laatst gewijzigd: 26/08/2003

Vakcode: wi1251wb

Vaknaam: Analyse 2

ZIE OOK BLACKBOARD

Het betreft een colstructie

ECTS studiepunten: 3

Faculteit der Elektrotechniek, Wiskunde en Informatica

Docent(en): Koelink, dr. H.T.

Tel.:  015-27 83639

Trefwoorden:

Limit, sequence, series, convergence, divergence, curves in 3 dimensional space

Cursusjaar:

BSc 1st year

Semester:

2A

Coll.uren p/w:

4

Andere uren p/w:

1 (vragenuur)

Toetsvorm:

Written

Tentamenperiode:

2A, 2B

(zie jaarindeling)

 

Voorkennis: VWO wiskunde

Wordt vervolgd door: wi2252wb

Uitgebreide beschrijving van het onderwerp:

Sequences, series, partial sums, convergence, divergence, absolutely convergent, tests for convergencie (ratio test), power series, power series expansions for functions, Taylor series, Taylor polynomial, power series solutions to differential equations, curves, arc length, curvature

College materiaal:

J.Stewart, “Calculus: early transcendentals”, 5th ed. ISBN 0-534-39321-7

Referenties vanuit de literatuur:

Opmerkingen (specifieke informatie over tentaminering, toelatingseisen, etc.):

Bonus exercise using a computer algebra package

Leerdoelen:

Analyse 2

Analytisch limieten bepalen en (numeriek) met reeksontwikkeling benaderen

Analysis2 – L1

Distinguish between the two types of improper integrals: discontinuous integrand or infinite integration interval

Analysis2 – L2

Determine the convergence or divergence of an improper integral by means of comparison tests

Analysis2 – L3

Recognize the various types of sequences: explicit and recursive sequences (e.g. Fibonacci sequence)

Analysis2 – L4

Explain in own words convergence and limit of a sequence. Reproduce simple properties of these two aspects (a.o. sum law, constant multiple law, product law, squeeze theorem). Reproduce standard limiting cases, e.g. LIM (1 + x/n) = e^x ; LIM n-th ROOT of n = 1

Analysis2 – L5

Recognize an infinite series and explain in own words the meaning of convergence and divergence. Know the convergence and divergence of some important examples such as SUM 1/n ; SUM 1/n^2 ; SUM r^n

Analysis2 – L6

Reproduce and apply a number of simple convergence criteria to infinite series (test for divergence, sum law, product law, integral test)

Analysis2 – L7

Determine the convergence radius of power series and determine the Taylor power series expansion of elementary functions (such as sin x ; e^x ; ln x)

Analysis2 – L8

Approximate functions by means of Taylor polynomials and determine estimates of the errors

Analysis2 – L9

Reproduce and interpret basic vector geometry in two- and three-dimensional space (length, perpendicularity, inner product, outer product, determinant, formulation of the equations for lines and planes)

 

Computer gebruik:

Computer algebra package is needed for some exercises.

Practicum:

Ontwerp component:

Percentage ontwerponderwijs:  0 %