:
543 tf2odom = self.tfBuffer.lookup transform(self.odom frame, track data.header.frame id,
544 track data.header.stamp)
545 p in odom frame = tf2 geometry msgs.do transform point(p in state frame, tf2odom)
546 except (tf2 ros.LookupException, tf2 ros.ConnectivityException, tf2 ros.ExtrapolationException):
547 rospy.loginfo('TF lookup error')
548

549 return p in odom frame, p in imu frame
550

551

552 """ Performs some fancy bookkeeping to populate the trackParam containers
553 """
554

555 def append tracks(self, track data, gazes, ssd):
556 # prepare ssd dictionary for easy lookup
557 ssd detections = {}
558 for hypothesis in ssd.hypotheses:
559 ssd detections[hypothesis.id] = hypothesis
560

561 for track in track data.tracks:
562 if track.id not in self.all tracks.keys():
563 self.all tracks[track.id] = trackParam container()
564

565 """ update track summary statistics """
566 self.all tracks[track.id].age = track.age
567

568 """ perform transformations """
569 p in odom frame, p in imu frame = self.perform transforms(track data, track)
570

571 """ label trackIDs """
572 if (track.assoc meas):
573 measId = track.assoc meas[0]
574 if (measId in ssd detections):
575 self.all tracks[track.id].classId = ssd detections[measId].class id
576

577 """ add all new gaze data to the track. since we have multiple gazes, we will interpolate
578 object locations over time, if we have a previous detection stored. if not, we will simply
579 use the latest gaze.
580 """
581

34

582 if not self.all tracks[track.id].track content: # if track content is empty, there is...
583 # ...no point for interpolation
584 gaze = gazes[-1]
585 self.all tracks[track.id].track content.append(self.fill gaze container(
586 self.all tracks[track.id], gaze, p in odom frame, p in imu frame, track))
587 else:
588 i = 0
589 for gaze in gazes:
590 prevPoint world = self.all tracks[track.id].track content[-1].objectLocation world
591 prevPoint imu = self.all tracks[track.id].track content[-1].objectLocation imu
592 Point world = self.interpolate point(prevPoint world, p in odom frame, gaze.header.stamp)
593 Point imu = self.interpolate point(prevPoint imu, p in imu frame, gaze.header.stamp)
594 self.all tracks[track.id].track content.append(
595 self.fill gaze container(self.all tracks[track.id], gaze, Point world, Point imu, track))
596 i += 1
597

598 # Determines if the object is close first detected
599 if self.all tracks[track.id].age <= 2 and
600 self.all tracks[track.id].track content[-1].objectLocation imu.point.y <= 1:
601 self.all tracks[track.id].CloseFirstDetection = True
602

603 """ estimates position at given time with linear interpolation used to up-sample SSD detections
604 for each gaze message
605 """
606

607 def interpolate point(self, startPointStamped, endPointStamped, atTime):
608 startTime = startPointStamped.header.stamp
609 endTime = endPointStamped.header.stamp
610

611

612 # clip atTime to strict interpolation between the points' time range
613

614 if atTime >= endTime:
615 return endPointStamped
616 elif atTime <= startTime:
617 return startPointStamped
618 # calculate new point
619 newPoint = PointStamped()
620 newPoint.header = deepcopy(startPointStamped.header)
621 newPoint.header.stamp = deepcopy(atTime)
622 a = (atTime - startTime) / (endTime - startTime)
623 newPoint.point.x = (endPointStamped.point.x - startPointStamped.point.x) * a
624 + startPointStamped.point.x
625 newPoint.point.y = (endPointStamped.point.y - startPointStamped.point.y) * a
626 + startPointStamped.point.y
627 newPoint.point.z = (endPointStamped.point.z - startPointStamped.point.z) * a
628 + startPointStamped.point.z
629 return newPoint
630

631 """ calculates angle (in rad or deg) between gaze ray and vector between gaze origin and object.
632 Assumes that all data is provided in the same coordinate frame!
633 """
634

635 def get smallest angle(self, gaze origin, gaze vector, object origin,in deg=True):
636 vec1 = [object origin.x - gaze origin.x, object origin.y - gaze origin.y,
637 object origin.z - gaze origin.z]
638 vec2 = [gaze vector.x, gaze vector.y, gaze vector.z]
639 # normalise both vectors
640 vec1 = vec1 / np.linalg.norm(vec1)
641 vec2 = vec2 / np.linalg.norm(vec2)
642

643 angle = np.arccos(np.clip(np.dot(vec1, vec2), -1.0, 1.0))
644

645 if math.isnan(angle):
646 angle = math.pi

35

647 if in deg:
648 angle = np.degrees(angle)
649 return angle
650

651 """
652 different version of get smallest angle. performs same calculation, but between any two angles
653 (not used at the moment)
654 """
655

656

657 def get smallest angle2(self, vec1, vec2, in deg=True):
658 vec1 = [vec1.x, vec1.y, vec1.z]
659 vec2 = [vec2.x, vec2.y, vec2.z]
660

661 # normalise both vectors
662 vec1 = vec1 / np.linalg.norm(vec1)
663 vec2 = vec2 / np.linalg.norm(vec2)
664

665 # angle in steradian
666 angle = np.arccos(np.clip(np.dot(vec1, vec2), -1.0, 1.0))
667

668 if math.isnan(angle):
669 angle = math.pi
670

671 if in deg:
672 angle = np.degrees(angle)
673 return angle
674

675 """ Returns all gazes since previous execution of synchronizedCallback
676 """
677

678 def getNewGazesFromCache(self, gaze cache):
679 try:
680 gazes = gaze cache.getInterval(self.last time stamp, self.current time stamp)
681 except:
682 rospy.loginfo("delay is %s ", (self.current time stamp - self.last time stamp).to sec())
683 return []
684

685 """ create line strip marker for each unique track id. This should happen in map frame
686 """
687

688 def create line marker(self, header):
689 msg id = 0
690 # loop over all unique track id's
691 for track key, track value in self.all tracks.iteritems():
692 # create a new marker consisting of multiple points/line strips
693 marker = Marker()
694 marker.header.stamp = header.stamp
695 marker.header.seq = header.seq
696 marker.header.frame id = self.odom frame
697 marker.action = Marker.ADD
698 marker.lifetime = rospy.Duration(secs=100)
699 marker.type = Marker.LINE STRIP
700 marker.id = msg id
701 msg id = msg id + 1
702

703 # set scale to a visually appealing value
704 marker.scale.x = 0.3
705 marker.scale.y = 0.3
706 marker.scale.z = 0.3
707

708 # set orientation to identity
709 marker.pose.orientation.w = 1
710

711 # get all positions from this track to create the line strip

36

712 for content in self.all tracks[track key].track content:
713 r, g, b = self.get pick color(track key, content.gazeAngle)
714 marker.points.append(content.objectLocation world.point)
715 marker.colors.append(ColorRGBA(r, g, b, 1.0))
716 line markers.markers.append(marker)
717

718 # Return the entire collection of tracks accumulated up until this point in time
719 return line markers
720

721 """this function triggers:"""
722 def synchronizedCallback(self, SSD3D tracks, gaze, ssd 2d, gaze cache,
723 odom cache):
724 self.current time stamp = SSD3D tracks.header.stamp
725 self.odom cache = odom cache
726

727 self.time += 1
728 if len(gazes) > 0:
729 self.append tracks(SSD3D tracks, gazes, ssd 2d)
730 self.UrgencyRankerFiller(SSD3D tracks)
731 if self.time % 25 == 0:
732 self.CommandMaker()
733 if self.commandlist != "":
734 try:
735 u = self.UrgencyRanker[self.commandlist]
736 except:
737 u = self.UrgencyRanker2[self.commandlist]
738 if self.vehicleSpeed >= 18:
739 self.MakeSpeech(self.commandlist)
740 else:
741 if u > 25:
742 self.MakeSpeech(self.commandlist)
743

744 # create visualization marker of line segments of the separate tracks
745 self.countbagCounter = self.countbagCounter + 1
746 if (self.countbagCounter > 60):
747 count = 0
748 print('length Ranker1: {0}, Ranker2:{1} (threshold: {2}), tracks: {3} (containers: {4})'.
749 format(len(self.UrgencyRanker), len(self.UrgencyRanker2),
750 len(self.UrgencyThreshold), len(self.all tracks),count))
751 self.countbagCounter = 0
752 else:
753 rospy.loginfo("waiting for gazes...")
754 self.last time stamp = self.current time stamp
755

756 def main(args):
757 rospy.init node('gaze SA parameterization', anonymous=False)
758 gazeAssociator = gaze associator()
759

760 SSD1 path = rospy.get param('~input ssd2',
761 '/ueye/left/ssd detected objs out')
762 tracker path = rospy.get param('~input tracker', '/ueye/left/ped track objs')
763

764 sd1 = message filters.Subscriber(SSD1 path, HypothesesStamped)
765 tracker = message filters.Subscriber(tracker path, GenericTracks)
766 gaze sub = message filters.Subscriber("smarteye", EyeTracker)
767

768 odom path = rospy.get param('~odom msg',
769 '/ukf localization odom/odometry/filtered')
770 odom sub = message filters.Subscriber(odom path, Odometry)
771 odom cache = message filters.Cache(odom sub, cache size=100)
772

773 gaze cache = message filters.Cache(gaze sub,
774 cache size=200)
775 ts = message filters.ApproximateTimeSynchronizer([tracker, gaze sub, sd1], 120,
776 0.0083)

37

777 ts.registerCallback(gazeAssociator.synchronizedCallback, gaze cache, odom cache)
778

779 timestamp = gazeAssociator.current time stamp
780 time = datetime.now().strftime("%m %d %Y %H %M %S")
781 # output the necessary data
782 path = '/home/humanfactors/ros/catkin ws/src/chatty codriver/pickles'
783 filename1 ='iteration data test' + time
784 filename3 ='parkedcarlist test' + time
785 filepath1 = os.path.join(path, filename1)
786 filepath3 = os.path.join(path, filename3)
787 # spin() simply keeps python from exiting until this node is stopped
788 try:
789 rospy.spin()
790 except KeyboardInterrupt:
791 print("saving data...")
792

793 cv2.destroyAllWindows()
794

795 # Save the data
796 outfile1 = open(filepath1, 'wb')
797 outfile3 = open(filepath3, 'wb')
798 pickle.dump(gazeAssociator.iteration data, outfile1)
799 outfile1.close()
800 pickle.dump(gazeAssociator.parkedcarlist, outfile3)
801 outfile3.close()
802 print("data saved!")
803

804 if name == ' main ':
805 # Starts an introduction
806 playsound('/home/humanfactors/ros/catkin ws/src/chatty codriver/audio/intro.mp3')
807 main(sys.argv)
808 '''
809 End of the cited source code Collect vehicleData.py by Stapel, J.C.J, 2019.
810 '''

38

