
DeMeMech-Exchange
Presentation

Research conducted by Alexander Taro Franke at Arai Lab,
School of Engineering, University of Tokyo

Table of Contents

 Introduction to GP

 Initial goal of this research

 Problem analysis of GP

 Example-based fitness functions

 Grammatical construction of GP

 Molecular program construction

Introduction to GP

Genetic Programming is an
evolutionary search algorithm
much like Genetic Algorithms

It automatically finds solutions to a
before specified problem

Difference to GA: GP produces
computer programs as solutions

Introduction to GP

Classical GP produces programs with
tree-structure called parse trees. The
algorithms generates those trees by
randomly choosing from a set of
functions and terminals
(non-terminals = nodes,terminals=leafs)

Introduction to GP

Construction of programs in GP

Introduction to GP

Initially a fixed number of such programs
(a generation) is generated

Then every program is executed and a
fitness is assigned which reflects how well
the program accomplished the task

Introduction to GP
Cross-over operation

The cross-over operation
is performed by taking
subtrees of two parent
programs and then
exchanging those trees

Introduction to GP

Point-mutation

The point-mutation is
performed by choosing a
random node or leaf and
changing it.

Introduction to GP

Subtree-mutation

The subtree-mutation is
performed by choosing a
random subtree and
substituting it with
another.

Construction of new ADFs

Source: http://www.genetic-programming.com/

Branch duplication ADFs

Source: http://www.genetic-programming.com/

Introduction to GP

The process of generating and
evaluating new program
generations is repeated until a
satisfying solution is found

Introduction to GP

Recently GP has evolved new solutions for
problems like electronic circuit design,
quantum computing algorithms or optical
lens system design

This is due to the exponentially growing
computing power and GP solutions often
involved large clusters of computers
(1000-node-clusters for example)

Initial goal of this research

Use GP to derive a program for
cooperative RoboCup Soccer
Robots (4-legged league)

Initial goal of this research

Existing code would allow construction
of parse trees with little modification

Use simulator to coevolve soccer teams
using existing high-level functions

Problem analysis of GP
GP is able to create simple solutions but fails to
produce more complex solutions

This is because by increasing the program size
linearly the search space grows exponentially

Increasing GP program size

Number of lines
of hand-coded
program with
equal functionality
to so far best
GP program

Exponentially more programs with non-functional code

Problem analysis of GP

This exponential grows in possible
programs can be called the “curse of
dimensionality”

Therefore new ways to find useful programs
with greater complexity have to be found,
i.e. we have to restrict the search space to
areas with possibly useful solutions without
limiting it so much that the power of the
evolutionary mechanism is lost

Problem analysis of GP
Concerning the initial goal:
Several attempts for using GP to derive soccer players for
the Simulation League have been made, including evolution
of homogeneous and heterogenous teams, multiple-goals
fitness and competitive coevolution but the found solutions
often show less complex behavior called “kiddie soccer”

Increasing complexity of behavior

Fitness as measured
in goals scored
and matches won

Complexity gap

Problem analysis of GP

GP consists of the following problem areas:

1. Terminal and Function set

2. Fitness function

3. Construction of program

Terminals and function sets have been extensively researched
as in automatically defined functions(ADFs) or
macros(ADMs)

Example-based fitness functions

Idea: Improve the fitness function

Instead of having one fixed fitness function apply
several fitness functions that compare the structure
of the generated programs with the structure of
handmade example programs using a metric
measuring how similar the functionalities are

Example-based fitness functions

Problem: Functional metric for tree structures

Computational metrics can’t measure functionality
or their computation is exponential and therefore
not applicable

Use a measure that compares the output of
example programs with those of the programs
using the same inputs

Example-based fitness functions
Experiment:

Modification of TGP-code by Michai Oltean

Example-based fitness functions:
Symbol Regression of a 10th-degree polynomial
using lower-degree factors as example-functions

Usage of previous solved solutions as ADFs in
the next case

Global elitist approach with cross-over rate of
20% and 5% mutation

100 individuals per generations,100 generations,
10 fitness functions,10 sample-data,100 runs

Compare to classical GP with ADFs

Example-based fitness functions

Results of experimenting on a symbolic regression
problem showed no improvement to GP with ADFs.

Conclusion: Either the given problem (symbolic
regression) was too simple to be broken down to
subtasks or the power of possible subtask
accomplishment is annulled with the cross-over and
mutation actions. These are believed to destroy
previously found solutions to subtasks when a new
fitness function is used

Need for preserving functional entities

Grammatical construction of GP

Since the improvement of the fitness function seemed
not general and unfruitful

Improve the construction of programs in GP

Improve the structure of programs in GP

Grammatical construction of GP

Use/evolve context-free grammars who should
construct programs

Grammars in this context are considered to be
production rules for valid expressions

S → Bcc → Abcc → Aabcc → aabccA → a

A → Aa

B → Ab

S → Bcc

Production rules Example application

Grammatical construction of GP

Production rules are evolved which restrict the space of
possible solutions

Solutions are constructed with these rules which then are
tested

Reason for this approach: Possibly smaller dimension of
search space for production rules then due to more abstract
nature of production rules

Approach of using grammars has already been applied
with competitive but not superior performance

Molecular program construction

Idea:

To reduce the destructive power of
crossover and to prevent
bloat, see genetic programs as
collection of terminals and functions
much like atoms with certain
binding energies between them
and maximize the energy to construct
programs out of this configuraition

Molecular program construction

Fun1 Fun2 Fun3 Fun4 Fun5
Cons
t1

Cons
t2

Cons
t3

Input
1

Input
2

Input
3

Input
4

Fun1 1 11 36 25 3

Fun2 5 9 7 42

Fun3 7 62 3 6 23

Fun4 34 7 44 5 86 6

Fun5 4 6 77 16 3

Const1

Const2

Const3

Input1

Input2

Input3

Input4

Table for binding energies between the components of the collection

Molecular program construction
Crossover operation would then simply be
an exchange of components and mutation
would also just be a replacing of certain
components

The matrices would also be evolved and
used to construct programs by optimizing
the reward function

It is to be seen how effective a
construction like this would be in means of
computing necessary

Molecular program construction
Every matrix would be assigned a certain
amount of component sets to construct
programs out of them

Those in turn would be evaluated and the
average fitness would be assigned to the
matrix

Then the matrices and the sets of
components would undergo the
evolutionary mechanisms and generate
the next generation of matrices and sets

Impression of Japan

Cherry-blossom parties

Robot everywhere

Impressions of Japan

Making and eating soba Yakiniku- Korean bbq

Suburban desert - never ends

...and of course Karaoke

Crazy video game devices Rollercoasters through buildings

