Simulation and Control of a pneumatically actuated dynamic walking robot

MSc Project in the Hosoda laboratory, Osaka University

Final presentation in Japan

July 19, 2006 Maarten Wit マーテン ウィット

空脚

1

Delft University of Technology

Systems and Control Delft Biorobotics lab

Overview

- Introduction
- My project
- •Model of biped robot *Que-kaku* (空脚)
- Model of pneumatic actuator
- Dynamic simulation with timing control
- Controller design
- Conclusions

Problem statement

- \bullet Trajectory following robots are not energy efficient
- Dynamic walking robots have a limited stability
- \bullet Goal: Design a Limit Cycle Controller (LCC) for an actuated dynamic walking robot. The controller should improve the robot's stability.

My project steps:

- \checkmark Make dynamic model and simulation of pneumatic walking robot (Que-kaku) in Matlab.
- \checkmark Make model of McKibben muscles.
- \checkmark Implement McKibben muscles in the simulation.
- \checkmark Evaluate current timing based controllers (FF)
- \checkmark Simulate and implement FB controller [Takuma]
- \checkmark Simplest walker model to 'predict' the next step

Robot in Hosoda laboratory

July 19, 2006 \sim 3006 \sim 30

•Based on *Mike* by DBL •2D biped robot with knees •Actuated by McKibben pneumatic muscles

Robot model definition

Robot model definition (2)

For the four parts of the robot, the parameters are:

- Length from knee-joint to hip-joint or to the floor.
- •Mass
- Center of Mass (distance of CoM to higher joint)
- \bullet Inertia
- For the lower legs: Shape and location of the feet

For the dynamic walking robots these parameters greatly determine the walking behavior and stability of the robot

Preliminary experiments

Change valve opening durations independently:

- Se Extensor exhaust duration
- Sf Flexor supply duration

Observe the muscle pressure, hip angles and step time Walking in different environments:

- Treadmill on low and high velocity
- •Linoleum floor
- \bullet Carpet

Preliminary experiments (2)

•The **step time** increases with the valve opening times \rightarrow

•The **hip angle** at moment of heel strike increases with the valve opening times

•The muscle **pressure** increases with *Sf* but decreases with Se

McKibben pneumatic muscles

- Efficient actuation for dynamic walking robots
- Difficult to control due to nonlinear behavior
- •• A simple linear force model is made, based on static measurements

[Shadow company: shadow.org.uk]

McKibben pneumatic muscles (2)

- Pressure = f(supply pressure, open times)
- \bullet Natural length $=$ f(muscle properties, pressure)
- \bullet Extension = $f(natural length, robot state)$

McKibben muscle model

Analytical model:
$$
f = \frac{b^2 P}{4\pi n^2} \left(3\frac{L^2}{b^2} - 1 \right)
$$
 [van der Linde '01]

Simple linear model:

- Stiffness:
- \bullet Damping:

$$
f = K_f \cdot ext + D_f \cdot e\dot{x}t
$$

$$
K_f = c_1 \cdot pressure
$$

$$
D_f = K_f \cdot c_2
$$

McKibben muscle model (2)

Using McKibben muscles

To control a simple joint, 2 muscles are needed: an **extensor** and a **flexor** muscle. The resulting joint torque depends on:

•Force of the two muscles•Moment arm of the muscles

$$
\tau = \left(f_{extensor} - f_{flexor}\right) arm
$$

Stiffness and **compliance** can be controlled by changing the two forces simultaneously

Controller design

- Design a Limit Cycle Controller (LCC) to improve the robot's stability and robustness *Only the hip joint is considered in this project* Controllers:
- Feed forward (FF) controller
- Feedback (FB) control
- Model-based control

FF control – timing based

Stable walking due to good hardware design

Simple feedback control

- Regulating the step time of the robot.
- The controller changes the valve opening times to control the step time to a desired value.
- \bullet Experiments: valve opening time $\uparrow \rightarrow$ step time \uparrow
- OpenTime =OpenTime + K (Desired2steps –Last2steps)
- Using 2 steps to compensate for asymmetry

Simple feedback control - experiment

July 19, 2006 $\,$. $\,$

DCSC

- One walking period = two steps should be 1000 ms
- Too long step times are ignored for control

UDelft

Walking experiment

Simplest walker model

Continuous time model with linear spring k at the hip: [Gracia '98, Kuo '02] \bullet $\theta(t) - \sin \theta(t) = 0$ $\ddot{\phi}(t) = \ddot{\theta}(t) - \dot{\theta}$ $\ddot{\phi}(t) - \ddot{\theta}(t) - \dot{\theta}^2(t) \sin \phi(t) + \cos \theta(t) \sin \phi(t) = -k\phi(t)$ $-\theta(t)-\theta^2(t)\sin\phi(t)+\cos\theta(t)\sin\phi(t)=$ walkingм-Linearized system for small angles: $\begin{bmatrix} \dot{\theta} \ \ddot{\theta} \end{bmatrix}_{\equiv} \begin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \ \dot{\theta} \end{bmatrix}$ & θ | | 0 | 1 | 0 | 0 | | θ $0\quad 1\quad 0\quad 0$ \ddot{a} | 1 0 0 \ddot{b} θ | | 1 | 0 | 0 | θ 10 0 0 $\begin{bmatrix} \theta \\ \dot{\phi} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -\omega^2 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \phi \\ \dot{\phi} \end{bmatrix}$ & ϕ | | 0 \ 0 \ 0 \ 0 \ 1 || ϕ $0\quad 0\quad 1$ \ddot{a} | 1 0 $-a^2$ 0 d 2 ϕ | | 1 0 $-\omega^2$ 0 || ϕ $1\quad 0\quad -\omega^2\quad 0$ swing leg stance $\omega \Box \sqrt{k+1}$ leq - m July 19, 2006 20 DCSC **Delft**

Simplest walker model - simulation

- Simple model, made asymmetric
- Odd and even steps are different
- Hip spring k controls frequency and step time

fUDelft

DCSC

Predict one step ahead

- \bullet The simplest walker model should simulate the next step and the resulting **hip angle** and **step time** can be used for FB control.
- Inputs are the initial conditions of the step:
	- Measured hip angle, stance leg angle
	- Estimated angular velocities
- Problem: Behavior of robot changes gradually
- •The result of prediction is not good yet

Final idea for controller

- Simple FB controller as described before; regulating the step time
- Additionally reflex-like behavior:
	- If a step is too short due to a disturbance, the next step will be made longer by opening the valves longer
- If time allows I like to give a demonstration later

Conclusions

- • The matlab simulation can be used to simulate the walking behavior of the Que-kaku
	- It can be adapted to other robots as well
	- It can be used to test new controllers
- McKibben muscle model is easy to implement
- Feedback can improve the walking behavior of the robot
	- The walking behavior can be automatically changed
	- The robot can handle larger disturbances

Thank you for your attention

& Any questions are welcome

Everybody is welcome for the goodbye-dinner, tomorrow!

EXECTE Also after I return to Holland, July 24, please keep in contact: m.j.p.wit@student.tudelft.nl

