Coursecode: wi1115wb
Coursename: Linear algebra

DUT creditpoints: 4
ECTS creditpoints: 6

Faculty of Information Technology and Systems

Lecturer(s): Koekoek, dr. R.

Tel.: 015-2787218

Catalog data:
systems of linear equations, vector and matrix equations, matrix algebra, determinants, vector spaces, linear transformations, eigenvalues, eigenvectors, inner product, orthogonality, Gram-Schmidt process, least-squares, symmetric matrices and quadratic forms.

Courseyear: 1
Semester: 4/4/0/4/4
Hours p/w: 2/2/0/2/2
Other hours: 2/2/0/2/2
Assessment: Written
Assessm.period(s): 1-6
(see academic calendar)

Prerequisites: -

Follow up: wi232wb

Detailed description of topics:

  • Systems of linear equations, row reduction and echelon forms, applications.

  • Vectors in Rn, the equation Ax= b, solution sets of linear systems, linear independence, linear transformations, matrix of a linear transfromation, applications.

  • Matrix operations, the inverse of a matrix, characterizations of invertible matrices, matrix factorizations, iterative solutions of linear systems, applications.

  • Determinants, properties of determinants, Cramer's rule, applications.

  • Vector spaces and subspaces, null spaces, column spaces and linear trasformations, linearly independent sets, bases, coordinate systems, dimension of a vector space, rank, change of basis, applications.

  • Eigenvalues and eigenvectors, characteristic equation, diagonalization, eigenvectors and linear transformations, iterative estimates for eigenvalues, applications.

  • Inner product, length and orthogonality, orthogonal sets, orthogonal projections, the Gram-Schmidt process, least-squares problems, inner product spaces, applications.

  • Diagonalization of symmetric matrices, quadratic forms, the singular value decomposition, applications.

Course material:
Linear Algebra and Its Applications, David C. Lay, Addison-Wesley Publishing Company, 1994, ISBN 0-201-52031-1.

References from literature:
Linear Algebra and Its Applications, David C. Lay, Addison-Wesley Publishing Company, 1994, ISBN 0-201-52031-1.

Remarks (specific information about assesment, entry requirements, etc.):
Course and exercises

Goals:
basic course for differential equations, mechanics, theory of systems, and many other courses.

Computer use:
Matlab en Maple

Laboratory project(s):

Design content:

Percentage of design: 0%